九年级数学韦达定理应用复习
- 格式:pdf
- 大小:819.16 KB
- 文档页数:8
2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。
比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。
3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。
(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。
4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。
当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。
四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。
2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。
3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。
五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。
韦达定理初三常考题型1. 引言韦达定理是初中数学中的一个重要定理,常常出现在初三的考试中。
它是一种用于解决三角形中的边长和角度关系的工具,通过利用正弦定理和余弦定理来推导出未知量之间的关系。
在本文中,我们将介绍韦达定理的基本概念、推导过程以及常见的应用题型。
2. 韦达定理的定义与推导2.1 定义韦达定理,也称作三角形法则,是指在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:a² = b² + c² - 2bc * cosA b² = a² + c² - 2ac * cosB c² = a² + b² - 2ab * cosC2.2 推导过程我们可以通过正弦定理和余弦定理来推导出韦达定理。
#### 正弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:sinA/a = sinB/b = sinC/c余弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:cosA = (b² + c² - a²) / 2bc cosB = (a² + c² - b²) / 2ac cosC = (a² + b² - c²) / 2ab通过将正弦定理和余弦定理结合起来,我们可以推导出韦达定理的三个公式。
3. 韦达定理的应用题型3.1 已知两边和夹角,求第三边这是韦达定理最常见的应用题型之一。
当我们已知一个三角形的两边长度和它们之间的夹角时,可以利用韦达定理来求解第三边的长度。
例如,已知一个三角形ABC,其中AB = 5cm,AC = 8cm,∠BAC = 60°,求BC的长度。
根据韦达定理公式b² = a² + c² - 2ac * cosB,代入已知条件计算得到:BC² = 5² + 8² - 2 * 5 * 8 * cos60° BC = √(25 + 64 -80cos60°) BC ≈ √(89 -40) BC ≈ √49 BC ≈ 7cm3.2 已知三边,求夹角另一个常见的应用题型是已知一个三角形的三边长度,求解它们之间的夹角。
韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。
韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。
具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。
2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。
3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。
b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。
c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。
4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。
b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。
c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。
总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。
希望以上解答能够帮助到你,如果还有其他问题,请继续提问。
初三数学九年级上《韦达定理》复习一、知识回顾1.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1.x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aac b b 242---2.能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aac b b 242--- =aac b b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242--- =2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为x 1+x 2=ab -, x 1x 2=a c 3.韦达定理韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 4.韦达定理前提(1)定理成立的条件0∆≥(2)注意公式重12b x x a+=-的负号与b 的符号的区别 二、知识学习(1)计算对称式的值 例1. 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.举一反三1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= , (x 1-x 2)2=例2.已知方程2x 2-3x+k=0的两根之差为212,则k= ; 例3.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;例4.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;例5.设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 2例6.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: 2221x 1x 1(2)构造新方程例7.理论:以两个数为根的一元二次方程是。
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面:(1)验根;(2)已知方程的一根,求另一根;(3)求某些代数式的值;(4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .【答案】2【分析】根据根与系数的关系求解.【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( )A .12B .10C .4D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,∴x1•x22.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。