专题一第1讲集合与简易逻辑
- 格式:doc
- 大小:42.50 KB
- 文档页数:3
专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2} (C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}m}.若B⊆A,则实数m=.例2、已知集合A={-1,3,2m-1},集合B={3,2考点2、集合的运算1、交,并,补,定义:A ∩B={x|x ∈A 且x ∈B},A ∪B={x|x ∈A ,或x ∈B},C U A={x|x ∈U ,且x ∉A },集合U 表示全集;2、运算律,如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ), C U (A ∪B )=(C U A )∩(C U B )等。
高一寒假数学同步辅导讲义(专题讲解)第一章 集合与简易逻辑专题讲解一 、 集合的概念、运算与不等式1.在解题过程中,要善于理解和识别集合语言(即符号和图形语言),并会用集合语言准确地叙述。
2.特别要注意在集合中表示关系的两类符号∈、∉与⊆、⊆的区别,元素与集合间的从属关系用∈、∉表示,集合与集合之间的包含与相等的关系用⊂、⊂、⊆、⊆、=表示.3.给定两个集合A ,B ,它们的运算意义为:A ∩B={}B x A x x ∈∈且,A ∪B={}B x A x x ∈∈或,C S A={}A x S x x ∉∈且,.这些运算都是同逻辑连词“且”与“或”紧密相连的,“且”表示两条件要同时成立,“或”表示两条件中要至少有一个成立.理解好这些逻辑连词是思考、表达事件之间关系并正确推理的基础.集合的运算有时要用关系:C s (A ∪B)=(C s A )∩(C sB ),C s (A ∩B )=(C s A )∪(C s B ),与此有关问题的运用韦恩图有示更直观.见表1—9.4.集合M={}n a a a ,,,21 的子集个数为2n ,真子集个数为2n -1,非空子集个数为2n—1,非空真子集个数为2n -2.含绝对值的不等式和一元二次不等式的解法不仅为今后学习提供了工具,同时也为研究集合与命题间的逻辑关系提供了具体的数学模型.表1 命题 或 且 否定┐ 蕴涵⇒ 等价⇔ 集合 并集∪ 交集∩ 补集C 子集⊆ 相等=关键字词 或且非若……则……当且仅当必须且只须自反性 A ∪A=A A ∩A=A C U (C U )A=A A ⊆A 真子集无 A=A 对称性A ∪B=B ∪AA ∩B=B ∩AC B A=C A BA=A 若A=B 则B=A传递性若A ⊆B ,B ⊆C 则A ⊆C若A=B ,B=C ,A=C 结合律(A ∪B)∪C=A ∪(B ∪C)(A ∩B) ∩C=A ∩(B ∩C)【例1】 已知集合M=R x x y y ∈+=,12,N={}R x x y y ∈+=,1,则M ∩N=( ) A .(0,1)(1,2) B .{})2,1(),1,0( C .{}21==y y y 或 D .{}1≥y y分析 集合M 、N 是用描述法表示的,元素是实数y 而不是实数对(x ,y ),因此M ,N 分别表示函数y=x 2+1(x ∈R ),y=x+1(x ∈R )的值域,求M ∩N 即求两函数值域的交集.解 M={}R x x y y ∈+=,12={}1≥y y ,N={}R x x y y ∈+=,1={}R y y ∈. ∴M ∩N={}1≥y y ∩{}R y y ∈={}1≥y y ,故选D.说明(1)本题求M ∩N.经常发生解方程组⎩⎨⎧-=+=112x y x y 得⎩⎨⎧==10y x 或⎩⎨⎧==21y x 从而选B 错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么,事实上M ,N 的元素是数而不是点,因此M 、N 是数集而不是点集.(2)集合是由元素构成的,认识集合要从认识元素开始,要注意区分{}R x xy x ∈+=,12,{}R x x y y ∈+=,12,{}R x x y y x ∈+=,1),(2这三个集合是不同的.【例2】给出下面元素与集合或集合之间的关系:(1)0⊂{}0;(2)0∈{}0;(3)Φ∈{}Φ;(4)a ∈{}a ;(5)Φ={}0;(6){}0∈Φ;(7)Φ∈{}0;(8)Φ⊂{}0,其中正确的是( )A .(2)(3)(4)(8)B .(1)(2)(4)(5)C .(2)(3)(4)(6)D .(2)(3)(4)(7) 分析 依次判断每个关系是否正确,同时用排除法筛选.解 (1)应为0∈{}0;(2)(3)(4)正确,排除B ,再看(6)(7)(8)哪个正确,由Φ是{}0的子集,因此(8)正确,故选A.说明 0与{}0只有一种关系:0∈{}0 ;R 与{}R ;Φ与{}0也只有一种关系:Φ⊂{}0. 【例3】 已知集合A={}R x x m x x ∈=+++,01)2(2,若A ∩R +=Φ,则实数m 的取值范围是__________.分析 从方程观点看,集合A 是关于x 的实系数一元二次方程x 2+(m+2)x+1=0的解集,而x=0不是方程的解,所以由A ∩R +=Φ可知该方程只有两个负根或无实数根,从而分别由判别式转化为关于m 的不等式,并解出m 的范围.解 由A ∩R +=Φ又方程x 2+(m+2)x+1=0无零根,所以该方程只有两个负根或无实数根,即⎩⎨⎧<+-≥-+=∆.0)2(04)2(2m m或△=(m+2)2-4<0.解得m ≥0或-4<m <0,即m >-4.说明 此题容易发生的错误是由A ∩R +=Φ只片面地推出方程只有两个负根(因为两根之积为1,因此方程无零根),而把A=Φ漏掉,因此要全面正确理解和识别集合语言.【例4】 已知集合A={}0232=+-x x x ,B={}012=-+-a ax x x ,且A ∪B=A ,则a 值为__________.分析 由A ∪B=A ⇔B ⊆A 而推出B 有四种可能,进而求出a 的值. 解 ∵A ∪B=A , ∴B ⊆A ,∵A={}2,1,∴B=Φ或B={}1或B={}2或B={}2,1. 