初三数学圆测试题和答案及解析
- 格式:doc
- 大小:201.00 KB
- 文档页数:7
九年级数学《圆》单元测试学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+4.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上5.已知⊙O和⊙O′的半径分别为5cm和7cm,且⊙O和⊙O′相切,则圆心距OO′为()A.2 cm B.7 cm C.12 cmD.2 cm或12 cm6.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.27.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=度时,△OBC和△ABD的面积相等;②当∠BAD=度时,四边形OBCD是正方形.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为时,四边形ABCD是菱形.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.参考答案与试题解析一.选择题(共10小题)1.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l=计算即可求出n.【解答】解:设圆锥的展开图扇形的圆心角的度数为n.∵圆锥的底面圆的周长=2π•10=20π,∴圆锥的展开图扇形的弧长=20π,∴20π=,∴n=120.故选C.2.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O 外 D.无法确定【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.3.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A .B .C .4D .2+【分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选B .4.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点( )A .在⊙O 内或⊙O 上B .在⊙O 外C .在⊙O 上D .在⊙O 外或⊙O 上【分析】根据点与圆的位置关系进行判断.【解答】解:∵d ≥R ,∴点P 在⊙O 上或点P 在⊙O 外.故选D .5.已知⊙O 和⊙O′的半径分别为5cm 和7cm ,且⊙O 和⊙O′相切,则圆心距OO′为( ) A .2 cm B .7 cm C .12 cmD .2 cm 或12 cm【分析】此题考虑两种情况:两圆外切或两圆内切.再进一步根据位置关系得到数量关系.设两圆的半径分别为R 和r ,且R ≥r ,圆心距为d :外离,则d >R +r ;外切,则d=R +r ;相交,则R ﹣r <d <R +r ;内切,则d=R ﹣r ;内含,则d <R ﹣r .【解答】解:当两圆外切时,则圆心距等于两圆半径之和,即7+5=12;当两圆内切时,则圆心距等于两圆半径之差,即7﹣5=2.故选D .6.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC=2,则OF 的长为( )A.B.C.1 D.2【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.7.如图,AB是⊙O的直径,弦CD与AB相交,且∠ABC=32°,则∠CDB的度数为()A.58°B.32°C.80°D.64°【分析】由AB是⊙O的直径,可得知∠ACB=90°,根据三角形内角和为180°可求出∠BAC 的度数,再由同弦的圆周角相等得出结论.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=180°﹣∠ACB﹣∠ABC=58°.∵∠CDB与∠BAC均为弦BC的圆周角,∴∠CDB=∠BAC=58°.故选A.8.如图,A,B,C是⊙O上的三点,已知∠AOC=110°,则∠ABC的度数是()A.50°B.55°C.60°D.70°【分析】由A,B,C是⊙O上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.【解答】解:∵A,B,C是⊙O上的三点,∠AOC=110°,∴∠ABC=∠AOC=55°.故B.9.如图,A、B、C三点在⊙O上,若∠AOB=80°,则∠ACB等于()A.160°B.80°C.40°D.20°【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故选C.10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.πB.4πC.πD.π【分析】首先证明OE=OC=OB,则可以证得△OEC≌△BED,则S阴影=半圆﹣S扇形OCB,利用扇形的面积公式即可求解.【解答】解:连结BC.∵∠COB=2∠CDB=60°,又∵OB=OC,∴△OBC是等边三角形.∵E为OB的中点,∴CD⊥AB,∴∠OCE=30°,CE=DE,∴OE=OC=OB=2,OC=4.S阴影==.故选D.二.填空题(共4小题)11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.12.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.13.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.14.如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4,则弦AB的长2.【分析】由已知条件可知Rt△POA中,OP=2OA,所以可求出∠P=30°,∠O=60°,再在Rt△AOC中,利用勾股定理求解直角三角形即可得到AB的长.【解答】解:∵PA与⊙O相切于点A,∴OA⊥AP,∴三角形△POA是直角三角形,∵OA=2,OP=4,即OP=2OA,∴∠P=30°,∠O=60°,则在Rt△AOC中,OC=OA=1,则AC=,∴AB=2,故答案为2.三.解答题(共6小题)15.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.16.如图,O为等腰三角形ABC内一点,⊙O与底边BC交于M、N两点,且与AB、AC相切于E、F两点,连接AO,与⊙O交于点G,与BC相交于点D.(1)证明:AD⊥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求扇形OEM的面积.【分析】(1)根据切线长定理得到AE=AF,∠EAO=∠FAO,根据等腰三角形的性质得到AD ⊥EF,根据三角形的内角和得到∠B=∠C=(180°﹣∠BAC),∠AEF=(180°﹣∠BAC),等量代换得到∠AEF=∠B,根据平行线的性质即可得到结论.(2)由AG等于⊙O的半径,得到AO=2OE,由AB是⊙O的切线,得到∠AEO=90°,根据直角三角形的性质得到∠EAO=30°,根据三角形的内角和得到∠AOE=60°,由垂径定理得到DM=MN=,根据三角函数的定义得到∠MOD=60°,根据扇形的面积公式即可得到结论.【解答】(1)证明:∵AB、AC相切于E、F两点,∴AE=AF,∠EAO=∠FAO,∴AD⊥EF,∵AB=AC,∴∠B=∠C=(180°﹣∠BAC),∵AE=AF,∴∠AEF=(180°﹣∠BAC),∴∠AEF=∠B,∴EF∥BC,∴AD⊥BC;(2)解:∵AG等于⊙O的半径,∴AO=2OE,∵AB是⊙O的切线,∴∠AEO=90°,∴∠EAO=30°,∴∠AOE=60°,∵AE=2,∴OE=2,∵OD⊥MN,∴DM=MN=,∵OM=2,∴sin∠MOD==,∴∠MOD=60°,∴∠EOM=60°,∴S扇形EOM==π.17.如图所示,AB是半圆O的直径,∠ABC=90°,点D是半圆O上一动点(不与点A、B重合),且AD∥CO.(1)求证:CD是⊙O的切线;(2)填空:①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD是正方形.【分析】(1)连接OD.只要证明△COD≌△COB,即可推出∠ODC=∠OBC=90°,推出CD是⊙O的切线.(2))①当∠BAD=60度时,△OBC和△ABD的面积相等;②当∠BAD=45度时,四边形OBCD 是正方形.【解答】(1)证明:连接OD.∵AD∥CO,∴∠A=∠BOC,∠ADO=∠DOC,∵OA=OD,∴∠A=∠ADO,∴∠BOC=∠DOC,在△COD和△COB中,,∴△COD≌△COB,∴∠ODC=∠OBC=90°,∴CD是⊙O的切线.(2)①当∠BAD=60度时,△OBC和△ABD的面积相等;理由此时AD=OB,AB=OC,△OBC≌△DAB,所以面积相等.②当∠BAD=45度时,四边形OBCD是正方形.此时∠DOB=90°,∵∠ODC=∠OBC=90°,∴四边形OBCD是矩形,∵OB=OD,∴四边形OBCD是正方形.故答案分别为60,45.18.如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E 点.(1)判断A是否是PB的中点,并说明理由;(2)若⊙O半径为8,试求BC的长.【分析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC==4,根据垂径定理得到AE=CE=2,由勾股定理即可得到结论【解答】解:(1)A是PB的中点,理由:连接AD,∵CD是⊙O的直径,∴AD⊥AC,∵OB⊥AC,∴AD∥OB,∵PD=OD,∴PA=AB,∴A是PB的中点;(2)∵AD∥OB,∴△APD∽△BPO,∴,∵⊙O半径为8,∴OB=8,∴AD=4,∴AC==4,∵OB⊥AC,∴AE=CE=2,∵OE=AD=2,∴BE=6,∴BC==4.19.