挤压与拉拔资料
- 格式:doc
- 大小:817.21 KB
- 文档页数:28
挤压与拉拔新技术静液挤压简介:挤压方式的一种。
通过凸模加压给液体,由液体将压力传给坯料,使金属通过凸模成形。
由于坯料侧面无普通挤压时存在的摩擦力所以变形均匀,可提高挤压变形量所需的挤压力也比普通挤压时小。
主要用于挤压大变形量的线材、型材或是挤压低塑性材料。
静液挤压所使用的高压介质,一般有粘性液体和粘塑性体。
前者如蓖麻油、矿物油等,主要用于冷静液挤压和500~600℃以下的温、热静液挤压;后者如耐热脂、玻璃、玻璃-石墨混合物等,主要用于较高熔点金属的热静液挤压(坯料加热温度在700℃以上的挤压)。
与普通挤压法一样,根据需要,静液挤压可在不同的温度下进行。
一般将金属和高压介质均处于室温时的挤压过程,称为冷静液挤压;在室温以上变形金属的再结晶温度以下的挤压过程,称为温静液挤压;而在再结晶温度以上的挤压过程,称为热静液挤压。
类型:静液挤压的类型按挤压时的温度不同可分为冷静液挤压和高温静液挤压两种。
(1)冷静液挤压在常温下进行。
布彼克等人研究的一种兼有拉线作用的线材静液连续挤压,就属于冷静液挤压,它的原理如图2所示。
被加工的线坯通过起拉伸作用和密封作用的入口模,在拉力和高压液体的共同作用下被挤出,借助于卷筒的不停转动,便可实现连续挤压。
采用这种方法生产线材,可使道次变形率大大超过拉伸极限。
冷静液挤压的主要缺点是设备结构与操作比较复杂,卷筒的传动部分在高压室外,需采用高密封技术,每次拉线前的准备时间较长。
(2)高温静液挤压使用的高压液体的温度超过金属的再结晶温度的静液挤压。
高压液体一般是动物油和矿物油,挤压温度可在300℃左右。
采用耐热油脂作为高压液体时,挤压温度最高可达到1000℃;但当挤压温度高于500℃时,通常不用耐热油脂,而使用金属氧化物或一些盐类作高压液体。
优点:摩擦小,变形均匀,模磨损小,材料处于高压介质中,有利于提高材料的变形能力,适用于低温大变形加工。
缺点:需要对坯料进行预加工,介质的填充和排泄,效率低,需要解决高压密封应用:粉体材料挤压热静液挤压同时具有热等静压和挤压成形两种功能,尤其适合于粉体材料的直接挤压成形。
挤压:对放在容器中的钢坯一端施加以压力,使之通过模孔成型的一种压力加工方法。
正挤压特征:金属流动方向与挤压杆运动方向相同,钢坯与挤压筒内壁有相对滑动,二者间存在很大外摩擦。
正挤压三个阶段:开始,金属承受挤压杆的作用力,首先充满挤压筒和模孔,挤压力急剧上升。
基本,一般筒内的锭坯金属不发生中心层与外层的紊乱流动,挤压力随筒内锭坯长度的缩短,表面摩擦总量减少,几乎呈直线下降。
终了,管内金属产生剧烈的径向流动,即紊流,易产生缩尾,此时工具对金属的冷却作用,强烈的摩擦作用,使挤压力迅速上升。
填充系数:挤压筒内断面积与锭坯的断面积之比,指金属发生横向流动,出现单鼓或双鼓时的变形指数。
挤压比:挤压筒腔的横断面积与挤压制品总横断面积之比,指金属不发生横向流动时的变形指数。
粗晶芯:反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,形成一个特殊粗晶区,叫。
死区:在基本挤压阶段,位于挤压筒与模子端面交界处的金属,基本上不发生塑性变形,故称为死区。
死区产生原因:强烈的三向压应力状态,金属不易达到屈服条件。
受工具冷却,σs增大。
摩擦阻力大。
