2018物理二轮复习100考点第十七章物理思维方法专题17.3微元法
- 格式:doc
- 大小:1.33 MB
- 文档页数:10
高中物理解题方法微元法(高中物理必备微元法解题秘
籍)
很多同学上课的时候都特别忙碌,赶着听课,赶着抄写老师写在黑板上的板书,生怕自己落下一点。
物理如果想学的好,那么学习就一定要有规划。
这句话放在其他科目上也适用。
微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
资料领取方式:点开我的头像,点右上角的小信封,发送:资料,即可获取,欢迎关注。
谢谢!
,。
解题中的一种思维方法——微元法上海市曹杨中学(200333)钭方健“微元法”通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法。
高中物理中的瞬时速度、瞬时加速度、感应电动势等等,都是用这种方法定义的,还有单摆的周期公式的推导,也用到了这种方法。
从数学上讲,是一种微分的思想方法,但在高三物理总复习中,用“微元法”来解有些问题,简捷明了是一种普适的好办法。
下面从三方面,谈谈“微元法”在解题中的应用。
一、合理“取样”,从局部求整体当物体各部分的运动情况相同时,取其中一小部分作为研究对象,是利用“微元法”解题的一种思维方法。
[例1] 一质量均匀分布的细圆环,半径为R,质量为m,设该环均匀地带正电,总带电量为Q,现将此环平放在绝缘的光滑水平桌面上,匀强磁场的磁感强度为B,方向竖直向下。
当此环绕通过其中心的竖直轴以ω的角速度顺时针方向匀速旋转时,环中的张力等于多少?(电苛间的作用力忽略不计)分析与解:如图1,取环上微小的一段圆弧,质量为m。
,设其张角为2θ,由于环旋转,那么电苛随环运动形成电流,小圆弧因而受到磁场对它的安培力安F,方向沿半径向外。
又小圆弧做匀速圆周运动,必须有向心力。
所以环中必定存在张力T,小圆弧所受张力T在沿半径方向的分力和安培力的合力,提供了小圆弧运动的向心力。
得到:RmFT2s i n2ωθ=-安①RQBBILFθωπ22==安②图1RRmmθπ22=③由以上三式,并且当θ很小时,sinθ≈θ求得:πωω22BRQRmT+=二、“化变为恒”、“化曲为直”求瞬时速度[例2] 如图2a,以不变的速率v通过绳拉河中的小船,当绳与水平方向成θ角时,求小船的瞬时速度。
图2a图2b分析与解:如图2b 所示,当绳与水平成θ角时,小船处在A 点。
现经一段很短的时间△t(△t →0),小船被绳由A 拉至B 。
期间绳的长度变化△S =S-S',则tsv ∆∆=。
微元法本专题主要讲解利用微元法解决动力学问题、变力做功问题、电场和电磁感应等问题,主要分为时间微元和位移微元两大类。
微元法在近几年高考中考查频率较高,出现了分值高、难度较大的计算题。
微元法是一种非常有效的解题方法,将研究对象或研究过程分解为众多细小的“微元”,分析这些“微元”,进行必要的数学推理或物理思想处理,能够有效的简化复杂的物理问题。
考查学生的分析推理能力,应用数学方法解决物理问题能力。
时间微元(2022•北京模拟)微元思想是中学物理中的重要思想。
所谓微元思想,是将研究对象或者物理过程分割成无限多个无限小的部分,先取出其中任意部分进行研究,再从局部到整体综合起来加以考虑的科学思维方法。
如图所示,两根平行的金属导轨MN和PQ放在水平面上,左端连接阻值为R的电阻。
导轨间距为L,电阻不计。
导轨处在竖直向上的匀强磁场中,匀强磁场的磁感应强度为B。
一根质量为m、阻值为r的金属棒放置在水平导轨上。
现给金属棒一个瞬时冲量,使其获得一个水平向右的初速度v0后沿导轨运动。
设金属棒运动过程中始终与导轨垂直且接触良好,导轨足够长,不计一切摩擦。
求:(1)金属棒的速度为v时受到的安培力是多大?(2)金属棒向右运动的最大距离是多少?关键信息:金属棒水平向右沿导轨运动→产生的感应电动势E=BLv,回路中感应电流的方向为顺时针,金属棒所受安培力方向水平向左不计一切摩擦→对金属棒受力分析,金属棒所受合力等于安培力解题思路:根据法拉第电磁感应定律结合安培力的计算公式求解金属棒所受的安培力。
金属棒水平向右运动过程中,从时间微元的角度,划分为无数小段,每一小段的速度可看成几乎不变,速度在时间上的累积为位移,应用牛顿第二定律或动量定理列方程,求解金属棒向右运动的距离。
(1)金属棒在磁场中的速度为v 时,电路中的感应电动势:E =BLv 电路中的电流:I =ER r+ 金属棒所受的安培力:F 安=BIL得:F 安=22B L vR r+(2)对金属棒受力分析,由牛顿第二定律得:22B L vR r -+=ma设经过一段极短的时间Δt ,a =vt∆∆,则22B L v t R r ∆-+=m Δv ,对时间累积:∑-22B L v tR r∆+=∑m Δv ,由-22B L v t R r ∑∆+=m ∑Δv 得:-22B L x R r +=-mv 0解得:x =022()mv R r B L+取水平向右为正方向,金属棒从速度为v 0至停下来的过程中,由动量定理:I 安=0-mv 0将整个运动过程划分成很多小段,可认为每个小段中的速度几乎不变,设每小段的时间为∆t i ,则安培力的冲量I 安=-22B L R r +v 1·∆t 1+(-22B L R r +v 2·∆t 2)+(-22B L R r+v 3·∆t 3)+…I 安=-22B L R r +(v 1·∆t 1+v 2·∆t 2+v 3·∆t 3+…)I 安=-22B L R r+x解得:x =022()mv R r B L+。
微元法专题一、单选题1.如图所示,在光滑的绝缘水平桌面上,有一质量均匀分布的细圆环,处于磁感应强度为B的匀强磁场中,磁场方向竖直向下。
圆环的半径为R,质量为m。
令此圆环均匀带上正电荷,总电量为Q。
当圆环绕通过其中心的竖直轴以角速度ω沿图中所示方向匀速转动时(假设圆环的带电量不减少,不考虑环上电荷之间的作用),下列说法正确的是()A.圆环匀速转动形成的等效电流大小为2Q πωB.圆环受到的合力大小为BQωRC.圆环内侧(Ⅰ区)的磁感应强度大于外侧(Ⅰ区)的磁感应强度D.将圆环分成无限个小段,每小段受到的合力都指向圆心,所以圆环有向里收缩的趋势2.有关物理学方法,下列说法不正确的是()A.“质点”模型是突出事物的主要因素“质量”、忽略次要因素“大小和形状”建立的理想化的物理模型B.xt∆∆中当t∆极小时求得的速度是瞬时速度,采用了“中间时刻瞬时速度等于整段时间内的平均速度”理论C.vt∆∆表示加速度a是运用了比值定义法D.速度时间图像的面积表示位移运用了微元法3.如图所示,有一条长为2mL=的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30,另一半长度竖直下垂在空中,链条由静止释放后开始滑动,则链条刚好全部滑出斜面时的速度为(g取210m/s)()A.2.5m/s B 52/s C5m/s D35/s4.炽热的金属丝可以发射电子。