若B=Ø,则令△<0得a ∈Ø;若B ={}1,则令△=0得a=2,此时1是方程的根;若B={}2,则令△=0得a=2,此时2不是方程的根.∴a ∈Ø ;若B={}2,1,则令△>0得a ∈R 且a ≠2,把x=1代入方程得a ∈R ,把x=2代入方程得a=3,综上a 的值为2或3.说明 本题不能直接写出B=(),因为a ()可能等于1,与集合元素的互异性矛盾,另外还要考虑到集合B 有可能是空集,还有可能是单元素集的情况.【例5】 命题甲:方程x 2+mx+1=0有两个根异负根;命题乙:方程4x 2+4(m -2)x+1=0无实根,这两个命题有且只有一个成立,求m 的取值范围.分析 使命题甲成立的m 的集合为A ,使命题乙成立的m 的集合而为B ,有且只有一个命题成立是求A ∩C R B 与C R A ∩B 的并集.解 因使命题甲成立的条件是△1=m 2-4>0,且-m <0,所以解得m >2,即集合A={}2>m m ;因使命题乙成立的条件是△2=16(m -2)2-16<0,所以解得1<m <3,即集合B={}31<<m m .若命题甲、乙有且只有一个成立,则m ∈A ∩C R B 或m ∈C R A ∩B ,而A ∩C R B={}2>m m ∩{}31≥≤m m m 或={}3≥m m ,C R A ∩B={}2>m m ∩{}31<<m m ={}21≤<m m ,所以综上所求m 的范围是{}321≥≤<m m m 或.说明(1)本题体现了集合语言、集合思想的重要作用;(2)用集合语言来表示m 的满园即准备又简明.二、 一元二次方程实根的分布【例1】关于x 的方程3x 2-5x+a=0,实数a 在什么范围内,一个根大于-2,而小于0,另一个根大于1,而小于3?解 由题意,a 应满足条件⎪⎪⎩⎪⎪⎨⎧>+⨯-⨯=<+-=<=>+-⨯--⨯=-03533)3(053)1(0)0(0)2(5)2(3)2(22a f a f a f a f 解得-12<a <0.【例2】关于x 的方程2x 2+3x -5m=0,有两个小于1的实根,求实根m 的取值范围. 解 二次函数图像是开口向上的抛物线,对称轴x=-43,在x=1的左侧.这样抛物线与x 轴有两个交点的横坐标都小于1,所以应满足的条件是:⎩⎨⎧≥-=∆>-+=04090532)1(m m f 解得-409≤m <1. 【例3】关于x 的方程x 2―2tx+t 2―1=0的两个根介于―2和4之间,求实数t 的取值范围.解 由题意可知,t 需满足⎪⎪⎪⎩⎪⎪⎪⎨⎧<=-<->=--=∆>+-=>++=-42204)1(440158)4(034)2(2222t a b t t t t f t t f 解得 -1<t <3.说明 讨论二次方程实根的分布,常有以下一些结论(设方程f(x)=ax 2+bx+c=0(a >0)两实根为x 1,x 2):(1)若m <x 1<n <p <x 2<q ,则方程系数应同时满足下列不等式组:⎪⎪⎩⎪⎪⎨⎧>++=<++=<++=>+=0)(0)(0)(0)(2222c bq aq q f c bp ap p f c bn an n f c bm am m f 特别地,当方程f(x)=0有一正根,一负根,即x 1<0,x 2>0,则应用f(0)=c <0;若方程f(x)=0有一个根大于k ,一个根小于k ,则应有f(k)<0.(2)若二次方程f(x)=0的两面根在区间(m ,n )内,则应同时满足⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≥∆>>n a b m n f m f 200)(0)( 特别地,若f(x)=0两根都大于k 时,则有⎪⎪⎩⎪⎪⎨⎧>-≥∆>.2,0,0)(k ab k f三、 四种命题与充要条件1.所谓命题,是指可以判断其真假的陈述语句,一个陈述语句所叙述的事情符合事实,我们称它为真命题,反之,一个陈述语句所叙述的事情违反事实,我们称它为假命题.2.命题有四种形式,即原命题、逆命题、否命题、逆否命题,其中原命题与逆否命题是等价的,逆命题与否命题是等价的。
第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
第一章:集合与简易逻辑讲义第一节:集合的概念Part One :基础知识(记住有以下6点) 1、集合的概念①集合:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集. ②元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , } ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 3、元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5.集合的表示方法:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……①列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1} ②描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x 注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数}③文氏图:用一条封闭的曲线的内部来表示一个集合的方法 6.集合的分类:a:以元素的个数分类:①有限集:含有有限个元素的集合 ②无限集:含有无限个元素的集合③空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x b:以元素的种类分:点集,数集,等Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:集合的三大性的考查1.下列各组对象能确定一个集合吗?(1)所有很大的实数 (2)好心的人 (3)1,2,2,3,4,5.2.