机器人的主要驱动方式及其特点

  • 格式:doc
  • 大小:1.16 MB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一目前机器人的主要驱动方式及其特点

根据能量转换方式,将驱动器划分为液压驱动、气压驱动、电气驱动和新型驱动装置。在选择机器人驱动器时,除了要充分考虑机器人的工作要求,如工作速度、最大搬运物重、驱动功率、驱动平稳性、精度要求外,还应考虑到是否能够在较大的惯性负载条件下,提供足够的加速度以满足作业要求。

A液压驱动特点

液压驱动所用的压力为5~320kgf/cm2.

a)优点

1能够以较小的驱动器输出较大的驱动力或力矩,即获得较大的功率重量比。

2可以把驱动油缸直接做成关节的一部分,故结构简单紧凑,刚性好。

3由于液体的不可压缩性,定位精度比气压驱动高,并可实现任意位置的开停。

4液压驱动调速比较简单和平稳,能在很大调整范围内实现无级调速。

5使用安全阀可简单而有效的防止过载现象发生。

6液压驱动具有润滑性能好、寿命长等特点。

B)缺点

1油液容易泄漏。这不仅影响工作的稳定性与定位精度,而且会造成环境污染。

2因油液粘度随温度而变化,且在高温与低温条件下很难应用。

3因油液中容易混入气泡、水分等,使系统的刚性降低,速度特性及定位精度变坏。

4需配备压力源及复杂的管路系统,因此成本较高。

C)适用范围

液压驱动方式大多用于要求输出力较大而运动速度较低的场合。在机器人液压驱动系统中,近年来以电液伺服系统驱动最具有代表性。

B气压驱动的特点

气压驱动在工业机械手中用的较多。使用的压力通常在0.4-0.6Mpa,最高可达1Mpa。

a)优点

1快速性好,这是因为压缩空气的黏性小,流速大,一般压缩空气在管路中流速可达180m/s,而油液在管路中的流速仅为2.5-4.5 m/s。

2气源方便,一般工厂都有压缩空气站供应压缩空气,亦可由空气压缩机取得。

3废气可直接排入大气不会造成污染,因而在任何位置只需一根高压管连接即可工作,所以比液压驱动干净而简单。

4通过调节气量可实现无级变速。

5由于空气的可压缩性,气压驱动系统具有较好的缓冲作用。

6可以把驱动器做成关节的一部分,因而结构简单、刚性好、成本低。

b)缺点

1因为工作压力偏低,所以功率重量比小、驱动装置体积大。

2基于气体的可压缩性,气压驱动很难保证较高的定位精度。

3使用后的压缩空气向大气排放时,会产生噪声。

4因压缩空气含冷凝水,使得气压系统易锈蚀,在低温下易结冰。

C 电气驱动的特点

电气驱动是利用各种电动机产生力和力矩,直接或经过机械传动去驱动执行机构,以获得机器人的各种运动。因为省去了中间能量转换的过程,所以比液压及气动驱动效率高,使用方便且成本低。电气驱动大致可分为普通电机驱动、步进电机驱动和直线电机驱动三类。(a)普通电机驱动的特点

普通电机包括交流电机、直流电机及伺服电机。交流电机一般不能进行调速或难以进行无级调速,即使是多速电机,也只能进行有限的有级调速。直流电机能够实现无级调速,但直流电源价格较高,因而限制了它在大功率机器人上的应用。

(b)步进电机驱动的特点

步进电机驱动的速度和位移大小,可由电气控制系统发出的脉冲数加以控制。由于步进电机的位移量与脉冲数严格成正比,故步进电

机驱动可以达到较高的重复定位精度,但是,但是步进电机速度不能太高,控制系统也比较复杂。

(c)直线电机驱动的特点

直线电机结构简单、成本低,其动作速度与行程主要取决于其定子与转子的长度,反接制动时,定位精度较低,必须增设缓冲及定位机构。

D新型驱动装置的特点

随着机器人技术的发展,出现了利用新工作原理制造的新型的驱动器,如磁致伸缩驱动器、压电驱动器、静电驱动器、形状记忆合金驱动器、超声波驱动器、人工肌肉、光驱动器等。

a)磁致伸缩驱动器

磁性体的外部一旦加上磁场,则磁性体的外形尺寸发生变化(焦耳效应),这种现象称为磁致伸缩现象。此时,如果磁性体在磁化方向的长度增大,则称为正磁致伸缩;如果磁性体在磁化方向的长度减少,则称为负磁致伸缩。从外部对磁性体施加压力,则磁性体的磁化状态会发生变化(维拉利效应),则称为逆磁致伸缩现象。这种驱动器主要用于微小驱动场合。

b)压电驱动器

压电材料是一种当它受到力作用时其表面上出现与外力成比例电荷的材料,又称压电陶瓷。反过来,把电场加到压电材料上,则压电材料产生应变,输出力或变位。利用这一特性可以制成压电驱动器,这种驱动器可以达到驱动亚微米级的精度。

c)静电驱动器

静电驱动器利用电荷间的吸力和排斥力互相作用顺序驱动电极而产生平移或旋转的运动。因静电作用属于表面力,它和元件尺寸的二次方成正比,在微小尺寸变化时,能够产生很大的能量。

d)形状记忆合金驱动器

形状记忆合金是一种特殊的合金,一旦使它记忆了任意形状,即使它变形,当加热到某一适当温度时,则它恢复为变形前的形状。已知的形状记忆合金有Au-Cd、In-Tl、Ni-Ti,Cu-Al-Ni、Cu-Zn-Al等几十种。

e)超声波驱动器

所谓超声波驱动器就是利用超声波振动作为驱动力的一种驱动器,即由振动部分和移动部分所组成,靠振动部分和移动部分之间的摩擦力来驱动的一种驱动器。

由于超声波驱动器没有铁芯和线圈,结构简单、体积小、重量轻、响应快、力矩大,不需配合减速装置就可以低速运行,因此,很适合用于机器人、照相机和摄像机等驱动。

f)人工肌肉

随着机器人技术的发展,驱动器从传统的电机-减速器的机械运动机制,向骨架→腱→肌肉的生物运动机制发展。人的手臂能完成各种柔顺作业,为了实现骨骼→肌肉的部分功能而研制的驱动装置称为人工肌肉驱动器。

为了更好地模拟生物体的运动功能或在机器人上应用,已研制出了多种不同类型的人工肌肉,如利用机械化学物质的高分子凝胶,形状记忆合金制作的人工肌肉。

g)光驱动器

某种强电介质(严密非对称的压电性结晶)受光照射,会产生几千伏/厘米的光感应电压。这种现象是压电效应和光致伸缩效应的结果。这是电介质内部存在不纯物、导致结晶严密不对称、在光激励过程中引起电荷移动而产生的。

二机器人驱动的要求

1驱动装置的质量尽可能要轻。单位质量的输出功率要高,效率高。2反应速度要快。要求力质量比和力矩转动惯量比要大。

3动作平滑,不产生冲击。

4控制灵活,位移偏差和速度偏差小。

5安全可靠。

6操作维修方便等。

二典型的驱动装置及相关内容

1 实现直线运动的液压缸

主要构成:

主要由活塞、活塞杆、缸体、缸盖、密封圈、进

出油口等构成。

工作原理