发射出的电子经过电压U在真空中加速,形成电子束。
若电子束的平均电流大小为I,随后进入冷却池并停止运动。
已知电子质量为m,电荷量为e,冷却液质量为M,比热为c,下列说法正确的是()A.单位时间内,冷却液升高的温度为Ue cMB.单位时间内,冷却液升高的温度为UI cMC.冷却液受到电子的平均撞击力为2UemD.冷却液受到电子的平均撞击力为2Uem5.“水上飞人表演”是近几年来观赏性较高的水上表演项目之一,其原理是利用脚上喷水装置产生的反冲动力,使表演者在水面之上腾空而起。
高中奥林匹克物理竞赛解题方法三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度hH Hv t S h H H t S v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足:θθθθT G T T +∆=∆+cos θρθθc o s c o s Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即 ∑∑∑∆=∆=∆=θρθρθc o s c o s L g Lg T T 观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R ,所以 ∑=∆R L θc o s 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos 例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ⋅∆=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t , 则也有 b t v S B b ⋅∆=21 由开普勒第二定律可知:S a =S b 即得 A B v b a v = 此题也可用对称法求解. 例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有 21Mv mv = ① 两边同时乘以一个极短的时间△t , 有 t Mv t mv ∆=∆21 ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为t v s ∆=∆11,t v s ∆=∆22由此将②式化为 21s M s m ∆=∆ ③把所有的元位移分别相加有 ∑∑∆=∆21s M s m④ 即 ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小, 又因为 L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L mM m s +=2 例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙. 先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受拉力F 的作用,合力为 2sin 2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F F T 22 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θt a n ⋅∆=mg T 现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1t a n=θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2Mg F = 设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMg R Mg x F k 222)12()12(2ππ+=-== 例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的张 力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅ 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x v F ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2=此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为 .332LMgx gx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大? 解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分 析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉 力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度), 根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ 由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T ,绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为零,则由平衡条件得:2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N 当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RT R T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ② T -mg=m a ③ 由②、③解得: m M Mmg T +=2 将④式代入①式得:Rm M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααc o s 2c o s 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为 222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零, 则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ∆⋅=∆⋅解得大小圆环的线密度之比为:rR =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆= 所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆= 例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出. ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1c o s 1(0-=αv v 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ, 还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的 张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲 分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出. 由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=∆-∆-∆x x x gh σθσρ 解得:θρθσcos 1107.2)cos 1(23+⨯=+=-gh 由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体, 由动能定理得:221mv L F ∆=∆ ② 而 △m=ρS △L联立①、②、③式可得:最初中进容器的空气速度 ρ)(20p p v -=例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元 ,2RQ R q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos xR x x R R Q R k r q k E x ++∆=∆=∆πθα 根据对称性 322322322)(2)(2)(2x R kQx x R kQxx R kQxE E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关.由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin 2ωθ∆=∆-∆当△θ很小时,R m QB R T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222R m QB R T m m 解得圆环中张力为 )(2ωπωm QB R T +=例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量 为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电 阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面. 现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够 长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位 移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发 生了一段极小的位移△x ,在△t 时间内,磁通量的变化为 △φ △φ=BL △x tRx BL tR R I ∆∆=∆∆Φ==ε金属杆受到安培力为tRx L B ILB F ∆∆==22安 由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:Rx L B t F I ∆-=∆⋅-=∆22安 对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离, 对金属杆用动量定理可得 I=0-mV 0 ② 由①、②两式得:220L B R m V x = 例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计, 两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S 先合向1,然后合向2.求:(1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计) 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得: 1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得: ∑=∆v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22B l i F i = i i i =+21所以 ∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL t BLi t BLi )(212211v m m q Q BL )()(21+=-=而Q=CE q=CU ′=CBL v所以解得小棒的最终速度 2221)(LCB m m BLCE v ++= (2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热)(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCE m m L CB CE v m m CBLv C CE +++=+++--=+--=针对训练1.某地强风的风速为v ,设空气的密度为ρ,如果将通过横截面积为S 的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止释放,用最短时间经C 到B ,不计过C 点的能量损失.问AC 和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速度多大?5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( ) A .gh 2 B .0 C .gh 22μ D .v 0 6.