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是上的一个动点(点P不与B、C点重合),连接PA、PB、PC.(1)求证:CA=CB;(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;②当∠ABC的度数为60时,四边形ABCD是菱形.【分析】(1)作CE⊥AB于E,由于CA=CB,根据等腰三角形的性质得CE为AB的垂直平分线,则点O在CE上,再根据平行四边形的性质得AB∥CD,(2)当AC=AP时,△CPA≌△ABC.由于AC=BC,AC=AP,则∠ABC=∠BAC,∠APC=∠ACP,根据圆周角定理得∠ABC=∠APC,则∠BAC=∠ACP,加上AC=CA,即可得到△CPA≌△ABC;(3)如图2,连接OC,AC,OB,根据平行线的性质得到∠BCD=120°,根据切线的性质得到∠OCD=90°,推出BO垂直平分AC,即可得到结论.【解答】(1)证明:连接CO并延长交AB于E,如图,∵CD与⊙O相切于点C,∴CE⊥CD,∵四边形ABCD为平行四边形,∴AB∥CD,∴CE⊥AB,∴AE=BE,∴BC=AC;(2)解:当AC=AP时,△CPA≌△ABC.证明如下:∵AC=BC,AC=AP,∴∠ABC=∠BAC,∠APC=∠ACP,∵∠ABC=∠APC,∴∠BAC=∠ACP,在△CPA与△ABC中,,∴△CPA≌△ABC;故答案为:AC=AP;(3)解:当∠ABC的度数为60°时,四边形ABCD是菱形,如图2,连接OC,AC,OB,∵∠ABC=60°,∴∠BCD=120°,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠BCO=30°,∵OB=OC,∴∠OBC=30°,∴∠ABO=30°,∴BO垂直平分AC,∴AB=BC,∴四边形ABCD是菱形.故答案为:60°.20.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.【分析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD 可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.【解答】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°﹣∠AOC=90°﹣60°=30°∴OP=2OA=2×6=12,∴PA===6.。
初中初三数学圆试题及答案一、选择题(每题2分,共10分)1. 圆的半径是10,那么圆的直径是()A. 5B. 20C. 15D. 252. 已知圆心为O,点A在圆上,OA的长度是半径的2倍,那么点A()A. 在圆内B. 在圆上C. 在圆外D. 不存在3. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 4r4. 圆的面积公式是()A. S = πr²B. S = πd²C. S = 2πrD. S = πd5. 如果一个圆的半径增加1cm,那么它的面积将增加多少平方厘米?(π取3.14)A. 3.14B. 6.28C. 2πD. π二、填空题(每题2分,共10分)1. 半径为r的圆的周长是______。
2. 半径为r的圆的面积是______。
3. 如果一个扇形的圆心角为30°,半径为5cm,那么它的弧长是______。
4. 一个圆的直径是20cm,那么它的半径是______。
5. 圆周角定理指出,圆周上一点到圆心的两条半径所夹的角是圆心角的______。
三、解答题(每题5分,共30分)1. 已知圆O的半径为5cm,点P在圆O上,求OP的长度。
答案:OP的长度为5cm。
2. 一个圆的周长是44cm,求这个圆的半径。
答案:设半径为r,根据周长公式C = 2πr,44 = 2 × 3.14 × r,解得r = 7cm。
3. 一个圆的面积是78.5平方厘米,求这个圆的半径。
答案:设半径为r,根据面积公式S = πr²,78.5 = 3.14 × r²,解得r = √(78.5 / 3.14) ≈ 5cm。
4. 已知圆心角为60°,半径为10cm的扇形,求这个扇形的弧长。
答案:弧长= (60/360) × 2π × 10 = π × 10 = 31.4cm。
圆练习题初三带答案1. 已知圆的半径为6cm,求圆的直径。
答案:圆的直径是半径的2倍,所以直径为2 * 6cm = 12cm。
2. 已知圆的半径为9cm,求圆的周长。
答案:圆的周长可以通过公式C = 2 * π * r计算,其中π取近似值3.14。
代入半径r = 9cm,可得C = 2 * 3.14 * 9cm ≈ 56.52cm。
3. 已知圆的直径为18cm,求圆的面积。
答案:圆的面积可以通过公式A = π * r^2计算,其中π取近似值3.14。
由于直径d = 2 * r,代入直径d = 18cm,可得半径r = d / 2 =18cm / 2 = 9cm。
再代入半径r = 9cm,可得A = 3.14 * (9cm)^2 ≈ 254.34cm^2。
4. 已知圆的周长为30πcm,求圆的半径。
答案:圆的周长C = 2 * π * r,由题意可得30πcm = 2πr,化简得 r = 30cm / 2 = 15cm。
所以圆的半径为15cm。
5. 已知圆的面积为64πcm^2,求圆的直径。
答案:圆的面积A = π * r^2,由题意可得64πcm^2 = π * r^2,化简得 r^2 = 64cm^2,再开方得 r = 8cm。
圆的直径是半径的2倍,所以直径为 2 * 8cm = 16cm。
6. 在直径为10cm的圆中,一条弧的长度为8πcm,求该弧所对的圆心角的度数。
答案:圆周长C = 2 * π * r,弧长与圆周长的比例等于圆心角度数与360度的比例。
即8πcm / (2π * 5cm) = x度 / 360度,化简得 x度= 8πcm / (2 * 5cm) * 360度≈ 288度。
所以该弧所对的圆心角的度数为288度。
7. 在半径为7cm的圆中,一条弦的长度为10cm,求该弦所对的圆心角的正弦值。
答案:根据余弦定理可知,弦的长度与圆心角的正弦值的关系为2* sin(θ/2) = 弦长 / 半径。
初三数学圆试题答案及解析1.已知⊙O的周长为9π,当PO= 时,点P在⊙O上.【答案】4.5【解析】根据圆上点,圆内点和圆外点到圆心的距离与圆的半径的大小关系,可以确定点P的位置.解:∵⊙O的周长为9π,∴⊙O的半径为4.5,∵圆上点到圆心的距离等于半径,所以当PO=4.5时,P点在圆上.故答案为:4.5.点评:本题考查的是点与圆的位置关系,把点到圆心的距离与圆的半径进行大小比较,得到点与圆的位置关系.2.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .【答案】1+【解析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.3.△ABC中,∠C=90°,AC=5,BC=8,以C为圆心,r为半径作圆,使点A在圆内,点B在圆外,则半径r的取值范围为.【答案】5<r<8【解析】当点A在圆内时点A到点C的距离小于圆的半径,点B在圆外时点B到圆心的距离应该大于圆的半径,据此可以得到半径的取值范围.解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>5;点B在圆外时点B到圆心的距离应该大于圆的半径,即:r<8;故答案为:5<r<8点评:本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.在△ABC中,∠ACB=90°.AC=2cm,BC=4cm,CM是斜边中线,以C为圆心以cm长为半径画圆,则A、B、M三点在圆的外是,在圆上的是.【答案】点B,点M【解析】先求出AB的长,根据直角三角形斜边上的中线等于斜边的一半,求得CM的长;再由点与圆的位置关系,确定出点三点与⊙C的位置关系.解:∵∠ACB=90°,AC=2cm,BC=4cm,∴AB==2,∵CM是中线,∴CM=AB=,∵2<<4∴在圆外的是点B,在圆上的是点M.故答案为:点B,点M.点评:本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,及勾股定理的运用.5.一点到圆周上点的最大距离为18,最短距离为2,则这个圆的半径为.【答案】10或8【解析】分点在圆内和圆外两种情况,当点在圆内时,最大距离与最小距离的和等于直径,然后求出半径;当点在圆外时,最大距离与最小距离的差等于直径,然后求出半径.解:当点在圆内时,圆的直径为18+2=20,所以半径为10.当点在圆外时,圆的直径为18﹣2=16,所以半径为8.故答案是:10或8.点评:本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,求出圆的直径,然后得到圆的半径.6.两个圆的直径比是2:5,这两个圆的周长之比是,面积比是.【答案】2:5;4:25【解析】利用所有的圆都相似得到直径比为2:5的两圆的相似比为2:5,据相似多边形的性质可以求得其周长之比和面积之比.解:∵直径比是2:5的两个圆相似,∴相似比为2:5,∵相似多边形周长的比等于相似比,面积的比等于相似比的平方,∴两圆的周长之比为2:5,面积的比等于4:25,故答案为2:5;4:25.点评:本题考查了圆的认识,解题的关键是判定两圆相似并利用相似多边形的性质得到面积之比和周长之比.7.一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.A,B,C,D四点在同一个圆上吗?请说明理由.【答案】A、B、C、D能在同一个圆上【解析】取AC的中点O,连接OB,OD,根据直角三角形斜边上中线性质得出OB=OD=AC=OA=OC,根据对圆的认识得出答案.解:A、B、C、D能在同一个圆上,理由是:取AC的中点O,连接OB,OD,∵∠B=∠D=90°,∴OD=AC=OA=OC,BO=AC=OA=OC,∴OA=OB=OC=OD,∴A、B、C、D在以O为圆心,以OA为半径的圆上,即A、B、C、D能在同一个圆上.