影响死区因素:模角,摩擦力,挤压比,挤压温度速度,模孔位置。
死区的作用:可阻碍锭坯表面的杂质、氧化物、偏析瘤、灰尘及表面缺陷进入变形区压缩锥而流入制品表面,提高制品表面质量。
终了挤压三大挤压缩尾及防止措施:挤压缩尾是出现在制品尾部的一种特有缺陷,主要产生在终了挤压阶段。
缩尾使制品金属不连续,组织与性能降低,依其出现部位有中心缩尾(当钢坯渐渐被挤出模孔,后端金属容易克服挤压垫上的摩擦力产生径向流动,将钢坯表面上常有的氧化物,偏析瘤,杂质或油污带入制品中心,破坏了制品致密性,使制品低劣)。
环行缩尾(出现在制品断面中间,形状为圆环。
堆积在靠近挤压垫和挤压筒交界处的金属沿着后端难变形区的界面流向了制品中间层)。
皮下缩尾(出现在制品表皮内,存在一层使金属径向上不连续的缺陷)。
措施:对锭坯表面进行机械加工~车皮。
1.挤压的定义所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。
2.正向挤压法定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法.特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。
引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的磨损。
3.反向挤压法定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。
特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。
特点:挤压力小;金属变形流动均匀;挤压速度快。
但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。
4.粗晶环与粗晶芯反挤压棒材横截面边缘只有较轻微的粗晶环,深度较正向挤压的浅得多,晶粒尺寸也小得多。
反挤压棒材纵向低倍组织上,沿中心缩尾边缘一直向前延伸,有一个特殊的粗晶区—粗晶芯,这是正挤压所没有的组织特征。
在挤压后期,在中心金属补充困难的情况下,模孔侧面金属夹持着沿堵头表面径向流动的金属进入棒材尾部中心,这部分金属受表面摩擦作用,在淬火后形成粗大晶粒。
5.正向挤压时金属的变形流动根据金属变形流动特征和挤压力的变化规律,可将挤压过程分为开始(填充) 、基本(平流)和终了(紊流)挤压三个阶段。
6.开始挤压金属变形流动特点金属发生横向流动,出现单鼓或双鼓变形。
其变形指数——用填充系数λc 来表示:λc =F0 / F p挤压力的变化规律:随着挤压杆的向前移动,挤压力呈直线上升7.基本挤压金属变形流动特点不发生横向流动。
其变形指数——用挤压比λ来表示:λ = F0 / F18.终了挤压阶段特点:(1)金属的横向流动剧烈增加,并产生环流;(2)挤压力增加;(3)产生挤压缩尾。
9.挤压变形区:分别连接各条线的两个拐点,形成两个曲面。
把这两个曲面与模孔锥面或死区界面间包围的体积称为挤压变形区或变形区压缩锥。
挤压与拉拔技术概述1.挤压技术概述挤压是指将金属坯料通过模具的压力作用,在一定的温度条件下挤出所需的形状。
它分为直接挤压和间接挤压两种形式。
直接挤压是指将金属材料直接置于模具中,通过模具施加压力,使材料发生塑性变形,进而形成所需的产品。
这种形式适用于各种断面形状的金属产品的生产。