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考 虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb ,b=a 2,求弹性系数k ;(用M 、R 、g 表示,g 为重力加速度)(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A处有一质量为m、直径比管径略小的小球,小球上连有一根穿过环顶B处管口的轻绳,在外力F作用下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A点运动到B点过程中F做的功W F.8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流为1.0mA 的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l 和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2.9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这两直导线,如图所示.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R 的均匀带电半球面,电荷面密度为δ,求球心O 处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L ),质量为m 的正方形闭合线框以初速v 0垂直磁场边界滑过磁场后,速度变为v (v <v 0),求:(1)线框在这过程中产生的热量Q ;(2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,释放后,求金属棒的加速度a .答案:1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)RMg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32Rl Q K ρ∆ 11.R k λ2 12.r k λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。
高考物理物理解题方法:微元法压轴难题知识归纳总结及答案解析一、高中物理解题方法:微元法1.下雨天,大量雨滴落在地面上会形成对地面的平均压强。
某次下雨时用仪器测得地面附近雨滴的速度约为10m/s 。
查阅当地气象资料知该次降雨连续30min 降雨量为10mm 。
又知水的密度为33110kg/m ⨯。
假设雨滴撞击地面的时间为0.1s ,且撞击地面后不反弹。
则此压强为( ) A .0.06Pa B .0.05PaC .0.6PaD .0.5Pa【答案】A 【解析】 【详解】取地面上一个面积为S 的截面,该面积内单位时间降雨的体积为31010m 3060sh V S S t -⨯=⋅=⋅⨯则单位时间降雨的质量为m V ρ=撞击地面时,雨滴速度均由v 减为0,在Δ0.1s t =内完成这一速度变化的雨水的质量为m t ∆。
设雨滴受地面的平均作用力为F ,由动量定理得[()]()F m t g t m t v -∆∆=∆又有Fp S=解以上各式得0.06Pa p ≈所以A 正确,BCD 错误。
故选A 。
2.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2d V v t =∆⋅ 水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。
3.如图所示,粗细均匀,两端开口的U 形管内装有同种液体,开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度大小是( )A 8gh B 6gh C 4gh D 2gh 【答案】A 【解析】 【分析】 【详解】设U 形管横截面积为S ,液体密度为ρ,两边液面等高时,相当于右管上方2h高的液体移到左管上方,这2h 高的液体重心的下降高度为2h ,这2h高的液体的重力势能减小量转化为全部液体的动能。
2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.18 图解法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.18 图解法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考物理二轮复习 100考点千题精练第十七章物理思维方法专题17.18 图解法的全部内容。
专题17。
18 图解法一.选择题1.(2018洛阳一模)如图所示,某科研单位设计了一空间飞行器,飞行器从地面起飞时,发动机提供的动力方向与水平方向夹角α=60°,使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行,经时间t后,将动力的方向沿逆时针旋转60°同时适当调节其大小,使飞行器依然可以沿原方向匀减速飞行,飞行器所受空气阻力不计,下列说法中正确的是()A.加速时动力的大小等于mgB.加速时加速度的大小为gC.减速时动力的大小等于mgD.减速飞行时间t后速度为零【参考答案】BC【命题意图】本题考查力的合成、牛顿运动定律及其相关的知识点。
【解题思路】画出使飞行器恰恰与水平方向成θ=30°角的直线斜向右上方匀加速飞行时的受力矢量图,如图1所示,由2mgcos30°=F,可得加速时动力的大小等于F=mg,选项A错误;动力F与飞船重力mg的合力等于mg,所以飞船加速时加速度的大小为g,选项B正确;画出使飞行器沿原方向匀减速飞行时的受力矢量图,如图2所示,由sin60°=F'/mg可得减速时动力的大小等于F’=mg,选项C正确;加速飞行时间t后的速度为v=at=gt。
高中物理物理解题方法:微元法压轴题二轮复习及答案一、高中物理解题方法:微元法1.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用.如图,一个人推磨,其推磨杆的力的大小始终为F ,方向与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动,则在转动一周的过程中推力F 做的功为A .0B .2πrFC .2FrD .-2πrF【答案】B 【解析】 【分析】cos W Fx α=适用于恒力做功,因为推磨的过程中力方向时刻在变化是变力,但由于圆周运动知识可知,力方向时刻与速度方向相同,根据微分原理可知,拉力所做的功等于力与路程的乘积; 【详解】由题可知:推磨杆的力的大小始终为F ,方向与磨杆始终垂直,即其方向与瞬时速度方向相同,即为圆周切线方向,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,由题意知,磨转动一周,弧长2L r π=,所以拉力所做的功2W FL rF π==,故选项B 正确,选项ACD 错误. 