设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( ) (A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4. 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?题型二:集合的表示方法的考查 1、用描述法表示下列集合①{1,4,7,10,13} ②{-2,-4,-6,-8,-10}③{ 1, 5, 25, 125, 625 }= ;④ { 0,±21, ±52, ±103, ±174, ……}=2、用列举法表示下列集合 ①{x ∈N|x 是15的约数}②{(x ,y )|x ∈{1,2},y ∈{1,2}}③⎩⎨⎧=-=+}422|),{(y x y x y x ④},)1(|{N n x x n∈-= ⑤},,1623|),{(N y N x y x y x ∈∈=+⑥}4,|),{(的正整数约数分别是y x y x 题型三:集合的分类的考查1、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集第二节:子集 全集 补集(集合与集合的关系) Part One :基础知识(记住有以下8点)1.子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A :A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2.集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B3.真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A4..人为规定:空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A (在考虑集合问题时千万不能忘记空集这个特殊集合) 任何一个集合是它本身的子集A A ⊆5.含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n6.易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合 如 Φ⊆{0}Φ={0},Φ∈{0} 7、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示8. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作AC S ,即CSA=},|{A x S x x ∉∈且 2、性质:CS (CSA )=A ,CSS=φ,CS φ=S Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:对子集等基本概念的考查1. 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示2.判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 3.(1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗? (3)是否对任意一个集合A ,都有A ⊆A ,为什么? (4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 . 题型二:利用集合的关系来求解具体问题(重点!)1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围.)1(-≥m2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆ 题型三:全集与补集有关问题1.已知全集U =R ,集合A ={x |1≤2x +1<9},求C U A2. 已知S ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与C S B 的关系Part Three :练习1、已知全集U ={x |-1<x <9},A ={x |1<x <a },若A ≠φ,则a 的取值范围是 (A )a <9 (B )a ≤9 (C )a ≥9 (D )1<a ≤92、已知全集U ={2,4,1-a },A ={2,a2-a +2}如果CUA ={-1},那么a 的值为3、已知全集U ,A 是U 的子集,φ是空集,B =CUA ,求CUB ,CU φ,CUU4、设U={梯形},A={等腰梯形},求CUA.5、已知U=R ,A={x|x2+3x+2<0}, 求CUA.6、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求CUA.7、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=CUN ,N=CUP ,则M 与P 的关系是( ) M=CUP ,(B )M=P ,(C )M ⊇P ,(D )M ⊆P.8、设全集U={2,3,322-+a a },A={b,2},A C U ={b,2},求实数a 和b 的值.9.已知S ={a ,b },A ⊆S ,则A 与CSA 的所有组对共有的个数为 (A )1 (B )2 (C )3 (D )4 (D )10..设全集U (U ≠φ),已知集合M 、N 、P ,且M =CUN ,N =CUP ,则M 与P 的关系是 11..已知U=﹛(x ,y )︱x ∈﹛1,2﹜,y ∈﹛1,2﹜﹜,A=﹛(x ,y )︱x-y=0﹜,求UA12..设全集U=﹛1,2,3,4,5﹜,A=﹛2,5﹜,求U A 的真子集的个数13. 若S={三角形},B={锐角三角形},则CSB= .14.. 已知A={0,2,4},CUA={-1,1},CUB={-1,0,2},求B= 15.. 