间接挤压是指将金属材料放置在模具中,通过活塞或锻件将金属坯料挤压。
这种形式常用于生产较小的棒材或管材。
挤压技术有以下特点:1)高效率:挤压过程中材料的流动路径短,变形比较均匀,能够提高加工效率。
2)能耗低:挤压过程不需要切削副产生切屑,能耗低。
3)材料利用率高:挤压过程中金属材料没有损失,材料利用率高。
拉拔是指将金属坯料通过模具的拉力和压力,在一定的温度条件下拉伸变形,从而获得所需产品。
拉拔主要用于生产细长的棒材和线材。
拉拔技术有以下特点:1)拉伸比例大:拉拔过程中金属材料会发生明显的拉伸变形,能够获得较高的长度伸长率。
2)断面积减小:拉拔过程中金属材料的断面积减小,可以得到更细的棒材和线材。
3)机械性能提高:拉伸过程使金属材料得到较好的物理和力学性能,如强度、硬度等提高。
1)航空航天领域:挤压和拉拔技术能够生产出复杂的轴向零件和连接件,如涡轮叶片、发动机壳体等。
2)汽车制造:挤压和拉拔技术用于生产汽车零部件,如车身结构件、车门等。
3)电子电器领域:挤压和拉拔技术可生产电子元件的外壳、导线等。
4)建筑行业:挤压和拉拔技术可生产铝合金门窗、铝合金型材等。
总结起来,挤压和拉拔技术是一种高效、节能的金属塑性加工方法,在工业生产中应用广泛。
通过挤压和拉拔技术可以生产出形状复杂、尺寸精准的金属制品,满足各行各业的需求。
随着科技的发展和技术的提高,挤压和拉拔技术将会得到更广泛的应用和发展。
拉拔工艺和挤压工艺的区别
拉拔工艺是一种通过加热金属,然后用力拉扯金属棒,将其变形成所需形状的工艺。
这种工艺常用于制造精密零件和管道等产品。
拉拔工艺可以保证金属的尺寸精度和表面质量,被广泛运用于航天、汽车、电力、石油等领域。
挤压工艺是一种利用金属材料的塑性变形,通过将金属材料压入模具中,制造薄板、异型材、铝合金等复杂形状的工艺。
挤压工艺生产的产品可以在保证高尺寸精度的同时,获得所需强度和刚性。
挤压工艺被广泛应用于建筑、交通、电子、机械等领域。
拉拔工艺和挤压工艺的区别在于:拉拔工艺主要针对金属材料的拉伸变形,而挤压工艺则主要针对金属材料在模具中的塑性变形。
拉拔工艺常用于生产金属棒、线、管等产品,而挤压工艺则常用于生产铝合金型材、轮毂、钢板等产品。
挤压与拉拔资料压力加工:借助外力使金属产生塑性变形进而形成各种尺寸、形状和用途的零件和半成品。
(不同于机加工)工业中广泛使用的零件一般通过下列方法获得:铸造,如轧机牌坊;铸造——机加工,如轧辊;铸造——压力加工,如钢轨;铸造——压力加工——机加工,如螺栓等。
重要用途的零件一般均需通过压力加工。
压力加工的主要方法有:轧制;挤压与拉拔;锻造与冲压主要产品有:板、带、条、箔;轧制管、棒、型、线;挤压与拉拔各种零件如车轴、饭盒、洗衣机筒等;锻造与冲压1)挤压与拉拔产品简介A 管材按截面形状分:圆管、型管如方、六角形管等;按合金种类分:铝管、铜管、钢管等;按生产方法分:挤制管、拉制管、焊管、铸管、盘管、无缝管等;按用途分:空调管、压力表管、波导管、锅炉管、输油管、冷凝管、天线管等;按性能分:M(退火态)、R(热态)、Y(硬态)、Y2(半硬态)、C(淬火态)、CZ(淬火自然时效态)、CS(淬火人工时效态)等;此外:翅片管、蚊香管等。
B 棒、线材棒材:D>6mm;分类与管材类似;大多是半成品,进一步加工成各种零件,如弹簧,螺栓、螺母等;线材:D<6mm;多以盘状供货,广泛应用于仪器仪表、电子电力部门,如电线电缆等。
