伺服阀与比例阀的区别
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
高频响电液伺服阀与比例阀的能源效益比较分析引言:在工业自动化领域中,液压系统广泛应用于各种工程设备和机械装置中,起到传动、控制和调节作用。
而电液伺服阀和比例阀作为液压系统中重要的执行元件,对系统的性能和能源效益有着直接的影响。
本文将对高频响电液伺服阀和比例阀的能源效益进行详细比较分析。
1. 高频响电液伺服阀的能源效益高频响电液伺服阀是一种特殊的电液伺服阀,其具有快速响应、高精度和抗载荷能力强等优点。
这种阀可以实现快速的开启和关闭动作,并能根据外部信号即时调整流量和压力。
这种特性使得高频响电液伺服阀在一些对动态响应要求高、频繁启闭的工况下具备较高的能源效益。
首先,高频响电液伺服阀的快速开启和关闭动作可以减少液压系统中的能量损失。
传统的电液伺服阀在开启和关闭过程中会存在一定的延时,导致液压油流不能立即进入或截断流通,从而引起能量损耗。
而高频响电液伺服阀几乎可以实现即时开启和关闭,大大减少了这种能量损失。
其次,高精度的流量和压力调节使得高频响电液伺服阀能够更加精确地控制液压系统的流量和压力。
通过实时调整和优化流体流量,可以确保系统始终处于最佳工作状态,减少能量浪费和功耗。
最后,高频响电液伺服阀的抗载荷能力强,可以实现更加精确的负载控制。
在工程机械和重载设备中,由于工作负载的变化和波动,若无法精确控制液压系统的负载输出,将导致能源浪费和低效率工作。
高频响电液伺服阀通过准确感知负载压力变化,并迅速动态调整阀门位置和流量输出,实现精准负载控制,提高能源效益。
2. 比例阀的能源效益比例阀是一种常见的电液转换器,通过电信号调节液压阀芯的运动位置,从而控制液压系统中液压油的流量和压力。
比例阀适用范围广泛,常用于机床、冶金、石化等行业的液压控制系统中。
比例阀具有灵活性强、可控性好、响应速度快等优点。
通过电信号的调节,可以实现对液压系统流量和压力的精确控制,达到节能和提高系统效率的目的。
首先,比例阀可以根据实际需求进行流量和压力的在线调节。
伺服阀与比例阀的发展研究摘要:介绍了伺服阀与比例阀的原理与应用,并比较其差别。
最后介绍了电液伺服比例阀,比例伺服阀是比例技术和伺服技术结合的产物,是技术进步的必然。
关键词:伺服阀,比例阀,伺服比例阀,发展趋势1.伺服阀与比例阀概述1.1 伺服阀的简介与原理液控伺服阀是在伺服系统中将电信号输入转换为功率较大的压力或流量压力信号输出的执行元件。
根据输入信号的方式不同,又分为电液伺服阀和机液伺服阀。
它既是电液或机液转换元件,也是功率放大元件。
伺服阀的灵敏度高,快速性好,能将小功率的微弱电气或机械输入信号转换为大功率的液压能(流量和压力)输出,可以驱动多种类型的负载。
过去人们曾把喷嘴档板阀、射流管或滑阀伺服马达等液压放大装置都列入伺服阀范围内。
20世纪70年代以来,伺服阀一般仅指电液伺服阀。
伺服阀主要有力反馈式伺服阀和位置反馈式伺服阀。
这里以力反馈式伺服阀为代表介绍伺服阀的工作原理。
力反馈式电液伺服阀的结构和原理如图1所示,其中1是永久磁铁,2是衔铁,3是扭轴,4是喷嘴,5是弹簧片,6是过滤器,7是滑阀,8是线圈,9是轭铁。
当没有信号电流输入时,衔铁和挡板处于中间位置。
这时喷嘴4二腔的压力pa=pb,滑阀7二端压力相等,滑阀处于零位。
输入电流后,电磁力矩使衔铁2连同挡板偏转θ角。
设θ为顺时针偏转,则由于挡板的偏移使pa>pb,滑阀向右移动。
滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。
在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。
同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。
这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。
如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。
方向阀、比例方向阀、伺服变量阀区别2008-05-17 10:461、电液比例方向阀,在结构上与传统开关型方向阀很相似,阀体几乎是通用的;但在功能上却有着重要差别,它实际上是一种流量控制阀,既可以控制液流流动的方向,又能按比例控制液流的流量;2、电液比例方向阀这种可同时控制液流的方向与流量大小的功能,与伺服阀相似;但一般的比例方向阀有较大的零位死区,这是与伺服阀最重要的差别;当然,还有动态响应要比伺服阀低一个数量级(但它对一般工业系统已经足够)等好些不同。