点评:本题考查了直角三角形斜边上中线性质和对圆的认识的应用,注意:直角三角形斜边上中线等于斜边的一半.8.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.【答案】【解析】根据圆的定义解答即可.解:在操场上用一根很长的绳子,固定一头,拉紧后另一头旋转一周即可得到一个很大的圆.阴影部分就是到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形点评:本题考查了圆的认识,关键是了解圆的定义.9.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90゜.求证:A、B、C、D四点在同一个圆上.【答案】见解析【解析】取弦AB的中点O,利用直角三角形斜边上的中线等于斜边的一半证得OA=OB=OC=OD后即可求证A、B、C、D四点在同一个圆上.证明:取弦AB的中点O,连接OC,OD,∵△ABC和△ABD都为直角三角形,且∠C=∠D=90゜∴DO,CO分别为Rt△ABD和Rt△BCD斜边上的中线,∴OA=OB=OC=OD.∴A、B、C、D四点在同一个圆上.点评:本题考查了圆的认识,求证几个点在同一个圆上就是证明这几个点到一个点的距离相等.10.如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.【答案】见解析【解析】先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC∴∠OFP=∠OEQ=90°,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆.即:△ABC的外心O与点A、P、Q四点共圆.点评:本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证∠P=∠Q是解此题的关键.11.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.12.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个【答案】C【解析】在同一直线上三点不能作圆,即可判定①;一个圆可以作无数个圆,判断②即可;每个三角形都有一个外接圆,外接圆的圆心是三角形三边的垂直平分线的交点,该点到三角形的三个顶点距离相等,即可判断③④.解:经过不在同一条直线上三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.点评:本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.13.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.14.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.直角三角形两直角边长分别是,,那么它的外接圆的直径是()A.B.4C.2D.【答案】D【解析】首先根据勾股定理求得该直角三角形的斜边是2,再根据其外接圆直径就是斜边的长度进行计算即可.解:∵直角三角形两直角边长分别是,,∴该直角三角形的斜边长是:=2,∴该直角三角形的外接圆的直径是2.故选D.点评:本题综合考查了勾股定理、三角形外接圆圆心.解决此题的关键在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长是圆的直径.17.已知⊙O的半径为4cm,A为线段OP的中点,当OP=6cm时,点A与⊙O的位置关系是()A.A在⊙O内B.A在⊙O上C.A在⊙O外D.不能确定【答案】A【解析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.解:因为OP=6cm,A是线段OP的中点,所以OA=3cm,小于圆的半径,因此点A在圆内.故选A.点评:本题考查的是点与圆的位置关系,根据OP的长和点A是OP的中点,得到OA=3cm,与圆的半径相等,可以确定点A的位置.18.已知点A的坐标为A(3,4),⊙A的半径为5,则原点O与⊙A的位置关系是()A.点O在⊙A内B.点O在⊙A上C.点O在⊙A外D.不能确定【答案】B【解析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.解:∵点A的坐标为A(3,4),∴OA==5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.点评:本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.19.①直径是弦;②过三点一定可以作圆;③三角形的外心到三个顶点的距离相等;④半径相等的两个半圆是等弧.以上四种叙述正确的有()个.A.1B.2C.3D.4【答案】C【解析】根据直径、弦的定义即可判断①,根据不在同一直线上的三点一定可以作圆即可判断②,根据三角形外接圆的定义即可判断③;根据等弧的定义即可判断④.解:直径是弦,①正确;过不在同一直线上的三点一定可以作圆,②错误;三角形的外心到三个顶点的距离相等,③正确;半径相等的两个半圆是等弧,④正确;即正确的有3个,故选C.点评:本题考查了三角形的外接圆,圆的有关概念,确定圆的条件的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是比较容易出错.20.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定【答案】C【解析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选C.点评:本题考查了点与圆的位置关系,利用了圆的对称性求解.。
初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。
初三数学圆试题答案及解析1.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O 于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.【答案】(1)证明见解析;(2).【解析】(1)连接OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O 的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,应用三角形内角和定理和圆周角定理可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论.(2)根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即求得出结论.试题解析:解:(1)证明:如答图,连接OC,OA,∵OC=OA,∴∠ACO=∠CAO.∵PC是⊙O的切线,C为切点,∴PC⊥OC.∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°.∴∠ACO+∠PBC=90°.∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC.(2)∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB.∴.∵PA=3,PB=5,∴,解得.【考点】1.等腰三角形的性质;2.切线的性质;3.三角形内角和定理;4.圆周角定理;5.相似三角形的判定与性质.2.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动(1)请在图①中用圆规画出光点P经过的路径;(2)在图①中,所画图形是轴对称图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).【答案】(1)图形见解析(2)【解析】(1)根据旋转度数和方向分别作出弧即可;(2)根据图形的轴对称性解答;求出四次旋转的度数之和,然后根据弧长公式列式计算即可得解试题解析:(1)如图所示;(2)所画图形是轴对称图形;旋转的度数之和为270°+90°×2+270°=720°,所画图形的周长=.【考点】旋转变换3.已知在△ABC中,AB=AC=13,BC=10,如果以A为圆心r为半径的⊙A和以BC为直径的⊙D相交,那么r的取值范围()A.3<r<13B.5<r<17C.7<r<13D.7<r<17【答案】D.【解析】由题意得:BD=DC=5,AB=AC=13,由勾股定理得:AD=12,设⊙A的半径为r,根据两圆相交得:r-5<12<r+5,解答:7<r<17,故选D.【考点】圆与圆的位置关系.4. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是【答案】r=或5<r≤12.【解析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.试题解析:根据勾股定理求得直角三角形的斜边是=13.当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则5<r≤12.故半径r的取值范围是r=或5<r≤12.【考点】直线与圆的位置关系.5.半径为4cm,圆心角为60°的扇形的面积为 cm2.【答案】.【解析】直接利用扇形面积公式求出即可:半径为4cm,圆心角为60°的扇形的面积为:(cm2).【考点】扇形面积的计算.6.如图,已知⊙O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系【答案】(1);(2)证明见解析;(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.【解析】(1)要求劣弧BD的长,根据弧长公式,只需求圆心角∠BOD的度数,所以,需要连接OB、OD.由同弧所对的圆周角等于圆心角的一半,可得所对的圆心角为2400,所以∠BOD=1200.