C 型材非圆截面材,又称经济断面材(可提高材料的利用率);铝、钢型材较多;许多型材只能用压力加工法生产,如钢轨、变断面型材2)产品的生产方法产品的生产一般可分两步;坯料制取(开坯):充分利用金属在高温时的塑性对其进行大变形量加工,如热挤、热轧、热锻。
制品的获得:进行目的在于控制形状、尺寸精度、提高综合性能的各种冷加工,如冷轧、拉拔、冲压。
目前研究:近终形成形技术、短流程生产技术挤压:生产灵活、产品质量好,适用于品种、规格多、产量小(有色金属)的场合,但成本高、成品率低;斜轧穿孔:生产率、成品率高;成本低;但制品形状尺寸精度差;尺寸规格受限制;多用于产量大的钢坯生产,有色金属厂基本没有;铸造:产品的尺寸规格少、质量差、性能低;主要用于生产大尺寸、性能要求不高的产品如下水管;轧管:道次变形量大,几何损失少,适于难变形合金,能缩短工艺流程,也是提供长管坯的主要方法(使盘管生产得以实现),但形状、尺寸精度差;拉拔:是获得精确尺寸、优质表面和性能的主要方法;焊管:效率高、成本低,但性能、质量差。
挤压拉拔知识点挤压拉拔,是一种常用于金属加工的工艺方法,通过施加压力,将金属材料从一种形状转变为另一种形状。
该工艺在各个行业中广泛应用,特别是在汽车、航空航天和建筑等领域。
本文将介绍挤压拉拔的基本原理、设备和应用。
一、基本原理挤压拉拔是一种塑性变形工艺,主要通过施加轴向力和凸模的作用,使金属材料在约束条件下发生塑性变形,从而改变其截面形状和尺寸。
在挤压拉拔过程中,材料会受到挤压力和摩擦力的作用,形成很高的局部应变,使材料产生塑性流动,最终达到所需的形状。
挤压拉拔通常使用金属材料作为原料,如铝、铜、钢等。
这些金属具有良好的塑性,能够在受力的情况下形成各种复杂的截面形状。
在挤压拉拔过程中,为了减少摩擦阻力和增加金属流动性,通常会使用润滑剂或加热材料。
二、设备介绍1. 挤压机挤压机是实施挤压拉拔工艺的主要设备。
它由压力系统、传动系统和控制系统组成。
压力系统提供所需的压力力量,传动系统将压力传递给凸模,控制系统控制整个挤压拉拔过程的运行。
2. 凸模凸模是挤压拉拔过程中的重要工具,它通过施加压力形成金属材料的塑性变形。
凸模通常由高硬度的材料制成,如合金钢或硬质合金,以保证其耐磨性和耐用性。
3. 夹具夹具用于固定金属材料,并确保其在挤压拉拔过程中的稳定性。
夹具的设计和制造需要考虑金属材料的形状、尺寸和质量要求。
三、应用领域1. 汽车行业挤压拉拔工艺在汽车制造中起着至关重要的作用。
它用于生产汽车车身、车门、车架等零部件。
由于挤压拉拔工艺具有高效、节能和灵活的特点,它能够满足汽车工业对于质量和生产效率的要求。
2. 航空航天行业航空航天领域对于零部件的重量和强度要求非常高,挤压拉拔工艺能够满足这些要求。
它在航空航天行业中广泛应用于飞机外壳、引擎零部件和航天器结构等领域。
3. 建筑行业挤压拉拔工艺也在建筑行业中得到广泛应用。
它可用于生产建筑结构材料,如铝合金门窗、铝合金幕墙等。
挤压拉拔工艺能够有效提高建筑材料的强度和耐久性,同时具有良好的装饰效果。
压力加工:借助外力使金属产生塑性变形进而形成各种尺寸、形状和用途的零件和半成品。
(不同于机加工)工业中广泛使用的零件一般通过下列方法获得:铸造,如轧机牌坊;铸造——机加工,如轧辊;铸造——压力加工,如钢轨;铸造——压力加工——机加工,如螺栓等。