已知全集U={1,2,3,4},A={x|x2-5x+m=0,x ∈U},求CUA 、m 第二节:交集和并集Part One :基础知识(记住有以下6点)1.交集的定义 一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’), 即A B={x|x ∈A ,且x ∈B }.如:{1,2,3,6} {1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A B={c,d,e}. 2.并集的定义 一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’), 即A B ={x|x ∈A ,或x ∈B}).如:{1,2,3,6} {1,2,5,10}={1,2,3,5,6,10}. 3..交集、并集的性质 用文图表示 (1)若A ⊇B,则A B=B, A B=B(2)若A ⊆B 则A B=A A B=A(3)若A=B, 则A A=A A A=A(4)若A,B 相交,有公共元素,但不包含 则A B A,A B B A BA, A BB(5) )若A,B 无公共元素,则A B=Φ①交集的性质 (1)A A=A A Φ=ΦA B=B A (2)A B ⊆A, A B ⊆B .BA②并集的性质 (1)A A=A (2)A Φ=A (3)A B=B A (4)A B ⊇A,A B ⊇B 联系交集的性质有结论:Φ⊆A B ⊆A ⊆A B .4. 德摩根律:(CuA) (CuB)= Cu (A B), (CuA) (CuB)= Cu(A B)(可以用韦恩图来理解). 结合补集,还有①A (CuA)=U, ②A (CuA)= ΦPart Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:基础的交集与并集的计算:注意数集的交集和并集运算的图像法 例1 设A={x|x>-2},B={x|x<3},求A B.例2 设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B.例3 A={4,5,6,8},B={3,5,7,8},求A B.例4设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B.例5设A={x|-1<x<2},B={x|1<x<3},求A ∪B. 例6设A={(x,y)|y=-4x+6},{(x,y)|y=5x-3},求A B.例7已知A 是奇数集,B 是偶数集,Z 为整数集,求A B,A Z,B Z,A B,A Z,B Z.8 已知U={},8,7,6,5,4,3,2,1()B C A U ⋂{},8,1=()BA C U ⋂{}6,2= ()(){},7,4=⋂BC A C U U 则集合A=例9.设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m 的值.例10.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A ∩B={3},求实数a,b,c 的值.. 例11. 已知集合A={y|y=x2-4x+5},B={x|y=x -5}求A ∩B,A ∪B .Part Three :练习1.P={a2,a+2,-3},Q={a-2,2a+1,a2+1},P Q={-3},求a .2..已知全集U=A B={1,3,5,7,9},A (CUB)={3,7}, (CUA) B={5,9}.则A B=____.3 已知A ={x| x2-ax +a2-19=0}, B={x| x2-5x +8=2}, C={x| x2+2x -8=0},若ο/⊂A ∩B ,且A ∩C =ο/,求a 的值4.. 已知元素(1, 2)∈A ∩B ,并且A ={(x, y)| mx -y2+n=0},B={(x, y)| x2-my -n=0},求m, n 的值5. 已知集合A={x|x2+4x-12=0}、B={x|x2+kx-k=0}.若B B A = ,求k 的取值范围6. 若集合M 、N 、P 是全集S 的子集,则图中阴影部分表示的集合是( ) A.P N M )( B .P N M )( C .P C N M S )( D .P C N M S )(集合中段测试 一、选择题1、下列六个关系式:①{}{}a b b a ,,⊆ ②{}{}a b b a ,,= ③Φ=}0{ ④}0{0∈ ⑤}0{∈Φ ⑥}0{⊆Φ 其中正确的个数为( ) (A) 6个 (B) 5个 (C) 4个 (D) 少于4个 2.下列各对象可以组成集合的是( )MN P第9题(A )与1非常接近的全体实数 (B )某校2002-2003学年度笫一学期全体高一学生 (C )高一年级视力比较好的同学 (D )与无理数π相差很小的全体实数3、已知集合P M ,满足M P M = ,则一定有( )(A) P M = (B)P M ⊇ (C) M P M = (D) P M ⊆4、集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 的元素个数为( ) (A)10个 (B)8个 (C)18个 (D) 15个5.设全集U=R ,M={x|x.≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )(A ){x|x.≥0} (B ){x|x<1 或x≥5} (C ){x|x≤1或x≥5} (D ){x| x 〈0或x≥5 }6.设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=⋃,则满足条件的实数x 的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个.7.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) (A )3个 (B )4个 (C )5个 (D )6个8.