【点睛】本题关键抓住推磨的过程中力方向与速度方向时刻相同,即拉力方向与作用点的位移方向时刻相同,根据微分思想可以求得力所做的功等于力的大小与路程的乘积,这是解决本题的突破口.2.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =A. 2gl 与分析不相符,故A 项与题意不相符;B. gl 与分析不相符,故B 项与题意不相符;C. 2gl与分析相符,故C 项与题意相符; D.12gl 与分析不相符,故D 项与题意不相符.3.如图所示,有一连通器,左右两管的横截面积均为S ,内盛密度为ρ的液体,开始时两管内的液面高度差为h .打开底部中央的阀门K ,液体开始流动,最终两液面相平.在这一过程中,液体的重力加速度为g 液体的重力势能( )A .减少214gSh ρ B .增加了214gSh ρ C .减少了212gSh ρ D .增加了212gSh ρ 【答案】A 【解析】打开阀门K ,最终两液面相平,相当于右管内 2h 的液体流到了左管中,它的重心下降了2h ,这部分液体的质量122h m V S Sh ρρρ===,由于液体重心下降,重力势能减少,重力势能的减少量:211224p h E mgh Sh g Sgh ρρ∆='=⋅⋅=,减少的重力势能转化为内能,故选项A 正确.点睛:求出水的等效重心下移的高度,然后求出重力势能的减少量,再求出重力势能的变化量,从能量守恒的角度分析答题.4.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。
高中物理解题方法----微元法一、什么是微元法:在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。
对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。
这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。
二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。
当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。
所以,微元法又叫小量分析法,它是微积分的理论基础。
三、微元法解题思想:在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。
从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。
微元法的灵魂是无限分割与逼近。
用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。
所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。
例1、如图所示,岸高为h,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向为θ时,人收绳速率为υ,则该位置船的速率为多大?例2、如图所示,长为L的船静止在平静的水面上,立于船头的人质量为m,船的质量为M,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?例3、如图所示,半径为R,质量为m的匀质细圆环,置于光滑水平面上,若圆环以角速度ω绕环心O转动,试证明:(1)圆环的张力πω22RmT=(2)圆环的动能2)(21RmEkω=例4、一根质量为M,长度为L的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x时,链条对地面的压力为多大?例5、如图所示,半径为R的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q和-q,求圆心处的场强.例6、如图所示,在离水平地面h高的平台上有一相距L的光滑轨道,左端接有已充电的电容器,电容为C,充电后两端电压为U1.轨道平面处于垂直向上的磁感应强度为B的匀强磁场中.在轨道右端放一质量为m的金属棒,当闭合S,棒离开轨道后电容器的两极电压变为U2,求棒落在离平台多远的位置.例7、(1)试证明:质量为M的匀质球壳,对放置在空腔内任意一点的质量为m的质点的万有引力为零。
1.在匀变速直线运动位移与时间的关系教学中,你是如何渗透微元法的。
微元法 通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法.本节课重点借助v-t图象进行思想渗透微元法1.作出匀速直线运动的物体的速度—时间图象.2.由图象可看出匀速直线运动的v-t图象是一条平行于t轴的直线.3. 由图象可看出,在0—t时间内,图线与t轴所夹矩形面积为物体发生的位移4结论:对于匀速直线运动,物体的位移对应着v-t图象中一块矩形的面积,启发引导,进一步提出问题,但不进行回答问题:对于匀变速直线运动的位移与它的v-t图象是不是也有类似的关系?培养学生联想的能力和探究问题、大胆猜想的能力.学生针对问题思考,并阅读“思考与讨论”教师活动:(投影)提出问题:我们掌握了这种定积分分析问题的思想,下面同学们在坐标纸上作初速度为v0的匀变速直线运动的v-t图象,分析一下图线与t轴所夹的面积是不是也表示匀变速直线运动在时间t内的位移呢?学生作出v-t图象,自我思考解答,分组讨论.讨论交流:1.把每一小段Δt内的运动看作匀速运动,则各矩形面积等于各段匀速直线运动的位移,从图象看出,矩形面积之和小于匀变速直线运动在该段时间内的位移.2.时间段Δt变小,各匀速直线运动位移和与匀变速直线运动位移之间的差值就越小3.时间段Δt越小,各匀速直线运动位移和与匀变速直线运动位移之间的差值就越小3.当Δt→0时,各矩形面积之和趋近于v-t图象下面的面积.4.如果把整个运动过程划分得非常非常细,很多很小矩形的面积之和就能准确代表物体的位移了,位移的大小等于阴影部分的梯形的面积.2.在匀变速直线运动位移与时间的关系教学中,你是如何渗透微元法的。