重要用途的零件一般均需通过压力加工。
压力加工的主要方法有:轧制;挤压与拉拔;锻造与冲压主要产品有:板、带、条、箔;轧制管、棒、型、线;挤压与拉拔各种零件如车轴、饭盒、洗衣机筒等;锻造与冲压1)挤压与拉拔产品简介A 管材按截面形状分:圆管、型管如方、六角形管等;按合金种类分:铝管、铜管、钢管等;按生产方法分:挤制管、拉制管、焊管、铸管、盘管、无缝管等;按用途分:空调管、压力表管、波导管、锅炉管、输油管、冷凝管、天线管等;按性能分:M(退火态)、R(热态)、Y(硬态)、Y2(半硬态)、C(淬火态)、CZ(淬火自然时效态)、CS(淬火人工时效态)等;此外:翅片管、蚊香管等。
B 棒、线材棒材:D>6mm;分类与管材类似;大多是半成品,进一步加工成各种零件,如弹簧,螺栓、螺母等;线材:D<6mm;多以盘状供货,广泛应用于仪器仪表、电子电力部门,如电线电缆等。
C 型材非圆截面材,又称经济断面材(可提高材料的利用率);铝、钢型材较多;许多型材只能用压力加工法生产,如钢轨、变断面型材2)产品的生产方法产品的生产一般可分两步;坯料制取(开坯):充分利用金属在高温时的塑性对其进行大变形量加工,如热挤、热轧、热锻。
制品的获得:进行目的在于控制形状、尺寸精度、提高综合性能的各种冷加工,如冷轧、拉拔、冲压。
目前研究:近终形成形技术、短流程生产技术挤压:生产灵活、产品质量好,适用于品种、规格多、产量小(有色金属)的场合,但成本高、成品率低;斜轧穿孔:生产率、成品率高;成本低;但制品形状尺寸精度差;尺寸规格受限制;多用于产量大的钢坯生产,有色金属厂基本没有;铸造:产品的尺寸规格少、质量差、性能低;主要用于生产大尺寸、性能要求不高的产品如下水管;轧管:道次变形量大,几何损失少,适于难变形合金,能缩短工艺流程,也是提供长管坯的主要方法(使盘管生产得以实现),但形状、尺寸精度差;拉拔:是获得精确尺寸、优质表面和性能的主要方法;焊管:效率高、成本低,但性能、质量差。
先进工艺:挤压——轧管——(圆盘)拉拔——联合拉拔水平连铸管坯——行星轧制——拉拔挤压:适用于多品种、多规格、复杂断面;连铸连轧:生产率、成品率高、能耗低(利用余热直接轧制);但品种、规格单一;型轧:适于单一品种、大批量产品的生产。
发展方向:中小棒材:挤压(轧制)圆盘坯料后联合拉拔出成品;线材:多模、高速方向发展。
2 基本概念挤压:对放在容器(挤压筒)内的坯料一端施以压力,使之从特定的空隙(模孔)中流出而成型的塑性加工方法。
欲完成挤压需有:1)产生动力的装置:挤压机2)传递动力、容纳坯料控制制品尺寸和形状的工具:轴、筒、模、穿孔针、垫片、模座、锁键过程:清理筒、装模、落锁键、送锭、放垫片、挤压、抬锁键、切压余、冷却(润滑)工具、重复下一次。
3 基本方法根据变形温度分:热挤压、冷挤压和温挤压;根据变形特征分:正(向)挤压、反(向)挤压、连续挤压等。
方法有很多,但最基本的方法有以下两种:1)正向挤压制品流出的方向与挤压杆的运动方向相同。
特点:1)存在较大的外摩擦(高温、高压),导致能耗大、变形不均匀(组织性能不均),制品表面质量好;2)操作方便、适用范围广,是目前最广泛应用的方法。
2)反向挤压制品流出的方向与挤压杆的运动方向相反。
特点:1)变形局限在模孔附近,大部分坯料与挤压筒间没有相对运动,因此外摩擦小,能耗低、变形均匀(组织性能均匀);2)操作不方便、制品的尺寸范围小;3)制品表面质量差。