利用弧长公式直接计算可解.(2)连接AC,则BF是△ACE的中位线,再根据弧弦关系定理,证得AC=BD即可.(3)作∠DBF的平分线交⊙O于点P,连接PG,PB,则由SAS可证△PBG≌△PGB,从而得到PG-PF,此时,由∠FBE=∠CAE和∠DBA=∠FBE可得∠PBA=∠PBE=900,即 PB⊥AE.试题解析:解:(1)如答图1,连接OB、OD,∵∠DAB=1200,∴所对的圆心角为2400.∴∠BOD=1200.∵⊙O的半径为3,∴劣弧的长为.(2)证明:如答图2,连接AC,∵AB=BE,∴B是AE的中点.∵F是EC的中点, ∴BF是△EAC的中位线.∴BF=.∵,∴,即.∴BD=AC.∴BF=.(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.理由如下:如答图3,作∠DBF的平分线交⊙O于点P,连接PG,PB,则∵G是BD的中点,由(2)BF=,∴BG=BF.又∵PB=PB,∠PBG=∠PBF,∴△PBG≌△PGB(SAS).∴PG-PF.由(2)BF是△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∴,∴∠CAB=∠DBA.∴∠DBA=∠FBE.∴∠PBA=∠PBE=900,即 PB⊥AE.【考点】1.圆周角定理;2.弧长计算;3.三角形的中位线的性质;4.弧弦关系定理;5.全等三角形的判定和性质;6.垂直的判定.7.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.【答案】28°.【解析】根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.试题解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.【考点】圆周角定理.8.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.9.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:;(3)若,求的值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据等腰梯形的等腰三角形的性质,可得∠B=∠C=∠OEC.,从而判定OE∥AB. (2)要证明,只需证明四边形OEHF是平行四边形,要证明OEHF是平行四边形,已知它有一组对边平行,只需再说明另一组对边平行,由已知EH⊥AB和圆切线的性质即可得到. (3)要求,只要证明△EHB∽△DEC,再根据相似三角形的性质来求即可.(1)在等腰梯形ABCD中,AB=DC,∴∠B=∠C.∵OE=OC,∴∠OEC=∠C. ∴∠B=∠OEC.∴OE∥AB.(2)如图,连接OF.∵⊙O与AB切于点F,∴OF⊥AB.∵EH⊥AB,∴OF∥EH.又∵OE∥AB,∴四边形OEHF为平行四边形.∴EH=OF,∴.(3)如图,连接DE.∵CD是直径,∴∠DEC=90°.∴∠DEC=∠EHB.又∵∠B=∠C,∴△EHB∽△DEC. ∴.∵,设,则,∴. ∴.【考点】1.等腰梯形和等腰三角形的性质;2.平行的判定;3.圆切线的性质;4.圆周角定理;5.相似三角形的判定和性质;6.勾股定理.10.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为.【答案】50πcm2【解析】∵底面圆的半径为5cm,则底面周长为10πcm,∴圆锥的侧面积为×10π×10=50πcm2.11.如图,AB是⊙O的直径,若∠BDC=40°,则∠AOC的度数为()A.80°B.100°C.140°D.无法确定【答案】B.【解析】根据同弧所对圆心角是圆周角的2倍,先求得∠BOC=2∠BDC=80°,再进一步求得∠AOC的度数.∵∠BOC=2∠BDC=80°,∴∠AOC=180°-∠BOC=180°-80°=100°.故选:B.考点:圆周角定理.12.如图,经过原点的⊙P与两坐标轴分别交于点A(2,0)和点B(0,2), C是优弧上的任意一点(不与点O,B重合),则tan∠BCO的值为()A.B.C.D.【答案】A.【解析】连结AB,根据正切的定义得到tan∠A=,再根据圆周角定理得∠C=∠A,所以tan∠BCO=.故选A.【考点】圆周角定理.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是A.B.C.D.3【答案】C.【解析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故选C.考点:1.圆锥的计算;2.平面展开-最短路径问题.14.如图,圆心B在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1).过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有_______个;它们是 .【答案】3个;8,9,10.【解析】∵点A的坐标为(0,1),圆的半径为5,∴点B的坐标为(0,﹣4),又∵点P的坐标为(0,﹣7),∴BP=3,①当CD垂直圆的直径AE时,CD的值最小,连接BC,在Rt△BCP中,CP= =4;故CD=2CP=8,②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;所以,8≤CD≤10,综上可得:弦CD长的所有可能的整数值有:3个,分别是:8,9,10.【考点】垂径定理.15.操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。
九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。
(专题精选)初中数学圆的经典测试题及答案解析一、选择题1.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.3B.36ππC.312πD.48336ππ【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.【详解】连接OE,OF.∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.4.如图,正方形ABCD 内接于⊙O ,AB=22,则»AB 的长是( )A .πB .32πC .2πD .12π 【答案】A【解析】 【分析】连接OA 、OB ,求出∠AOB=90°,根据勾股定理求出AO ,根据弧长公式求出即可.【详解】连接OA 、OB ,∵正方形ABCD 内接于⊙O ,∴AB=BC=DC=AD ,∴»»»»AB BCCD DA ===, ∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(22)2,解得:AO=2,∴»AB的长为902 180π´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°【答案】A【解析】【分析】连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.【详解】解:连接OD,∵OC⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠OCE=180°﹣90°﹣65°=25°,∵OD=OC,∴∠ODC=∠OCD=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,∴由圆周角定理得:∠BAD=12∠DOB=20°,故选:A.【点睛】本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.7.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.22C.3D.23【答案】B【解析】【分析】根据垂径定理得到CH=BH,»»AC BC=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【详解】如图BC与OA相交于H∵OA⊥BC,∴CH=BH,»»AC AB=,∴∠AOB=2∠CDA=60°,∴BH=OB⋅sin∠3,∴BC=2BH=23,故选D.【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.8.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A .3B .23C .32D .233【答案】A【解析】连接OC ,∵OA=OC ,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC 是⊙O 切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC •tan30°=3,故选A10.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.13.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C【解析】【分析】 连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID,AD=DI,同理得到BE=EI,即可解答.【详解】连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB=22AC BC+=5∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线14.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:CD=224223,243AC CD-===,∵sin∠COD=3, CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.15.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.16.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.17.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB22AC BC+10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:OB= 22+=BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.91cm B.8cm C.6cm D.4cm【答案】B【解析】【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,22AM=5-3=4,∴AB=2AM=2×4=8.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,选:C.【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.。
圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
初三圆形几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆内任意两点的距离都相等C. 圆的直径是最长的弦D. 圆心到圆上任意一点的距离相等2. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是?A. 相离B. 相切C. 相交D. 无法确定3. 圆的切线与半径垂直,切点到圆心的距离等于?A. 半径的长度B. 直径的长度C. 切线的长度D. 不能确定4. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平分C. 相等D. 互为补角5. 已知圆的半径为r,圆心角为α,弧长为l,它们之间的关系是?A. l = rαB. l = r * sin(α)C. l = r * αD. l = r / α二、填空题(每题2分,共10分)1. 圆的面积公式为:________。
2. 圆的周长公式为:________。
3. 圆内接正六边形的边长等于半径的________倍。
4. 圆的外切正三角形的边长等于半径的________倍。
5. 圆的内切圆的半径等于外圆半径的________。
三、解答题(每题10分,共30分)1. 如图所示,圆O的半径为10,点A、B在圆上,且AB为圆的直径,点C在圆上,且∠AOC=30°,求弧AC的长度。
2. 已知圆的半径为r,圆心角为α,求扇形的面积和弧长。
3. 圆内接矩形的对角线长为20,求矩形的面积。
四、证明题(每题15分,共15分)1. 证明:圆内接四边形的对角线互相平分。
五、综合题(每题25分,共25分)1. 已知圆O的半径为r,圆外一点P到圆心O的距离为d,PA、PB为点P到圆上的两条切线,PA、PB的长度相等,求PA的长度。
答案:一、选择题1. B2. C3. A4. B5. C二、填空题1. 圆的面积公式为:πr²。
2. 圆的周长公式为:2πr。
3. 圆内接正六边形的边长等于半径的√3倍。
初三圆试题及答案数学
一、选择题
1. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是()
A. 相离
B. 相切
C. 相交
D. 圆内
答案:C
2. 圆的周长为62.8,则圆的半径是()
A. 10
B. 5
C. 3
D. 2
答案:A
二、填空题
1. 圆的直径为10,则圆的周长是______。
答案:31.4
2. 一个圆的面积为28.26平方厘米,那么它的半径是______。
答案:3厘米
三、解答题
1. 已知圆的半径为7,求圆的面积。
答案:圆的面积公式为S=πr²,所以面积S=3.14×7²=153.86平方
厘米。
2. 一个圆的直径增加2厘米,求圆的面积增加多少。
答案:设原圆的半径为r,则增加后的半径为r+1。
原圆面积为πr²,增加后的圆面积为π(r+1)²。
面积增加量为π(r+1)²-
πr²=π(2r+1)。
初三数学圆的练习题及答案1. 题目:已知AB为⊙O的直径,CD为⊙O的弦,且∠ACB = 30°,求∠CAD的度数。
解析:根据圆的性质,直径所对的两条弦互相垂直,即∠ACB与∠CAD互为余角。
而余角互补,因此∠CAD = 90° - ∠ACB = 90° - 30°= 60°。
答案:∠CAD的度数为60°。
2. 题目:在⊙O中,AB是直径,C为圆上一点,且AC = BC。
若∠ACO = 50°,求∠BAO的度数。
解析:对于⊙O,直径所对的两条弧互为等弧,所以AC = BC相当于∠ACO = ∠BCO。
又∠ACO = 50°,则∠BCO = 50°。
由于∠BAO与∠BCO互为余角,∠BAO = 90° - ∠BCO = 90° - 50° = 40°。
答案:∠BAO的度数为40°。
3. 题目:在⊙O中,AC是直径,点B在弧AC上,且∠ABC = 60°。
连接OB并延长交⊙O于点D,若∠ADC = 50°,求∠BDC的度数。
解析:由于AC为直径,所以∠ABC是弧AC所对的圆心角。
由于∠ABC = 60°,所以弧AC的度数为60°。
又∠ADC = 50°,则弧AD的度数为50°。
根据圆上的弧对应的圆心角相等,可以得到∠BDC = ∠BAD = 弧AD的度数 - 弧AC的度数 = 50° - 60° = -10°。
答案:∠BDC的度数为-10°。
4. 题目:在⊙O中,AB是直径,CD是弦,且AB = 2CD。
若∠ACB = 40°,求∠AOD的度数。
解析:根据圆的性质,直径所对的两条弦互相垂直,即∠ACB与∠AOD互为余角。
而余角互补,因此∠AOD = 90° - ∠ACB = 90° - 40°= 50°。
初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。
A. 相交B. 相切C. 相离D. 包含2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 25 \),点P(1, 5)在圆上,求过点P的圆的切线斜率。
A. 0B. 1C. -1D. 不存在3. 已知点A(2, 3)和点B(-1, -2),求以线段AB为直径的圆的方程。
A. \( (x-0.5)^2 + (y-0.5)^2 = 13.5 \)B. \( (x-0.5)^2 + (y-0.5)^2 = 5 \)C. \( (x-0.5)^2 + (y-0.5)^2 = 10 \)D. \( (x-0.5)^2 + (y-0.5)^2 = 18 \)二、填空题4. 已知圆心O(0, 0),半径r=4,点P(4, 3),求点P到圆心O的距离OP。
\( OP = \) ______5. 若圆x²+y²=r²内有一点P(1, 1),求过点P的最短弦所在直线的方程。
\( 直线方程 = \) ______6. 已知圆的方程为 \( x^2 + y^2 - 6x - 8y + 16 = 0 \),求圆心坐标和半径。
圆心坐标为( , ),半径为______。
三、解答题7. 已知圆C的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求圆C的圆心坐标和半径。
8. 在平面直角坐标系中,圆x²+y²=9与直线y=2x+3相交于A、B两点,求AB的长度。
9. 已知圆心在直线x-y+c=0上,且经过点P(2, 3),求圆的方程。
四、证明题10. 已知圆O的半径为5,点P在圆上,PA、PB是圆的两条切线,PA 和PB的长度相等,证明PA垂直于PB。
答案:1. A2. C3. B4. \( OP = 5 \)5. \( 直线方程 = x + y - 6 = 0 \)6. 圆心坐标为(3, 4),半径为 \( \sqrt{5} \)7. 圆C的圆心坐标为(2, 3),半径为3。
初三数学圆练习题及答案1. 已知圆的半径为5cm,求圆的周长和面积。
2. 圆心O到直线l的距离为4cm,若圆的半径为6cm,求圆与直线的位置关系。
3. 已知圆的直径为10cm,求圆的半径和面积。
4. 一个圆的面积是28.26平方厘米,求圆的半径。
5. 圆的周长为31.4cm,求圆的半径。
6. 一个圆的半径是另一个圆的半径的2倍,若小圆的面积是50平方厘米,求大圆的面积。
7. 圆的直径增加2cm,周长增加了多少?8. 一个圆的半径从3cm增加到6cm,求面积增加了多少?9. 已知圆的周长为25.12cm,求圆的直径。
10. 圆的半径从4cm减少到2cm,求周长减少了多少?11. 圆的周长是另一个圆周长的2倍,求这两个圆的半径比。
12. 一个圆的直径是另一个圆直径的3倍,求这两个圆的面积比。
13. 圆的半径扩大3倍,面积扩大了多少倍?14. 一个圆的周长是另一个圆周长的4倍,求这两个圆的半径比。
15. 圆的半径增加1cm,面积增加了多少?答案:1. 周长:31.4cm,面积:78.5平方厘米。
2. 圆与直线相离。
3. 半径:5cm,面积:78.5平方厘米。
4. 半径:5cm。
5. 半径:5cm。
6. 大圆面积:200平方厘米。
7. 周长增加了6.28cm。
8. 面积增加了50.24平方厘米。
9. 直径:8cm。
10. 周长减少了12.56cm。
11. 半径比为1:2。
12. 面积比为1:9。
13. 面积扩大了9倍。
14. 半径比为1:2。
15. 面积增加了3.14平方厘米。