微元法是高中物理涉及到的一种数学方法之一,渗透着微积分的思想,是物理学发展过程中最重要的科学思维方法之一,是牛顿力学的数学基础.微元法对中学生来说显得有一定的难度(属于较高要求).但在人教版的高中物理新教材中恰当地选择了一些物理问题进行微元法的渗透,使学生逐步对微元法了解、熟悉,层次较高的学生甚至能利用微元法解决一些实际问题.1.作出匀速直线运动的物体的速度—时间图象. 是一条平行于t轴的直线.2.由图象可看出,在0—t时间内,图线与t轴所夹矩形面积为物体发生的位移3.结论:对于匀速直线运动,物体的位移对应着v-t图象中一块矩形的面积,启发引导,进一步提出问题,但不进行回答问题:对于匀变速直线运动的位移与它的v-t图象是不是也有类似的关系?培养学生联想的能力和探究问题、大胆猜想的能力.学生针对问题思考,并阅读“思考与讨论”教师活动:(投影)提出问题:我们掌握了这种定积分分析问题的思想,下面同学们在坐标纸上作初速度为v0的匀变速直线运动的v-t图象,分析一下图线与t轴所夹的面积是不是也表示匀变速直线运动在时间t内的位移呢?学生作出v-t图象,自我思考解答,分组讨论.讨论交流:1.把每一小段Δt内的运动看作匀速运动,则各矩形面积等于各段匀速直线运动的位移,从图象看出,矩形面积之和小于匀变速直线运动在该段时间内的位移.2.时间段Δt变小,各匀速直线运动位移和与匀变速直线运动位移之间的差值就越小3.时间段Δt越小,各匀速直线运动位移和与匀变速直线运动位移之间的差值就越小3.当Δt→0时,各矩形面积之和趋近于v-t图象下面的面积.4.如果把整个运动过程划分得非常非常细,很多很小矩形的面积之和就能准确代表物体的位移了,位移的大小等于阴影部分的梯形的面积.能否推导出匀变速直线运动的位移与时间的关系式?引用多媒体课件进一步演示,上述推理过程,进而得出位移与时间的关系表达式。
专题17.3 微元法一.选择题1.质量为40 kg的物体,在一个水平外力作用下,沿直径为40 m的水平圆形轨道匀速运动一周,若物体与轨道间动摩擦因数为0.5,水平外力在此过程中做功为A.0 B. 2.5×104 JC. 1.25×104 JD. 0.5×104 J【参考答案】B2(2013·安徽)由消防水龙带的喷嘴喷出水的流量是0.28m3/min,水离开喷口时的速度大小为16m/s,方向与水平面夹角为60度,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10m/s2)A.28.8m,1.12×10-2m3 B.28.8m,0.672m3C.38.4m,1.29×10-2m3 D.38.4m,0.776m3【参考答案】A【名师解析】消防水龙带的喷嘴水平喷水,选取喷嘴处的水(微元)作为研究对象,微元做斜抛运动。
将喷出水流速度分解为水平方向和竖直方向,则竖直方向的分速度v y=v sin60°=16× m/s =24m/s;由可得水柱可以上升的最大高度h=28.8m;水柱上升时间为=2.4s。
题述流量Q=0.28m3/min=0.0047 m3/s,则在空中的水量V=Qt=0.0047 m3/s ×2.4s=1.12×10-2m3,,所以选项A正确。
3. 已知点电荷Q电场中的电势φ公式为φ=k,式中r为到场源点电荷Q的距离。
两半径分别为r1和r2(r1<r2)的同心球面上,各均匀带电Q1和Q2,则在球面内部距离球心r处的电势为A.k(+) B.k(+)C.k(+) D.k(+)【参考答案】D4.如图所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心与环面垂直的轴线上有P点,PO=r。
以无穷远处为电势零点,则P点的电势φ为A. B.C. D.【参考答案】B二.计算题1.从地面上以初速度v0竖直向上抛出一质量为m的木球,若运动过程中受到的空气阻力与其速率成正比关系,木球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1,且落地前木球已经做匀速运动。
2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.13 数学物理方法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考物理二轮复习 100考点千题精练第十七章物理思维方法专题17.13 数学物理方法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.13 数学物理方法的全部内容。
专题17。
13 数学物理方法1.(2008·上海)如图所示为研究电子枪中电子在电场中运动的简化模型示意图。
在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计电子所受重力)。
(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。
(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置.(3)若将左侧电场II整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D 不随电场移动),求在电场I区域内由静止释放电子的所有位置。
(2)设释放点在电场区域I中,其坐标为(x,y),在电场I中电子被加速到v1,然后进入电场II 做类平抛运动,并从D点离开,有ﻩ,,解得xy=,即在电场I区域内满足议程的点即为所求位置。
(3)设电子从(x,y)点释放,在电场I中加速到v2,进入电场II后做类平抛运动,在高度为y′处离开电场II时的情景与(2)中类似,然后电子做匀速直线运动,经过D点,则有ﻩ,,,。
解得,即在电场I区域内满足方程的点即为所求位置。
2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.4 图象法1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考物理二轮复习 100考点千题精练第十七章物理思维方法专题17.4 图象法1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考物理二轮复习100考点千题精练第十七章物理思维方法专题17.4 图象法1的全部内容。
专题17.4 图象法1一.选择题1.(2013·广东)如例66图所示,游乐场中,从高处A到水面B处有两条长度相等的光滑轨道,甲、乙两小孩沿着不同轨道同时从A处自由滑向B处,下列说法正确的有A.甲的切向加速度始终比乙大B.甲、乙在同一高度的速度大小相等C.甲、乙在同一时刻总能到达同一高度D.甲比乙先到达B处【参考答案】BD【点评】对CD选项画出运动的速率图象,简洁明了。
2.如题66A图所示,质量相同的木块AB用轻质弹簧连接,静止在光滑的水平面上,此时弹簧处于自然状态。
现用水平恒力F推A,则从开始到弹簧第一次被压缩到最短的过程中A。