此外还有:卧式挤压、立式挤压等。
注:1)冷、热变形应以合金的再结晶温度界定,如Sn、Pb在室温变形也无硬化,属热变形;2)冷、热挤压是挤压的两大分支,冶金工业中主要应用热挤压,常称挤压;机械工业主要应用冷挤压。
4 基本特点1)优点A 可最大限度提高材料的变形能力,因此可加工脆性材料;一次可进行大变形B 可提高材料的焊合性,因此可生产复合材料;粉末挤压;舌模挤压C 材料与工具的密合性高,因此可生产复杂断面制品;选择坯料自由度大D 生产灵活(只需更换筒、模即可生产不同的制品),制品性能高。
2)缺点A 工具消耗大,产品成本高工作条件:高温、高压、高摩擦,工具消耗大,原料成本高,占制品成本35%以上B 生产率低挤压速度低、辅助工序多C 成品率低固有的几何损失多(压余、实心头、切头尾),不能通过增大锭重来减少D 制品组织性能不均匀。
二、挤压时金属流动的规律挤压时金属的流动规律,即筒内各部分金属体积的相互转移规律对制品的组织、性能、表面质量以及工具设计有重要影响。
因此研究挤压时金属的流动规律以及影响因素,可改善挤压过程、提高制品的性能和质量。
挤压时金属的流动规律十分复杂,且随挤压方法以及工艺条件的变化而变化,现以生产中广泛使用的简单挤压(单孔模正挤圆棒)过程为例进行分析。
1、简单挤压时金属流动的规律按流动特性和挤压力的变化规律,可将挤压过程分为:填充挤压阶段:金属在挤压杆(力)的作用下首先充满挤压筒和模孔(金属主要径向流动),挤压力急剧升高;基本挤压阶段:又称层流挤压阶段,金属不发生紊乱流动,即锭外(内)层金属出模后仍在外(内)层,挤压力稳中有降;终了挤压阶段:又称紊流挤压阶段,金属发生紊乱流动,即外层进入内层,挤压力上升。
1)填充挤压阶段挤压时,为便于将锭坯放入筒中,常使锭坯的外径小于筒内径1-15mm,因此在挤压力的作用下,锭坯首先径向流动充满挤压筒,同时有少量金属流入模孔。
杆、垫片、锭坯开始接触到锭坯充满挤压筒的阶段称为填充挤压阶段。
A 必要性a 操作要求;b 实心锭挤管,否则穿孔针弯曲导致管材偏心;c 制品要求横向性能,如航空用型材必须有一定的镦粗变形(25-30%)B 应力分析作用于坯料上的外力:挤压力P ;模端面反力N ;摩擦力T应力状态类似于自由体镦粗,为三向压应力,即L 、R 、θ,且均可看成是主应力,但由于挤压模孔的存在,导致分布不均匀,体现在:径向上:中心小,两边大,差异由前向后逐渐减小。
轴向上:对着模孔部分:由前向后增大对着模壁部分:由前向后减小C 变形(应变)分析应变状态:一向压缩(轴向)、二向延伸(径向、周向)变形过程:开始出鼓形,断面首先充满挤压筒;继续加力,断面充满挤压筒;最后,断面充满挤压筒。
D 坯料端面变形分析填充挤压时,部分金属会流入模孔,但此部分金属并不是发生塑性变形后流入模孔的,而是被剪出的,其组织是铸态组织,必须切下(棒材头)。
原因:轴向应力L 在径向上的分布是不均匀的,且在模孔周围最大,这种应力突变会产生很大的切应力,当此切应力达到材料的剪切极限时,对着模孔部分的金属便沿模孔被剪出。
E 填充阶段应注意的问题a 尽量减小变形量(锭坯与挤压筒的间隙),否则易造成:制品性能不均匀;棒材头大,即切头大;低塑性材料易出现表面裂纹。
此阶段的变形量用填充挤压系数表征,定义填充挤压系数为:b 锭坯的长度与直径比小于3-4,即L/D < 3-4。