初三数学圆试题答案及解析1.在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为()A.a:b:cB.C.cosA:cosB:cosCD.sinA:sinB:sinC【答案】C【解析】此题可分别过三角形的三个顶点作⊙O的直径,在构建的直角三角形中,根据圆周角定理和三角形中位线定理来求得三条弦心距的比例关系.解:如图,过A作⊙O的直径AG,连接BG,设⊙O的半径为R;∵AG是⊙O的直径,∴∠ABG=90°;∵OD⊥AB,∴OD∥BG;又∵O是AG的中点,∴OD是△ABG的中位线,即BG=2OD;Rt△ABG中,∠G=∠C,∴BG=AG•cosG=2R•cosC;∴OD=R•cosC,即O到AB边的距离为R•cosC;同理可证得:OE=R•cosA,OF=R•cosB;∴点O到三边的距离之比为:(R•cosA):(R•cosB):(R•cosC)=cosA:cosB:cosC;故选C.点评:此题主要考查了三角形的外接圆、圆周角定理、三角形中位线定理、解直角三角形等知识的综合应用;能够正确的构建出与所求相关的直角三角形是解答此题的关键.2.△ABC的边长AB=1厘米,AC=厘米,BC=厘米,则其外接圆的半径是.【答案】厘米【解析】根据勾股定理的逆定理求出∠CAB=90°,根据直角三角形外接圆的半径等于斜边的一半求出即可.解:∵AB2+AC2=12+()2=3,BC2=()2=3,∴AB2+AC2=BC2,∴∠CAB=90°,∴△ABC的外接圆的半径等于AD(或BD或CD)的长,是BC=厘米,故答案为:厘米.点评:本题考查了勾股定理的逆定理,直角三角形的性质,三角形的外接圆等知识点,注意:直角三角形的外接圆的半径等于斜边的一半.3.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为.【答案】或【解析】点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为;当此点在圆外时,圆的直径是a﹣b,因而半径是;故答案为:或.点评:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.4.(2013•镇江二模)如图,△ABC的外接圆的圆心坐标为.【答案】(6,2)【解析】本题可先设圆心坐标为(x,y),再根据“三角形外接圆的圆心到三角形三顶点的距离相等”列出等式,化简即可得出圆心的坐标.解:设圆心坐标为(x,y);依题意得,A(4,6),B(2,4),C(2,0)则有==,即(4﹣x)2+(6﹣y)2=(2﹣x)2+(4﹣y)2=(2﹣x)2+y2,化简后得x=6,y=2,因此圆心坐标为(6,2).点评:本题考查了三角形外接圆的性质和两点之间的距离公式.解此类题目时要注意运用三角形的外接圆圆心到三角形三点的距离相等这一性质.5.在半径为1的⊙O中,弦AB长,则∠AOB的度数为.【答案】90°【解析】根据勾股定理的逆定理可以证明△OAB是直角三角形,由此即可得到∠AOB的度数.解:如图,在⊙O中,OA=OB=1cm,而AB=cm,∴OA2+OB2=AB2,∴△OAB是直角三角形,∴∠AOB=90°,故答案为90°.点评:考查了圆的性质及勾股定理的逆定理的应用,也可以利用垂径定理求解.6.若⊙O的半径为5,OP=4,则点P与⊙O的位置关系为.【答案】圆内【解析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解:∵OP=4<6,故点P与⊙O的位置关系是点在圆内.故答案为圆内.点评:本题考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.7.一个直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,那么这个直角三角形外接圆的半径等于.【答案】2.5【解析】根据题意可知,直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,解可得方程x2﹣7x+12=0的两个根为3与4;故直角三角形外接圆的直径即斜边边长为5;故半径等于2.5.解:解可得方程x2﹣7x+12=0得,x 1=3,x2=4,∴斜边边长为5,即直角三角形外接圆的直径是5,∴半径等于2.5.点评:本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.8.如图,以△OAB的顶点O为圆心的⊙O交AB于点C、D,且AC=BD,OA与OB相等吗?为什么?【答案】OA=OB【解析】过O作OE⊥AB于E,则OE满足垂径定理得到CE=DE,然后利用线段的垂直平分线的性质即可得到OA=OB.答:OA=OB.理由如下:如图,过O作OE⊥AB于E,∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∵AC=BD,∴AE=BE,∵OE⊥CD,∴OA=OB.点评:本题考查了垂径定理的知识,解题的关键是作出垂直于弦的半径.比较简单.9.如图,已知同心圆O,大圆的半径AO、BO分别交小圆于C、D,试判断四边形ABDC的形状.并说明理由.【答案】等腰梯形【解析】首先判断CD∥AB,然后利用半径相等证得其腰相等即可说明其是等腰梯形.证明:∵OA=OB,OC=OD∴∴CD∥AB,∴四边形ABDC是梯形,∵OA﹣OC=OB﹣OD即:CA=DB∴四边形ABDC是等腰梯形.点评:本题考查了圆的认识及等腰梯形的判定,解题的关键是了解等腰梯形的判定方法.10.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.11.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.12.已知⊙O的半径为5,点P在⊙O内,则OP的长度可能为()A.3B.5C.7D.8【答案】A【解析】当⊙O的半径是R,点P到圆心O的距离是d,当d=R时,点P在⊙O上,当d<R时,点P在⊙O内,当d>R时,点P在⊙O外,根据以上内容判断即可.解:∵点P在⊙O内,⊙O的半径为5,∴OP<5,A、3<5,故本选项正确;B、5=5,此时P在圆上,故本选项错误;C、7>5,此时P在圆外,故本选项错误;D、8>5,此时P在圆外,故本选项错误;故选A.点评:本题考查了点和圆的位置关系,注意:点P和圆O有三种位置关系:当⊙O的半径是R,点P到圆心O的距离是d,①当d=R时,点P在⊙O上,②当d<R时,点P在⊙O内,③当d>R时,点P在⊙O外.13.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.14.已知⊙O的半径为3cm,PO=5cm,则下列说法正确的是()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【答案】B【解析】判断一个点圆的位置关系,主要看该点到圆心的距离与半径之间的关系.解:由题意知⊙O的半径为3cm,PO=5cm,可知点P到圆心的距离大于r,故点P在圆外,故选B.点评:本题考查了对点与圆的位置关系的判断.关键要熟练掌握若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.如图,以Rt△ABC的顶点A为圆心,斜边AB的长为半径作⊙A,则点C与⊙A的位置关系是()A.点C在⊙A内B.点C在⊙A上C.点C在⊙A外D.不能确定【答案】A【解析】首先确定点与圆心之间的距离,然后确定其半径,通过比较二者即可得到结论.解:⊙A的半径为斜边AB,点C到点A的距离为线段AC,∵直角三角形中斜边永远大于直角边,∴AB>AC∴点C在○A内,故选A.点评:本题考查了点与圆的位置关系,解题的关键是确定圆的半径和点与圆心之间的距离之间的大小关系.17.下列给定的三点能确定一个圆的是()A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点【答案】C【解析】三点在同一直线时,过三点不能确定一个圆,根据即可判断A、B、D,根据三角形确定三角形的三个顶点不在同一直线上,即过三角形的三个顶点可以作一个圆,且只有一个圆,即可判断C.解:A、线段AB的端点A、B和线段AB的中点C不能确定一个圆,故本选项错误;B、当角的两边上的一个点或两个点和角的顶点重合时就不能确定一个圆,故本选项错误;C、经过三角形的三个顶点作圆,有且只有一个圆,故本选项正确;D、矩形的对角线交点及两个顶点,如果这三个点在一条直线上,就不能确定一个圆,故本选项错误;故选C.点评:本题考查了确定圆的条件的应用,注意:不在同一直线上的三个点确定一个圆.18.如图,在以原点为圆心,2为半径的⊙O上有一点C,∠COA=45°,则C的坐标为()A.(,)B.(,﹣)C.(﹣,)D.(﹣,﹣)【答案】C【解析】作CB⊥OA于点B,根据半径为2,∠COA=45°确定点C的坐标即可;解:作CB⊥OA于点B,∵∠COA=45°,∴三角形BCO为等腰直角三角形,∵OA=2,∴OB=BC=,又∵点C位于第二象限,∴点C的坐标为:(﹣,),故选C.点评:本题考查了圆的认识,正确的构造直角三角形是解决此类题目的关键,注意点C所在的位置.19.已知⊙O半径为5,线段OP=6,A为OP的中点,点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定【答案】A【解析】OP=6,A为线段PO的中点,则OA=3,因而点A与⊙O的位置关系为:点在圆内.解:∵OA==3,∴OA<⊙O半径,∴点A与⊙O的位置关系为:点在圆内.故选A.点评:本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.20.下列说法中,正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形【答案】B【解析】根据确定圆的条件逐一判断后即可得到答案.解:A、不在同一直线上的三点确定一个圆,故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并不是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形.故选B.点评:本题考查了确定圆的条件,不在同一直线上的三点确定一个圆.。
初三圆试题及答案数学初三数学圆的试题及答案如下:1. 已知圆的半径为5,求圆的面积。
答案:圆的面积公式为A=πr²,将半径r=5代入公式,得到A=π×5²=25π。
2. 若点A(3,4)在圆x²+y²=25内,则该圆的直径是多少?答案:点A(3,4)在圆x²+y²=25内,说明该点到圆心的距离小于半径。