两木块速度相同时,加速度aA=a BB.两木块速度相同时,加速度a A<a BC.两木块加速度相同时,速度vA〉v BD.两木块加速度相同时,速度v A<v B【参考答案】BC二.非选择题1.汽车由甲地从静止出发,沿平直公路驶向乙地.汽车先以加速度a1做匀加速运动,最后以加速度a2做匀减速运动,中间可能有一段匀速运动过程,也可能没有匀速运动过程,到乙地恰好停下.已知甲、乙两地相距为s,那么要使汽车从甲地到乙地所用的时间最短,汽车应做怎样的运动?最短时间为多少?即要使汽车从甲地到乙地所用的时间最短,汽车应先做匀加速直线运动,再做匀减速直线运动,最短时间为.2 (2013·北京)蹦床比赛分成预备运动和比赛动作。
中学物理思想方法——微元法专题要点提示利用微分思想的分析方法称为微元法。
它是将研究对象或物理过程进行无限细分(化变为恒、化曲为直、化整为零),从其中抽取某一微小单元进行讨论,从而找出被研究对象或被研究过程变化规律的一种思想方法。
《微元法》解题的思维程序:1、隔离选择恰当微元(空间元、时间元)作为突破整体研究的对象。
微元可以是:一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。
2、将微元模型化(如视作点电荷、质点、匀速直线运动、匀速转动……)并运用相关物理规律,求解这个微元。
3、将一个微元的求解结果推广到其他微元,并充分利用各微元间的关系(如对称关系、矢量方向关系、量值等关系),对各微元的解出结果进行叠加,以求出整体量的合理解答。
解题示范:从地面上以初速度v 0竖直向上抛出质量为m 的球,若运动过程中受到的空气阻力与其速率成正比,球运动的速率随时间变化规律如图所示,t 1时刻到达最高点,再落回地面,落地时速率为v 1,且落地前球已经做匀速运动。
求: (1)球从抛出到落地过程中克服空气阻力所做的功 (2)球抛出瞬间的加速度大小 (3)球上升的最大高度 解析:(1)由动能定理得:22101122f W mv mv =- 克服空气阻力做功 22011122f f W W mv mv =-=-克(2)空气阻力 f k v =由落地时匀速运动有:10mg kv -=设刚抛出时加速度大小为a 0,则 00mg kv ma += 解得: 001(1)v a g v =+(3)设上升至速度为v 时加速度为a ,则 ()mg kv ma -+= k a g v m=--取极短时间t ∆,其速度变化为v ∆,有: kv a t g t v t m∆=∆=-∆-∆v v 1B又因为v t h∆=∆ 对上升全过程有:kv g t h m∆=-∆-∆∑∑∑ 010k v gt H m-=--解得: 011()v gt v H g-=小结:在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法(累计求和)进而使问题求解在电磁感应问题中,常常遇到非匀变速运动过程中求位移,电量,能量等问题,灵活运用微元的思想,可以帮助我们更深刻的理解物理过程。
1 高考物理解题方法:微元法微元法是从事物的极小部分(微元)分析,通过对微元的细节的物理分析和描述,最终解决整体问题的方法。
在高考题中,但凡出现考查微元法的试题,其难度系数不超过0.3。
因此,学会微元法的应用,对高三学子来说就会使自己的高考成绩迈上一个新的台阶。
根据研究对象的不同,微元可分为“线元”、“面元”、“体元”、“元过程”等。
例如:例题:一个半径为R 的均匀金属圆环,带电量为q ,试求垂直通过其圆心的轴线上距离圆心为x 处的电场强度。
解析:由题意可设如图,在圆环上取一段极小的圆弧Δl (Δl →0)——“线元”,圆弧带电量Δq =Δlq /2πR ,由于Δl 极小,圆弧可视为点电荷,其在轴上距离圆心为x 处产生的场强为:由圆的对称性可知,每个微元在x 处产生的电场在平行于环面的方向上场强相互抵消,圆环在x 处产生的电场沿x 方向,大小为所有微元在x 处产生的沿x 方向的场强矢量合,即:显然,ΣΔl=2πR ,所以金属圆环在x 处产生的电场场强为:“线元”分析适用于线状物体,用“整体·隔离体”法解决不了的问题,用“微元法”即可解决。
我们来看看下面这道高考题:(2012全国)假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为参考答案:A ;难度系数:0.11虽然题干给出了“质量分布均匀的球壳对壳内物体的引力为零”这个条件,但在高考的考场上,若是学生第一次知道这个结论,要想立即能熟练应用,显然是不现实的,这也是本题难度系数是0.11的原因。
下面,我们应用“微元法”证明“质量分布均匀的球壳对壳内物体的引力为零”。
例题:证明:质量分布均匀的球壳对壳内物体的引力为零。
解析:如图所示,在质量分布均匀的球壳内任取一点O /,连接O /与球心O 并交于球面上O i 、O i /(图中未标出);以O i 为圆心做半径为r i (r i →0)的圆,这个圆与O /可以形成一个微小的圆锥体,延长圆锥体xα △l O R E l x R R kq r q k E i ∆⋅+=∆=)(2222π∑∑∑∆+=+⋅+∆==l x R R kqx x R x x R R l kq E E i x 2322222222cos )()(ππα2322)(x R kqx E x +=2的母线,在对侧可以形成一个类似的圆锥体(R i /、r i /)。
专题17.3 微元法
一.选择题
1.质量为40 kg的物体,在一个水平外力作用下,沿直径为40 m的水平圆形轨道匀速运动一周,若物体与轨道间动摩擦因数为0.5,水平外力在此过程中做功为
A.0 B. 2.5×104 J
C. 1.25×104 J
D. 0.5×104 J
【参考答案】B
2(2013·安徽)由消防水龙带的喷嘴喷出水的流量是0.28m3/min,水离开喷口时的速度大小为16m/s,方向与水平面夹角为60度,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10m/s2)
A.28.8m,1.12×10-2m3 B.28.8m,0.672m3
C.38.4m,1.29×10-2m3 D.38.4m,0.776m3
【参考答案】A
【名师解析】消防水龙带的喷嘴水平喷水,选取喷嘴处的水(微元)作为研究对象,微元做斜抛运动。
将喷出水流速度分解为水平方向和竖直方向,则竖直方向的分速度
v y=v sin60°=16× m/s =24m/s;由可得水柱可以上升的最大高度
h=28.8m;水柱上升时间为=2.4s。
题述流量Q=0.28m3/min=0.0047 m3/s,则在空中的水量V=Qt=0.0047 m3/s ×2.4s=1.12×10-2m3,,所以选项A正确。
3. 已知点电荷Q电场中的电势φ公式为φ=k,式中r为到场源点电荷Q的距离。
两半径分别为r1和r2(r1<r2)的同心球面上,各均匀带电Q1和Q2,则在球面内部距离球心r处的电势为
A.k(+) B.k(+)
C.k(+) D.k(+)