已知全集U ={非零整数},集合A ={x||x+2|>4, x ∈U}, 则C U A =( ) (A ){-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 } (B ){-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 } (C ){ -5 , -4 , -3 , -2 , 0 , -1 , 1 } (D ){ -5 , -4 , -3 , -2 , -1 , 1 }9、已知集合{}}8,7,3{},9,6,3,1{,5,4,3,2,1,0===C B A ,则C B A )(等于 (A){0,1,2,6} (B){3,7,8,} (C){1,3,7,8} (D){1,3,6,7,8}10、满足条件{}{}1,01,0=A 的所有集合A 的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个11、如右图,那么阴影部分所表示的集合是( )(A))]([C A C B U (B))()(C B B A (C))()(B C C A U (D)B C A C U )]([ 12.定义A -B={x|x ∈A 且x ∉B}, 若A={1,2,3,4,5},B={2,3,6},则A -(A -B )等于( )(A)B (B){}3,2 (C) {}5,4,1 (D) {}6 二.填空题13.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则A ∩B= 14.不等式|x-1|>-3的解集是 15.已知集合A= 用列举法表示集合A=16 已知U={},8,7,6,5,4,3,2,1(){},8,1=⋂B C A U {},6,2=B ()(){},7,4=⋂B C A C U U 则集合A= 三.解答题17.已知集合A={}.,0232R a x ax R x ∈=+-∈1)若A 是空集,求a 的取值范围; 2)若A 中只有一个元素,求a 的值,并把这个元素写出来; 3)若A 中至多只有一个元素,求a 的取值范围18.已知全集U=R ,集合A={},022=++px xx {},052=+-=q x x x B {}2=⋂B A C U 若,试用列举法表示集合A集合单元小结基础训练 参考答案C ;2.B ;3.B ;4.D ;5.B ;6.C ;7.D ;8.B ;9.C ;10.D ;11.C ;12.B;13. (){}1,1-; 14.R; 15. {}5,4,3,2,0; 16{}8,5,3,1 ,⎭⎬⎫⎩⎨⎧∈∈N x17.1)a>89 ; 2)a=0或a=89;3)a=0或a≥89 18.⎭⎬⎫⎩⎨⎧32,319*.CUA={}321≤≤=x x x 或 CUB={}2=x x A ∩B=A A ∩(CUB )=φ (CUA )∩B={}3212≤<=x x x 或1 20*. a=-1或2≤a≤3.。
集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A 叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。
专题一 集合与简易逻辑【考点聚焦】考点1:集合中元素的基本特征,集合的表示法,元素与集合的关系,集合与集合之间的包含关系,集合的交、并、补运算。
考点2:绝对值不等式、一元二次不等式及分工不等式的解法。
考点3:简单命题与复合命题的相关概念,真假命题的判断,四种命题及其关系,反证法的证题思想。
考点4:充分必要条件的有关概念及充分条件与必要条件的判断。
【自我检测】1、_____________________________,称集合A 是集合B 的子集;2、_____________________________,叫做集合U 中子集A 的补集;3、_____________________________,叫做A 与B 的交集;4、_____________________________,叫做A 与B 的并集;5、如果已知_____________,那么p 是q 的充分条件,q 是p 的必要条件;如果_____________,那么p 是q 的充分且必要条件;【重点∙难点∙热点】 问题1:集合的相关概念1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题2 注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论例1:设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论思路分析:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得b 、k 的值解 ∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅ ∴Δ1=(2bk -1)2-4k 2(b 2-1)<0 ∴4k 2-4bk +1<0,此不等式有解, 其充要条件是16b 2-16>0, 即 b 2>1①∵⎩⎨⎧+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0 ∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2-2k +8b -19<0, 从而8b <20, 即 b <2 5 ②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅点评 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 解决此题的关健是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了演变1:已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围点拨与提示:本题考查学生对集合及其符号的分析转化能力,A ∩B ≠∅即是两集合中方程联立的方程组在[0,2]上有解。