3、液阻(广义)流量基本公式表明,流量不仅与液阻控制口的过流面积有关,而且与控制口前后的压力差相关。
由此,比例方向阀与单方向的流量阀一样,可区分为所控制的流量与控制口压差有关的方向节流阀,和与控制口压差无关的方向流量阀。
4、方向节流阀与方向流量阀各自有许多结构形式,但是在目前人们想到并为工业界接受的方向流量阀的形式中,大部分是在方向节流阀基础上,或者加上所谓的压力补偿器,来自动抑制负载压力变化的影响,或者采用阀内或阀外的流量检测反馈来加予校正。
5、讲到压力补偿,与单向的流量阀一样,常用的有定差减压型与定差溢流型(前者形式上与节流口是串联的,且属于耗能型;后者与节流口并联,属于节能型)。
这两种补偿器原则上都用于控制进入执行器的流量(进口补偿器,有如在东方,通过高考严格控制考生进大学),而对于存在超越负载的系统,进入执行器的流量无法控制,就有所谓的出口补偿器,用来控制从执行器出来的流量(有如在西方,免试读大学,但严格控制毕业的学生流)。
6、多路阀实际上是适应工程机械等行走机械的需要,以控制多个执行器的方向阀以及相关辅助期间组合起来的控制单元。
传统的六通阀,可以看成是一种具有初级比例控制特性(微调特性)的比例方向阀。
后来发展的四通阀,基本上是基于通过压力补偿变成流量阀的思路。
由于多个方向阀组合在一起,其补偿特性就有可能出现定差减压型(用于对单联方向阀的补偿)与定差溢流型(用于总体的负载适应)的协调组合。
伺服阀与比例阀的区别
伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。
比例阀和伺服阀的区别主要体现在以下几点:
1.驱动装置不同。
比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达;
2.性能参数不同。
滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统;
伺服阀中位没有死区,比例阀有中位死区;
伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;
伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些;
3.阀芯结构及加工精度不同。
比例阀采用阀芯+阀体结构,阀体兼作阀套。
伺服阀和伺服比例阀采用阀芯+阀套的结构。
4.中位机能种类不同。
比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。
5.阀的额定压降不同。
而比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。
方向阀、比例方向阀、伺服变量阀的区别1、电液比例方向阀、方向阀的结构和传统的开关模式类似于阀体几乎是通用的。
但是有重要功能的差异,它实际上是一种流量操控阀门,可以操控流体流动的方向,并能操控液体流动的流量成比例;2、电液比例换向阀可以操控水流方向,在同样的时间,和流函数的大小,类似于伺服阀。
但总的方向的比例阀有一个较大的零死区,这是重要的区别与伺服阀;当然,大约有一个数量级小于伺服阀、动态响应,但它足够一般工业系统),如数量的不同。
3、流体阻力(广义)基本公式表明,交通流不仅是相关的流体阻力来操控流区域的嘴,也关系到操控的压力差之前和之后的嘴。
因此,比例方向阀与单方向流量阀,可分为操控流量和压差的操控口方向的节流阀,无关操控口压差阀水流方向。
4、方向节流阀和信息流的方向阀有自己的许多结构形式,但在当前的人认为和接受信息流的方向阀工业形式,主要是基于节流阀的方向,或所谓的压力赔偿器,以抑制负载压力变化的影响,自动或阀的内部和外部阀采用流反馈添加到校正。
5,当谈到压力补偿,和流动的一个单向阀,常用的有设置和贫民救济和溢流型之间的差异(前者形式和节流嘴是串联的,属于能量耗散型;后者通过节流口在平行、节能)。
两个补偿器的原则是操控流到致动器,存在超出负载系统,到执行机构的流量操控,有所谓的出口补偿器,从致动器是用来操控流量。
大兰液压系统6、多路阀是,事实上,以适应需求的工程机械如散步,来操控方向的多个执行机构阀及相关辅助在一起期间的操控单元。
传统的6个阀可以看作是一种初级比例操控特征(微调功能)的比例方向阀。
四通阀,后来发展基本上是基于压力赔偿通过进流阀的思路。