否则变形不均出现鼓形,甚至失稳弯曲,导致封闭在模、筒交界处的空气压入表面微裂纹中,出模后若焊合则形成气泡,若未焊合则出现起皮缺陷。
c 锭坯梯温加热,即坯料获得长度上的原始温度梯度,变形抗力低的高温端靠近模孔,填充挤压时坯料由前向后依次变形,从而将空气排除。
2)基本挤压阶段金属从模孔中流出到锭坯长度等于变形区高度的阶段,又称平流挤压阶段。
A 挤压比挤压时的变形量常用挤压比表征,定义挤压比为:挤压比的大小由被挤压材料的塑性决定,可查表。
挤压比λ的选择与合金种类、挤压方法、产品性能、挤压机能力、挤压筒内径及锭坯长度等因素有关。
如果λ值选用过大,挤压机会因挤压力过大而发生“闷车”,使挤压过程不能正常进行,甚至损坏工具,影响生产率。
如果λ值选用过小,挤压设备的能力不能得到充分利用,也不利于获得组织和性能均匀的制品。
挤压比λ一般应满足下列要求:一次挤压的棒、型材≥8~12轧制、拉拔、锻造用毛坯≥5二次挤压用毛坯不限。
B 应力分析外力:挤压力P ;筒、模的反力N ;筒、模、垫片与坯料间的摩擦力T 。
应力状态:为三向压应力,即L 、r 、θ,且可近似看成是轴对称,即r=θ。
实际上,在区有:轴向应力分布规律:轴向上:由前向后逐渐增大;径向上:由中心向边部逐渐增大。
C 变形(应变)分析应变状态:二向压缩(径向、周向)、一向延伸(轴向)变形规律(应变分布):可由此阶段坐标网格变化分析。
a 纵向网格在进、出模孔发生方向相反的两次弯曲,弯曲程度由内向外逐渐增大,说明变形是不均匀的。
分别连接两次弯曲的弯折点可得两个曲面,一般将此两曲面与模孔锥面或死区界面所围成的区域叫变形区压缩锥,或简称变形区。
b 在变形区中,横向网格的中心朝前,且越接近模孔弯曲越大,说明中心质点的流速大于外层质点的流速,且差异越接近模孔越大。
这是因为:外摩擦影响:外层大,中心小;断面温度分布:一般外层低,中心高;模孔的存在使中心质点的流动阻力小于外层质点。
c 制品的网格也有畸变,表现在:①横向线的弯曲程度以及弯曲顶点的间距由前向后逐渐增大,说明变形(延伸变形和剪切变形)由前向后逐渐增大。
②中心网格变成近似矩形,外层网格变成平行四边形,说明外层质点不仅承受了纵向延伸,还承受了附加的剪切变形,且剪切变形由中心向外层逐渐增大。
变形规律总结:径向上:外层大,中心小;轴向上:后端大,前端小;变形差异:由前向后逐渐增加;流动速度:中心大,外层小;总体看流动平稳(层流)。
D 挤压筒内金属分区①前端难变形区又称死区,位于筒、模交界处的环形区域,是由于筒、模的摩擦和冷却,使此部分金属不易变形形成的。
死区在基本挤压阶段基本不参与流动。
死区的顶部能阻碍锭坯的表面缺陷进入变形区而流入制品,因此能提高制品的表面质量。
影响死区大小的因素:模角、摩擦、挤压温度等,随这些参数的增大,死区增大,如平模挤压时死区大。
②后端难变形区位于垫片端面附近,是由于筒、垫片的摩擦和冷却,使此部分金属不易变形形成的,在基本挤压末期,此区域逐渐变成一小楔形区。
③在变形区中,有一个剧烈滑移区,处于死区和快速流动区之间。
变形越不均匀,此区越大,因此随挤压过程的进行,此区不断扩大。
剧烈滑移会导致晶粒过渡破碎,易导致制品表面出现微裂纹和组织粗大(粗晶环),导致制品性能下降。
3)终了挤压阶段:筒内锭坯长度减小到接近变形区高度时的流动阶段。
主要特征:A 挤压力升高;(死区参与流动、温度低)B 金属径向流速增加,金属回流(紊流)(维持体积不变规律)。