第一讲《集合与简易逻辑》【知识点】集合解决集合问题应注意的问题1、明确集合的三种表示方法,能够灵活的应用和转化;2、明确集合的元素的意义,确定对象的类型,即元素是点、还是说、还是图形、还是向量等;如集合2A={x|y=x 1}-和2B={y|y=x 1}-不是同一个集合3、弄清集合是由哪些元素组成的,善于对集合的三种语言(文字语言、符号语言、图形语言)之间进行相互转化;化简出集合的最简形式;4、注意集合元素的互异性,在求值中不要忘记检验是否满足这一性质,这是集合题的隐含条件;5、 注意空集的特殊性和特殊作用,注意空集性质的应用;6、判断集合关系的方法和研究集合问题的方法是从元素下手;7、注意运用数形结合思想、分类讨论思想、化归和转化思想来解决集合的问题;8、集合问题多与函数、方程、不等式等知识综合在一起,注意各类知识之间的联系和融会贯通;常见的结论1、集合A 中有n 个元素,则集合A 的子集有2n个,真子集有21n-个,非空真子集有22n-个 2、集合交集和并集的混合运算的两个公式:()()()u u u AB A B c c c =;()()()u u u A B A B c c c= 3、 空集的性质:(1)A ∅⊆(2)()A A ∅⊂≠∅(3)A∅=∅(4)A A ∅=4、(1)A B A A B =⇔⊆,A B A B A =⇔⊆ (2)A B B A A B ⊆⊆⇔=且 (3)A B ⊂是A B ⊆的充分不必要条件【例题讲解】 【历年福建高考】1、(05福建)全集U =R,且A={x ︱︱x -1︱>2},B ={x ︱x 2-6x +8<0},则(UA )∩等于( )A 、[-1,4]B 、 (2,3)C 、 (2,3)D 、(-1,4) 2、(06福建)已知集合{}{12}A x x a B x x =<=<<,,且()A B =R R ð,则实数a 的取值范围是( ) A 、1a ≤ B 、1a <C 、2a ≥D 、2a >3、(08福建)设集合01x A x x ⎧⎫=<⎨⎬-⎩⎭,{}03B x x =<<,那么“m ∈A ”是“m ∈B ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4、(09福建)已知全集U=R ,集合{}220A x x x =->,则U C A 等于( )A 、{}02x x ≤≤B 、{}02x x <<C 、{}02x x x <>或D 、{}02x x x ≤≥或 5、(2013福建)已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( ) A 、充分不必要条件 B 、必要不充分条件 C .充要条件 D 、既不充分也不必要条件1、答:B2、解析:1|{≤=x x B C R 或}2≥x ,因为=R ,所以a 2,选C.3、解:由01xx <-,得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 4、[解析]∵计算可得{}02A x x x =<>或 ∴U C A ={}02x x ≤≤,故选A 5、答案A【巩固练习】1、(2013山东理)已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是( )A 、1B 、3C 、5D 、92、(2013辽宁理)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则( )A.()01,B.(]02,C.()1,2D.(]12,3、(2013陕西理)设全集为R , 函数()f x =M , 则C M R 为A 、[-1,1]B 、(-1,1)C 、,1][1,)(∞-⋃+∞-D 、,1)(1,)(∞-⋃+∞-4、(2013广东理)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( ) A 、{}0 B 、{}0,2 C 、{}2,0- D 、{}2,0,2-5、(2013重庆理)已知全集{}1,2,3,4U=,集合{}=12A ,,{}=23B ,,则()=U A B ð( )A.{}134,, B.{}34, C. {}3 D. {}4 6、(上海理)设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( ) A 、(,2)-∞ B 、(,2]-∞ C 、(2,)+∞ D 、[2,)+∞1、【答案】C2、【答案】D3、【答案】D4、【答案】D5、【答案】D6、【答案】B.【解答题训练】1、已知集合A ={x |4≤x <8},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ;(∁R A )∩B ; (2)若A ∩C ≠∅,求a 的取值范围.2、已知集合A ={x |(x -2)(x -3a -1)<0},函数y =lg 2a -x x -a 2+的定义域为集合B .(1)若a =2,求集合B ;(2)若A =B ,求实数a 的值.1、解:<10}R (∁R A )∩B ={x |2<x <4或8≤x <10}. (2)若A ∩C ≠∅,则a >4.2、解:(1)当a =2时,由4-xx -5>0得4<x <5,故集合B ={x |4<x <5};(2)由题意可知,B ={x |2a <x <a 2+1},①若2<3a +1,即a >13时,A ={x |2<x <3a +1},又因为A =B ,所以⎩⎪⎨⎪⎧2a =2a 2+1=3a +1,无解;②若2=3a +1时,显然不合题意;③若2>3a +1,即a <13时,A ={x |3a +1<x <2}.又因为A =B ,所以⎩⎪⎨⎪⎧2a =3a +1a 2+1=2,解得a =-1. 综上所述,a =-1.