由于多个换向阀在一起,赔偿特性可能是贫民救济类型(阀的方向单一耦合赔偿)和可怜的溢出类型(一般负载适应)相结合的协调。
新出现饱和多路阀,流阻是传统的节流减压后新开发的压力补偿。
7、电液操控阀(包括比例阀、伺服阀)的结构因素,有一个“一个字”(阀内其他流部分不能干扰和影响“操控阀来操控流”)操控原理,对于这个阀内其他流截面面积,*大的“阀”区域的三到四倍。
1比例阀和伺服阀的区别比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出;伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。
区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安;比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高。
我从结构上理解比例阀的阀芯是靠电磁力和液压力及弹簧力来实现平衡的,而伺服阀是靠液压力来平衡的,所以比例阀在控制大流量高压力上没有优势;还有比例阀最早的产品是开式的,这应该是为什么叫比例阀的原因;在应用上,伺服阀用的更广,不仅能够用于精确的位置,速度等控制,还具有随动作用,所以像你开的汽车助力转向就是一个随动伺服系统,这是比例阀难以实现的。
实现油缸上下运动可以通过阀在不同位置而使得油路切换而实现,这样的阀采用普通换向阀就可以实现了,而伺服或者比例阀的作用是不仅可以控制油缸的方向,还可以精确控制阀的开度,从而可以精确控制流量(工作状态保持不变下)。
您提到的阀的反馈的确只能决定阀是否精确到位,而并不能控制系统的状态,因为即使阀的开度准确,但是真正到作动器内的流量也受到泵压力、管路消耗、负载变化等等多种因素的影响,因而要实现精确的位置或者速度控制,还需要另外一个避环回路——系统避环,针对位置和速度,现在有成型的速度和位置控制板来实现。
您说的“做的再精确也只是阀本身的问题,对于受控对象来说却不好办”,这没错,但是作动器的位移并不对应伺服阀芯的位移,因为阀芯开启油口后即使不在运动,作动器也会始终保持运动势,就像家里的水龙头,拧开了谁就会一直流。
比例阀没有了伺服阀的阀芯位置避环,它是靠较大的、精确控制供给比例阀芯的电流量来控制相对准确的阀芯位置而简化的设计形式。
几点教你分清比例阀和伺服阀关于伺服阀和比例阀我很困惑,因为两者的区别似乎并不清晰。
到底伺服阀和比例阀的区别在哪呢?对于此类阀,通用的描述术语就是“连续变化的,电调制,液压方向控制阀(continuously variable, electrically modulated, hydraulic directional control valves)”。
德语里术语就是stetigventil —一个连续可辨的阀(a continuously differentiable valve),伺服阀和比例阀都属于此类描述。
不幸的是,在英语里面,并没有一个单个的词可以覆盖这些阀。
通用术语就是“比例的阀(proportional valve)”,其包含两个分类:伺服阀和比例阀。
上图显示一个电液比例阀的输出流量与阀芯位置的关系。
请注意流量与阀芯位置曲线上的不连续点。
这个不连续是由于在阀芯和阀开口之间存在遮盖造成的。
遮盖量小于3%,被定义为伺服阀,而遮盖量为3%或更大的,被定义为比例阀。
在密尔沃基工学院(milwaukee school of engineering)流体动力研究所,我们进行了大量的研究工作,试图告诉用户如何区分比例阀和伺服阀。
我们采用电子增强(或改进)方面的技术,试图看看一个比例阀在多大程度上可以表现得像一个伺服阀。
性能特性,阀的构造以及制造方法等等都进行了研究。
最后发现,最大的不同还是中位时阀芯的遮盖量。
我们最后定义伺服阀就是遮盖量少于3%的,而比例阀是遮盖量等于或大于3%的阀什么是阀的遮盖?阀芯的遮盖量是指阀芯从中位移动至阀芯开始打开时的位移。
零遮盖阀意味着任何微小的阀芯移动量,阀就开始打开。
然而,阀芯的外径和阀孔(阀套)的内径之间不接触。
即使零遮盖的阀还是有很小的遮盖量的(译者问:那么这个遮盖量范围是多少呢?)。
上图分别示意了零遮盖的伺服阀,和遮盖量等于或大于3%的比例阀。
零位(valve null)是什么?阀的零位是伺服阀压力测试曲线上的某一个点,此处阀的两个工作油口压力相等。
浅谈比例阀与伺服阀的区别作者:郑瑶来源:《科学与财富》2018年第10期摘要:比例阀与伺服阀作为液压系统中常用的两种阀类元件,广泛应用于各个液压系统中。