【参考答案】D
4.如图所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心与环面垂直的轴线上有P点,PO=r。
以无穷远处为电势零点,则P点的电势φ为
A. B.
C. D.
【参考答案】B
二.计算题
1.从地面上以初速度v0竖直向上抛出一质量为m的木球,若运动过程中受到的空气阻力与其速率成正比关系,木球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1,且落地前木球已经做匀速运动。
求:
(1)木球从抛出到落地过程中克服空气阻力所做的功;
(2)木球抛出瞬间的加速度大小;
(3)木球上升的最大高度H。
【名师解析】(1)由动能定理得W f=mv12-mv02,
克服空气阻力做功W=- W f=mv02-mv12。
(2)空气阻力f=kv,落地前匀速运动,则mg-kv1=0 ,
设刚抛出时加速度大小为a0,则mg+kv0=ma0
解得:a0=(1+)g。
(3)设上升时加速度为a,由牛顿第二定律,-(mg+kv)=ma,解得:a=-g-v。
取极短△t时间,速度变化△v,有:△v =a△t=-g△t -v△t。
又v△t = △h,所以△v ==-g△t -△h。
对上升全程,Σ△v = -gΣ△t -Σ△h。
因Σ△v =0-v0=- v0,Σ△t =t1,Σ△h=H,所以:v0=g t1+H
解得:H= (v0-g t1)。
【点评】根据速度图象的面积表示位移,图中曲边三角形v0Ot1的面积表示球上升的最大高度H。
2.半径为R的光滑球固定在水平桌面上,有一质量为M的圆环状均匀弹性绳圈,原长为πR,且弹性绳圈的劲度系数为k,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图所示,若平衡时弹性绳圈长为,求弹性绳圈的劲度系数k.
【名师解析】由于整个弹性绳圈的大小不能忽略不计,且具有质量,所以弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m两端受的拉力就是弹性绳圈内部的弹力F.。
在弹性绳圈上任取一小段质量为△m作为研究对象,进行受力分析。
但是△m 受的力不在同一平面内,可以从一个合适的角度观察。
.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系。
.从正面和上面观察,分别画出正视图和俯视图,如图乙和图甲。
二力的合力与T平衡.即
现在弹性绳圈的半径为
所以sinθ=,θ=45°,tanθ=1,
因此T=,②
联立①、②得,,
解得弹性绳圈的张力为:
设弹性绳圈的伸长量为x则
所以绳圈的劲度系数为:。
3.如图所示,电量Q均匀分布在半径R的圆环上,求在圆环轴线上距圆心O点为x=R处的P点的电场强度。
4.如图所示,两根平行放置在绝缘地面上的光滑金属框架。
框架的左端接有一电容量为C 的电容器。
框架上放置有一质量为m,长为L的金属棒,与框架接触良好无摩擦。
磁感应强度为B的匀强磁场竖直向下,与框架平面相垂直,开始时电容器不带电。
现作用于金属棒上一恒力F,使金属棒自静止起向右加速运动,求:
(1)金属棒中电流为I时的加速度。
(2)金属棒位移s时的速度。
【名师解析】(1)当金属棒中电流为I时,所受的向左的安培力F安=BIL,
由牛顿第二定律,F-F安=ma,
解得:a=。
由Q=CU得ΔQ=CΔU,式中ΔU是极短时间内电压的增量。
电压U的增量等于产生的感应电动势E的增量,即:ΔU=ΔE=BlΔv,
说明电压的增量取决于速度的增量△v。
根据加速度的定义a=,
联立上述各式解得:a=。
式中m、F、C、B、L都是恒量,说明金属棒加速运动的加速度恒定不变,即金属棒做匀加速直线运动。
由v2=2as解得金属棒运动位移s时的速度为v=。
5.如图所示,两块很薄的金属板之间用金属杆固定起来使其平行正对,两个金属板完全相同、且竖直放置,金属杆粗细均匀、且处于水平状态。
已知两个金属板所组成的电容器的电容为C,两个金属板之间的间距为d,两个金属板和金属杆的总质量为m。
整个空间存在一个水平
向里的匀强磁场,匀强磁场的磁感应强度为B,磁场方向垂直金属杆,且和金属板平行。
现在使整个装置从静止开始在该磁场中释放。
重力加速度大小为g。
(1)推导出电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)推导出金属棒的速度大小随时间变化的关系。
(3)若所有电阻不计,求整个装置从静止开始在该磁场中下落h高度时两个金属板之间产生的电场储存的电场能。
(2)设在时间间隔(t,t+△t)内流经金属棒的电荷量为△Q,金属棒受到的安培力为F,有:F=Bid ⑤
i=⑥
△Q也是平行板电容器在时间间隔(t,t+△t)内增加的电荷量,由④式得:
△Q= CBd△v ⑦
△v为金属棒的速度变化量,有:a=⑧
对金属棒,有:mg-F=ma ⑨
以上联合求解得:a=⑩
因为加速度a为常数,所以该装置在磁场中做初速度为零的匀加速直线运动。
金属棒的速度v=at=t。
6.(2013·全国)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
【名师解析】
(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv。
①
平行板电容器两极板之间的电势差为:U=E,②
设此时电容器极板上积累的电荷量为Q,由电容定义有C=Q/U,③
联立①②③式解得:Q=CBLv。
④
金属棒所受到的摩擦力方向斜向上,大小为f2=μN,⑨
式中,N是金属棒对于导轨的正压力的大小,有:N=mg cosθ,⑩
金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有
mg sinθ- f1- f2=ma⑾
联立⑤至⑾式解得a=g。
⑿
由⑿式及题设可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为:v=at=gt。