【知识点】集合1、原命题和逆否命题、逆命题和逆否命题是互为逆否的两个命题,互为逆否的两个命题是等价的,它们的真假性相同;在遇到命题的条件和结论都含有否定词而且难以判断真假时,可以利用它的等价命题(逆否命题)的真假来判断;2、命题的否定和否命题的区别:命题的否定只否定原命题的结论,而否命题把原命题的条件和结论都否定,如设原命题为:“若p ,则q ” (1)命题的否定为:“若p ,则q ⌝”(2)否命题为:“若p ⌝,则q ⌝”3、充分条件和必要条件的判定方法 (1)定义法(通用的方法): ①若,p q q ⇒⇒p ,则p 是q 的充分不必要条件; ②若p ⇒,q q p ⇒,则p 是q 的必要不充分条件; ③若,p q q p ⇒⇒,则p 是q 的充分必要条件;④若p ⇒,q q ⇒p ,则p 是q 的既不充分又不必要条件;(2)集合判断法:若已知条件给的是两个集合问题,可以利用此方法判断: 设条件p 和q 对应的集合分别是,A B ①若A B ⊆,则p 是q 充分条件;若A B ⊂,则p 是q 的充分不必要条件; ②若A B ⊇,则p 是q 必要条件;若A B ⊃,则p 是q 的必要不充分条件; ③若A B =,则p 是q 的充分必要条件;④若,A B B A ⊄⊄,则p 是q 的既不充分又不必要条件;(3)命题真假法:利用原命题和真命题的真假来判断:设若p 则q 为原命题, ①若原命题真,逆命题假,则p 是q 的充分不必要条件; ②若原命题假,逆命题真,则p 是q 的必要不充分条件; ③若原命题真,逆命题真,则p 是q 的充分必要条件;④若原命题假,逆命题假,则p 是q 的既不充分又不必要条件; 4、逻辑联结词“或”,“且”,“非”的含义就是对应集合的“并集”,“交集”,“补集”; 5、命题:“p 且q ”,“ p 或q ”,“ 非p ”真假的判断:(1)“p 且q ”:一假必假,同真为真(2)“ p 或q ”:一真必真,同假为假(3)“非p ”:真假相对6、全称命题−−−→←−−−否定特称命题【历年福建高考】 1、(06福建)设a 、b 、c 、d ∈R ,则复数(a +b i)(c +d i)为实数的充要条件是( ) A 、ad -bc =0 B 、ac -bd =0 C 、ac +bd =0 D 、ad +bc =0 2、(07福建)对于向量,,a b c 和实数λ,下列命题中真命题是( ) A 、若=0a b ,则0a =或0b = B 、若λ0a =,则0λ=或=0aC 、若22=a b ,则=a b 或-a =b D 、若a b =a c ,则b =c 3、(2011福建)若a ∈R ,则a=2是(a-1)(a-2)=0的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件 4、(2012福建)下列命题中,真命题是( )A 、0,00≤∈∃x eR x B 、22,x R x x >∈∀C 、0=+b a 的充要条件是1-=baD 、1,1>>b a 是1>ab 的充分条件【参考答案】2、解析:a ⊥b 时也有a ·b =0,故A 不正确;同理C 不正确;由a ·b=a ·c ,得不到b =c ,如a 为零向量或a 与b 、c 垂直时,选B.4、解答:A 中,,R x ∈∀0>xe ,B 中,22,4,2x x x x ===∃,22,x x x <∃。
第一章集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A 中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
定理4 容斥原理;用表示集合A的元素个数,则,需要xy此结论可以推广到个集合的情况,即定义8 集合的划分:若,且,则这些子集的全集叫I的一个-划分。
定理5 最小数原理:自然数集的任何非空子集必有最小数。
定理6 抽屉原理:将个元素放入个抽屉,必有一个抽屉放有不少于个元素,也必有一个抽屉放有不多于个元素;将无穷多个元素放入个抽屉必有一个抽屉放有无穷多个元素。
专题一-集合-与简易逻辑专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}例2、已知集合A={-1,3,2m-1},集合B={3,2m}.若B⊆A,则实数m=.考点2、集合的运算1、交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},CUA={x|x∈U,且x∉A},集合U表示全集;2、运算律,如A∩(B∪C)=(A∩B)∪(A∩C),CU (A∩B)=(CUA)∪(CUB),CU (A∪B)=(CUA)∩(CUB)等。
3、学会画Venn图,并会用Venn图来解决问题。
例3、设集合A={x|2x+1<3},B={x|-3<x<2},则A⋂B等于()(A){x|-3<x<1} (B) {x|1<x<2} (C){x|x>-3}(D) {x|x<1}图例4、经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为图( )A. 60B. 70C. 80D. 90例5、(2008广东卷)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。
第一章集合与简易逻辑在我们探索数学的奇妙世界时,集合与简易逻辑就像是两座重要的基石,为更深入的数学学习打下坚实的基础。
首先,咱们来聊聊什么是集合。
集合啊,简单来说,就是把一些具有特定性质的对象放在一起组成的一个整体。
比如说,咱们班所有同学就可以组成一个集合,这个集合里的元素就是每一个同学。
再比如,所有正整数也能组成一个集合。
集合通常用大写字母来表示,像 A、B、C 等等。
而集合里的元素呢,就用小写字母表示。
如果一个元素 a 属于集合 A,咱们就记作a∈A,如果不属于,那就记作 a∉A。
集合的表示方法有好几种。
一种是列举法,就是把集合里的元素一个一个列出来,像{1, 2, 3, 4, 5},这就很清楚地表示了一个由 1 到 5 这几个数字组成的集合。
还有一种是描述法,通过描述元素所具有的特征来表示集合,比如{x | x 是大于 0 的整数},意思就是这个集合里的元素都是大于 0 的整数。
集合之间有一些关系,比如子集。