为了更好的选择和使用适合于液压系统的阀类原件,需要对二者的工作特性进行了解和研究。
本文首先阐述了比例阀和伺服阀性能的区别,并分别介绍了伺服阀与比例阀的结构特点和控制特点,为阀类元件的选型和使用提供了基础,并论述了比例阀与伺服阀的发展趋势。
关键词:伺服阀;比例阀;液压系统;性能;结构;控制;发展伺服阀与比例阀作为放大转换元件,可以将偏差信号放大、转换成液压信号(流量或压力),从而完成对执行机构的控制。
在典型的油缸控制系统中,油缸的运动可以通过阀在不同的位置而使得油路切换而实现,这样的阀可以采用普通换向阀。
而伺服阀和比例阀不仅能够控制油缸的运动方向,还可以精确的控制阀门开度从而在工作状态保持不变的情况下精确控制流量。
1比例阀和伺服阀性能区别分析电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
阀芯位移也可以以机械、液压或电的形式进行反馈。
对应于普通的液压阀都能够找到一种与之对应的电液比例阀。
电液比例阀可以用于开环系统中实现随液压参数的遥控,也可以作为信号转换与放大元件用于闭环控制系统。
电液伺服阀是闭环控制系统中最重要的一种伺服控制元件,它能将微弱的电信号转换成大功率的液压信号(流量和压力)。
用它作转换元件组成的闭环系统称为电液伺服系统。
对整个系统来说,电液伺服阀是信号转换和功率放大元件;对系统中的液压执行机构来说,电液伺服阀是控制元件;阀本身也是个多级放大的闭环电液伺服系统,提高了伺服阀的控制性能。
电液伺服系统是液压伺服系统和电子技术相结合的产物,由于它具有更快的响应速度,更高的控制精度,在军事、航空、航天、机床等领域中得到广泛的应用。
目前液压伺服系统特别是电液伺服系统己经成为武器自动化和工业自动化中应用非常广泛。
比例多路换向阀的应用与比例多路换向阀的应用:比例多路换向阀根据信号电液比例阀(插装式、叠加式)一直以工作效率高,成本低而深受移动液压机械厂家的喜爱。
电液比例阀根据电子摇杆的比例信号相应改变比例阀的先导压力,从而改变滑阀的位置。
电液比例阀有比例流量阀、比例减压阀、比例换向阀。
出于制造成本考虑,一般不配置机械/感应位置传感器,及相应的电子检测和纠错功能。
所以,选用电液比例换向阀须注意:操作过程中,要完全靠操作员的视觉观察来保证操作过程的安全。
在电控、遥控操作时,对外界干涉现象应注意防范。
比例伺服多路换向阀控制精度高,防护性好。
近来,由于电子技术的发展使其制造成本大幅度下降,电液比例伺服阀越来越受到移动液压机械厂家的欢迎。
电液比例伺服阀由比例电磁阀,位置反馈,伺服驱动器和电子模块组成,闭环位置反馈控制。
电子模块配置有感应位置传感器LDVT,以及相应的电子检测和纠错功能。
电液比例伺服阀是根据电子摇杆的比例信号相应改变比例伺服驱动器的位置,从而改变滑阀的位置。
当摇杆的信号与滑阀的位置行程不成比例时,则电子模块发出纠错信号,驱动器带动换向阀滑阀自动回零位,液压机构自动停止。
多路阀的阀芯与伺服驱动器为机械万向轴连接,活塞连杆推力大于60公斤,所以在操作过程中,即可以避免阀心卡死,又可有效的防范人为意外操作。
手动操作时,伺服驱动机构的压力完全释放处于浮动状态,手动拉杆可操作自如。
比例伺服驱动器是大流量机械/手动多路阀电液驱动配套改造方案中高技术、低成本的选择。
比例伺服驱动器由比例电磁减压阀,伺服驱动油缸和电子模块(配有感应位置传感器LDVT,位置检测和纠错功能)组成,有法兰连接和连杆连接两种方式,可与国内、外厂家的机械换向阀匹配,是目前多路换向阀电液改造的最佳选择。
电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
阀芯位移也可以以机械、液压或电的形式进行反馈。
比例阀与伺服阀有哪些区分美国MOOG比例阀维护保养方法MOOG比例阀的维护和修理:在实际的维护和修理过程中,对存在问题的零部件可以实行直接更换的方法,同时还要对该阀的电气零点和死区进行调整,假如有试验条件还要对维护和修理后阀的行程进行验证。
1、更换存在问题的零部件更换法是对存在问题的零部件进行整体或者部分更换。
更换法在工程机械阀的维护和修理中应用相当广泛,该方法的关键是查找显现问题的部件,找到问题后就可以更换一个与之相同的完好部件,一般情况下通过这种维护和修理方法就能使阀实现正常工作。
导致比例阀失效比较普遍的原因是阀的密封件过度磨损、阀芯位移传感器探针折断,而集成放大器一般不会显现问题。
2、电气零点的调整在工程机械中,比例阀一直工作在恶劣的环境下,而其电气零点易受到外界环境的干扰,MOOG比例阀因此在更换了失效的零部件后就应当对其电气零点进行检测,对不符合要求的应重新标定。