圆的半径为5,因此直径为2×5=10。
3. 已知圆的直径为10,求该圆的周长。
答案:圆的周长公式为C=πd,将直径d=10代入公式,得到C=π×10=10π。
4. 已知圆的周长为6π,求该圆的半径。
答案:圆的周长公式为C=2πr,将周长C=6π代入公式,得到6π=2πr,解得r=3。
5. 已知圆的半径为4,求该圆的直径。
答案:圆的直径为半径的2倍,因此直径d=2×4=8。
6. 已知圆的直径为12,求该圆的面积。
答案:圆的半径为直径的一半,即r=12÷2=6。
将半径代入面积公式A=πr²,得到A=π×6²=36π。
7. 若点B(-2,-3)在圆x²+y²=16外,则该圆的半径是多少?答案:点B(-2,-3)在圆x²+y²=16外,说明该点到圆心的距离大于半径。
圆的半径为4,因此该点到圆心的距离大于4。
8. 已知圆的半径为5,求该圆的直径。
答案:圆的直径为半径的2倍,因此直径d=2×5=10。
9. 已知圆的周长为8π,求该圆的半径。
答案:圆的周长公式为C=2πr,将周长C=8π代入公式,得到8π=2πr,解得r=4。
10. 已知圆的直径为8,求该圆的面积。
答案:圆的半径为直径的一半,即r=8÷2=4。
将半径代入面积公式A=πr²,得到A=π×4²=16π。
以上就是初三数学圆的试题及答案,涵盖了圆的面积、周长、半径和直径等基本概念和计算方法。
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
圆的有关概念与性质圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
初三数学圆试题答案及解析1.若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离【答案】C.【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差). 因此,∵两圆的半径分别是1cm和4cm,圆心距为5cm,∴两圆圆心距离等于两圆半径之和.∴⊙O1和⊙O2的位置关系是外切.故选C.【考点】两圆的位置关系.2.如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).【答案】(1).(2)0°≤α≤60°.(3)【解析】(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值.试题解析:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1, ∴OA=1.∴AB=.∵△ABC 是等边三角形, ∴AC=AB=,∠CAB=60°.∵sin ∠HAB=,∴HB=AB•sin ∠HAB=.∴S △ABC =AC•BH=.∴△ABC 的面积为.(2)①当点A 与点Q 重合时,线段AB 与圆O 只有一个公共点,此时α=0°;②当线段A 1B 所在的直线与圆O 相切时,如图2所示,线段A 1B 与圆O 只有一个公共点,此时OA 1⊥BA 1,OA 1=1,OB=2,∴cos ∠A 1OB=.∴∠A 1OB=60°. ∴当线段AB 与圆O 只有一个公共点(即A 点)时,α的范围为:0°≤α≤60°.(3)连接MQ ,如图3所示.∵PQ 是⊙O 的直径, ∴∠PMQ=90°.∵OA ⊥PM , ∴∠PDO=90°. ∴∠PDO=∠PMQ . ∴△PDO ∽△PMQ .∴∵PO=OQ=PQ . ∴PD=PM ,OD=MQ .同理:MQ=AO ,BM=AB .∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM=.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM=.∴CM的长度为.【考点】圆的综合题.3.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是A.B.C.D.【答案】B=∏RL=【解析】根据圆锥的侧面积公式求解.S侧【考点】圆锥的侧面积4.如图,四边形ABCD是⊙O的内接正方形,点P是上不同于点C的任意一点,则∠BPC的大小是()A.45°B.60°C.75°D.90°【答案】A.【解析】连接OB、OC,根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得.故选A.【考点】1.圆周角定理;2.正多边形和圆.5.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,时,求BD的长.【答案】(1)证明见解析;(2)9.【解析】(1)连接,证明即可证明CF为⊙O的切线.(2)连接,由∽得到,在Rt△BEF和Rt△ABD中应用锐角三角函数定义即可求得BD的长.试题解析:(1)如图,连接.∵, ∴又∵∴又∵,∴∴OC∥DB.∵CE⊥DB,∴.又∵为⊙的半径,∴为⊙O的切线.(2)如图,连接.在Rt△BEF中,∠BEF=90°, BF=5,,∴.∵OC∥BE, ∴∽.∴设⊙的半径为r, ∴∴.∵AB为⊙O直径,∴.∴.∵, ∴.∴∴∴.【考点】1.圆周角定理;2.切线的判定和性质;3.相似三角形的判定和性质;4.锐角三角函数定义.6.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为A.4 B.6 C. D.【答案】C.【解析】连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB-AF=8-2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选C.【考点】1.切线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理;5.圆周角定理.7.已知扇形的半径为4cm,圆心角为120º,则此扇形的弧长是 .【答案】cm.【解析】根据弧长公式求出扇形的弧长.=,试题解析:l扇形则扇形的弧长=cm.【考点】弧长的计算.8.如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB·AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分的面积.【答案】(1)证明见解析(2) cm2【解析】(1)证明:∵=,∴∠ACD=∠ABC,又∠BAC=∠CAF,∴△ACF∽△ABC,∴=,即AC2=AB·AF;(2)解:连接OA,OC,过O作OE⊥AC,垂足为点E,如图所示:∵∠ABC=60°,∴∠AOC=120°,又OA=OC,∴∠AOE=∠COE=×120°=60°,在Rt△AOE中,OA=2cm,∴OE=OAcos60°=1cm,∴AE==cm,∴AC=2AE=2cm,则S阴影=S扇形OAC-S△AOC=-×2×1=cm2.9.如图,在平面直角坐标系中,⊙A与y轴相切于点,与x轴相交于M、N两点.如果点M的坐标为,求点N的坐标.【答案】N(, 0).【解析】连接AB、AM、过A作AC⊥MN于C,设⊙A的半径是R,根据切线性质得出AB=AM=R,求出CM=R﹣,AC=,MN=2CM,由勾股定理得出方程R2=(R﹣)2+()2,求出方程的解即可.试题解析:连接AB、AM,过点A作AC⊥MN于点C.∵⊙A与y轴相切于点B(0,),∴AB⊥y轴.又∵AC⊥MN,x 轴⊥y轴,∴四边形BOCA为矩形.∴AC=OB=,OC=BA.∵AC⊥MN,∴∠ACM=90°,MC=CN.∵M(,0),∴OM=.在 Rt△AMC中,设AM=r.根据勾股定理得:.即,求得r=.∴⊙A的半径为.即AM=CO=AB=.∴MC=CN=2.∴N(,0).【考点】1.切线的性质,2.坐标与图形性质,3.勾股定理,4.垂径定理.10.半径为6cm和4cm的两圆相切,则它们的圆心距为()A.2cm B.5cm C.2cm或5cm D.2cm或10cm【答案】D.【解析】已知两圆的半径,分两种情况:①当两圆外切时;②当两圆内切时;即可求得两圆的圆心距.∵两圆半径分别为3cm和2cm,∴当两圆外切时,圆心距为6+4=10cm;当两圆内切时,圆心距为6-4=2cm.故选D.考点: 圆与圆的位置关系.11.如图所示,⊙O1、⊙O2的圆心O1、O2在直线l上,⊙O1的半径为2,⊙O2的半径为3,O1O2=8,⊙O1以每秒1个单位的速度沿直线l向右平移运动,7秒后停止运动,此时⊙O1与⊙O2的位置关系是().A.外切B.相交C.内切D.内含【答案】D.【解析】7s后两圆刚好内切,所以外切、相交、内切都有,没有内含.故选D.考点: 圆与圆的位置关系.12.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为度.【答案】55.【解析】如图,连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.【考点】1.切线的性质;2.多边形内角和定理;3.圆周角定理.13.如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为______________.【答案】.【解析】连接过切点的半径,构造直角三角形,根据两圆内切,得到两圆的圆心距,再根据勾股定理进行计算.试题解析:连接O2A,根据切线的性质,得∠O2AO1=90°,根据两圆内切,得O1O2=3-1=2,根据勾股定理,得O1A=.考点: 1.相切两圆的性质;2.切线的性质.14.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF 并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=.其中正确的是 (写出所有正确结论的序号). 【答案】①②④. 