一般检测方法如下:给比例阀的放大器供电(一般情况下0一24V,MOOG比例阀确保阀芯处于断电状态,用万用电表(直流挡,0.25V量程、检测阀芯位移反馈信号,在阀芯没有接受指令的条件下,要求阀芯位移反馈电压为零。
假如不为零就应调整阀芯位移传感器的调整螺母,直至阀芯反馈电压为零。
美国MOOG比例阀维护保养方法1、由于插头组件的接线插座〔基座)老化、接触不良以及电磁铁引线脱焊等原因,导致比例电磁铁不能工作(不能通人电流)。
此时可用电表检测,如发觉电阻无限大,可重新将引线焊牢,修复插座并将插座插牢。
2、线圑组件的故障有线圈老化、线圉烧毁、线圈内部断线以及线圈温升过大等现象。
线圈温升过大会造成比例电磁铁的输出力不足,其余会使比例电磁铁不能工作。
对于线圈温升过大,可检查通人电流是否过大,线圈是否漆包线绝缘不良,阀芯是否因污物卡死等,一一査明原因并排出之;对于断线、烧坏等现象,须更换线圑。
3、衔铁组件的故唪重要有衔铁因其与导磁套构成的摩擦副在使用过程中磨损,导致阀的力滞环加添。
高频响电液伺服阀与比例阀的可靠性与故障诊断方法比较引言:电液伺服系统在工业控制领域有着广泛的应用,其中高频响电液伺服阀与比例阀是常见的控制元件。
它们在控制系统中起到关键作用,但也容易受到一些故障的影响。
本文将从可靠性和故障诊断方法两个方面比较高频响电液伺服阀与比例阀。
一、高频响电液伺服阀的可靠性高频响电液伺服阀是一种能够进行高速、精确控制的阀门,具有快速响应、准确性高的特点。
其可靠性主要体现在以下几个方面。
1. 高频响应能力:高频响电液伺服阀能够迅速响应控制信号的变化,实现实时的流量和压力控制。
这种高频响应能力确保了系统在动态响应过程中的稳定性和准确性。
2. 高精度:高频响电液伺服阀具有较高的控制精度,可实现微小流量和压力的调节。
其内部采用先进的传感和控制技术,能够实时监测和调整工作状态,提高了控制系统的精度和稳定性。
3. 重复性:高频响电液伺服阀具有良好的重复性能,即在多次重复的控制任务中能够保持相同的输出。
这种重复性能能够保证系统的可靠性,在长时间运行和频繁工作的情况下仍能保持良好的控制效果。
二、比例阀的可靠性比例阀是一种通过调节阀口开度来控制液体流量的阀门,常用于流量控制和压力控制。
它具有以下的可靠性特点。
1. 稳定性:比例阀采用先进的阀门和调节装置,具有较好的稳定性,能够在较大压力差和流量变化的情况下保持稳定的控制效果。
2. 可调性:比例阀的开度可以根据需要进行调整,以满足不同工况下的流量和压力需求。
这种可调性使得比例阀在不同的应用场合中具有较高的适应性。
3. 防止过载:比例阀常与安全阀等装置配合使用,能够及时检测和处理液体流量异常情况,防止压力过高或过载情况的发生,保证系统的安全运行。
三、故障诊断方法比较1. 高频响电液伺服阀的故障诊断方法(1)传感器监测:高频响电液伺服阀内部设有多个传感器,可以实时监测系统的流量、压力、温度等参数。
通过监测传感器输出数据的变化,可以判断阀门是否出现异常,并定位故障的具体位置。
伺服阀与比例阀的区别
阀对流量的控制可以分为两种:
一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。
伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。
比例阀和伺服阀的区别主要体现在以下几点:
1.驱动装置不同。
比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达;
2.性能参数不同。
滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统;
2.1 伺服阀中位没有死区,比例阀有中位死区;
2.2 伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;
2.3 伺服阀对液压油液的要求更高,需要经过滤才行,否则容易堵塞,比例阀要求低一些;
3.阀芯结构及加工精度不同。
比例阀采用阀芯+阀体结构,阀体兼作阀套。
伺服阀和伺服比例阀采用阀芯+阀套的结构。
4.中位机能种类不同。
比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。
5.阀的额定压降不同。
而比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。