【解析】①由AB 是⊙O 的直径,弦CD ⊥AB ,根据垂径定理可得:=,DG=CG ,继而证得△ADF ∽△AED ;②由=,CF=2,可求得DF 的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG 的长,即可求得tan ∠ADF 的值,继而求得tan ∠E=; ④首先求得△ADF 的面积,由相似三角形面积的比等于相似比,即可求得△ADE 的面积,继而求得S △DEF =.①∵AB 是⊙O 的直径,弦CD ⊥AB , ∴=,DG=CG , ∴∠ADF=∠AED , ∵∠FAD=∠DAE (公共角), ∴△ADF ∽△AED ;故①正确;②∵=,CF=2,∴FD=6, ∴CD=DF+CF=8, ∴CG=DG=4, ∴FG=CG ﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG==,∴在Rt △AGD 中,tan ∠ADG==, ∴tan ∠E=; 故③错误;④∵DF=DG+FG=6,AD==, ∴S △ADF =DF•AG=×6×=, ∵△ADF ∽△AED ,∴, ∴=,∴S △AED =, ∴S △DEF =S △AED ﹣S △ADF =;故④正确.故答案为:①②④.【考点】1. 相似三角形的判定与性质;2.垂径定理;3.圆周角定理.15. 如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin∠CBD的值等于()A.3B.﹣3C.D.【答案】A.【解析】试题解析:连接OA、OB,由于OM⊥AB,根据垂径定理易证得∠BOM=∠AOB,而由圆周角定理可得∠BCD=∠AOB=∠BOM,因此∠CBD=∠OBM,只需求得∠OBM的正弦值即可;在Rt△OBM中,由垂径定理可得BM=4,已知⊙O的半径OB=5,由勾股定理可求得OM=3,即可求出∠OBM即∠CBD得正弦值,由此得解.选A.考点: (1)圆周角定理;(2)勾股定理;(3)垂径定理.16.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A.50ºB.45ºC.30ºD.60º【答案】D.【解析】∵OA=OB,∠ABO=30°,∴∠BAO=∠ABO=30°(等边对等角).∴∠AOB=120°(三角形内角和定理)。
九年级上册圆单元测试
一、选择题(本大题共10小题,每小题3分,共计30分)
1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )
A.0个
B.1个
C.2个
D.3个
2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆
的位置关系是( )
A.外离
B.相切
C.相交
D.内含
3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
A.35°
B.70°
C.110°
D.140°
4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42 °
B.28°
C.21°
D.20°
6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )
A.2cm
B.4cm
C.6cm
D.8cm
7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图
中阴
影部分的面积为( )
A. B. C. D.
8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相
切,则满足条件的⊙C有( )
A.2个
B.4个
C.5个
D.6个
9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数
根,则直线与⊙O的位置关系为( )
A.相离或相切
B.相切或相交
C.相离或相交
D.无法确定
10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( )
A. B. C. D.
二、填空题(本大题共5小题,每小4分,共计20分)
11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包
装侧面,则需________________的包装膜(不计接缝,取3).
12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅
从射门角度考虑,应选择________种射门方式.
13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.
14.(北京)如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.
15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S1、S2,若圆心到两弦的距离分别为2和3,则|S1-S2|=__________.
三、解答题(16~21题,每题7分,22题8分,共计50分)
16.(丽水)为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米
(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
17.(成都)如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,
连结,并过点作,垂足为.根据以上条件写出三个正确结论(除
外)是:
(1)________________;(2)________________;(3)________________.
18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?
19.(山西)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .
20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ 与⊙O的位置关系,并说明理由.
21.(武汉)有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
说明:RQ为⊙O的切线.
变化二:运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:_________.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结
论还成立吗?为什么?
22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点
P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
答案与解析:
一、选择题
1.B
2.C
3.D
4.A
5.B
6.C
7.C 提示:易证得△AOC≌△BOD,
8.D 9.B 10.B
二、填空题
11.1200012.第二种13.6cm 14.(2,0) 15.24(提示:如图,由圆的对称性可知
,等于e的面积,即为4×6=24)
三、解答题
16.(1)略;(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:
17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).
18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.
19.扇形OAB的圆心角为45°,纸杯的表面积为44.
解:设扇形OAB的圆心角为n°
弧长AB等于纸杯上开口圆周长:
弧长CD等于纸杯下底面圆周长:
可列方程组,解得
所以扇形OAB的圆心角为45°,OF等于16cm
纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积
即S纸杯表面积=
=
20.连接OP、CP,则∠OPC=∠OCP.
由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.
而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.
21.解:连接OQ,
∵OQ=OB,∴∠OBP=∠OQP
又∵QR为⊙O的切线,∴OQ⊥QR
即∠OQP+∠PQR=90°
而∠OBP+∠OPB=90°
故∠PQR=∠OPB
又∵∠OPB与∠QPR为对顶角
∴∠OPB=∠QPR,∴∠PQR=∠QPR
∴RP=RQ
变化一、连接OQ,证明OQ⊥QR;
变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR. 22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得
解得:
(不合题意,舍去) ∴OC=3, OA=5
(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=
∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2
在⊙O′中,∵ O′O= O′D ∴∠1=∠3
∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D
又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.
(3)不同意. 理由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点
过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5
∴AH=4,∴OH =1求得点P1(1,3) 同理可得:P4(9,3)
②当OA=OP时,同上可求得:P2(4,3),P3(4,3)
因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.。