如果集合 A 里的所有元素都在集合 B 里,那 A 就是 B 的子集,记作 A⊆B。
要是 A 是 B 的子集,而且B 里还有 A 没有的元素,那 A 就是 B 的真子集,记作 A⊂B。
集合的运算也是很重要的一部分。
比如并集,就是把两个集合里的所有元素合在一起组成的新集合。
集合A 和集合B 的并集记作A∪B。
交集呢,就是两个集合里共同拥有的元素组成的集合,记作A∩B。
补集则是在一个给定的全集 U 中,属于 U 但不属于集合 A 的元素组成的集合,记作∁UA。
接下来再说说简易逻辑。
逻辑在我们的日常生活和数学思考中都起着至关重要的作用。
命题是简易逻辑中的一个重要概念。
命题就是能够判断真假的陈述句。
比如“2 加 2 等于4”,这就是一个真命题;“地球是方的”,这显然就是个假命题。
命题有原命题、逆命题、否命题和逆否命题。
原命题为“若 p,则q”,逆命题就是“若 q,则p”,否命题是“若¬p,则¬q”,逆否命题是“若¬q,则¬p”。
第一章集合与简易逻辑在数学的广阔天地中,集合与简易逻辑就像是两座基石,支撑着我们探索更复杂、更深入的数学领域。
它们看似简单,却蕴含着深刻的思想和广泛的应用。
让我们先来聊聊集合。
集合是什么呢?简单来说,集合就是把一些确定的、不同的对象放在一起组成的一个整体。
比如说,一个班级里的所有同学就可以组成一个集合,一个水果篮里的各种水果也能组成一个集合。
集合有一些特别的表示方法。
我们可以用列举法,把集合中的元素一个一个地列出来。
比如,由数字 1、2、3 组成的集合,就可以写成{1, 2, 3}。
还有一种方法叫描述法,通过描述元素的共同特征来表示集合。
比如,小于 5 的正整数组成的集合,可以写成{x | x 是小于 5 的正整数}。
集合之间有着各种各样的关系。
如果一个集合中的所有元素都属于另一个集合,那么这个集合就是另一个集合的子集。
比如说,集合{1, 2, 3}是集合{1, 2, 3, 4, 5}的子集。
如果两个集合的元素完全一样,那它们就是相等的集合。
在集合的运算中,交集、并集和补集是非常重要的概念。
交集就是两个集合中共同的元素组成的集合。
比如集合{1, 2, 3}和集合{2, 3, 4}的交集就是{2, 3}。
并集则是把两个集合中的所有元素合在一起组成的新集合,上述两个集合的并集就是{1, 2, 3, 4}。
补集呢,是在一个给定的全集里,某个集合之外的元素组成的集合。
说完了集合,咱们再来说说简易逻辑。
逻辑在我们的日常生活和数学思考中都起着至关重要的作用。
简易逻辑中,命题是一个核心的概念。
命题就是能够判断真假的陈述句。
比如“今天是晴天”,这可以是一个命题,因为它能判断出真假。
而“你吃饭了吗?”这就不是命题,因为它不是陈述句,没法判断真假。
命题有真有假。
如果一个命题为真,那么它的否定就是假;如果一个命题为假,那么它的否定就是真。
比如命题“2 大于1”是真命题,它的否定“2 不大于1”就是假命题。
在逻辑关系中,“且”和“或”是两个重要的连接词。
第一部分 二轮专题突破
专题一 集合、常用逻辑用语、函数与导数、不等式
第1讲 集合、常用逻辑用语
一、选择题
1.(2011·辽宁)已知集合A ={x |x >1},B ={x |-1<x <2},则A ∩B 等于( )
A .{x |-1<x <2}
B .{x |x >-1}
C .{x |-1<x <1}
D .{x |1<x <2} 2.(2010·山东)已知全集U =R ,集合M ={x ||x -1|≤2},则∁U M =( )
A .{x |-1<x <3}
B .{x |-1≤x ≤3}
C .{x |x <-1或x >3}
D .{x |x ≤-1或x ≥3}
3.“m <14
”是“一元二次方程x 2+x +m =0有实数解”的( ) A .充分非必要条件
B .充分必要条件
C .必要非充分条件
D .非充分非必要条件 4.(2011·山东)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )
A .若a +b +c ≠3,则a 2+b 2+c 2<3
B .若a +b +c =3,则a 2+b 2+c 2<3
C .若a +b +c ≠3,则a 2+b 2+c 2≥3
D .若a 2+b 2+c 2≥3,则a +b +c =3
5.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,x 2+2ax +2-a =0”.若命题“綈p 且q ”是真命题,则实数a 的取值范围为( )
A .a ≤-2或a =1
B .a ≤-2或1≤a ≤2
C .a ≥1
D .a >1 6.(2011·上海)若三角方程sin x =0与sin 2x =0的解集分别为
E ,
F ,则( ) A .E F
B .E F
C .E =F
D .
E ∩
F =∅ 二、填空题
7.已知全集U ={-2,-1,0,1,2},集合A ={-1,0,1},B ={-2,-1,0},则A ∩(∁U B )=______.
8.(2011·天津)已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.
9.下列命题中,假命题的个数是________.
①若A ∩B =∅,则A =∅或B =∅;
②命题P 的否定就是P 的否命题;
③A ∪B =U (U 为全集),则A =U ,或B =U ;
④A B 等价于A ∩B =A .
10.若集合A ={x |(k +1)x 2+x -k =0}有且仅有两个子集,则实数k 的值是________.
三、解答题
11.设集合A ={2,8,a },B ={2,a 2-3a +4},且A B ,求a 的值.
12.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.
13.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.
答案
1.D 2.C 3.A 4.A 5.D 6.A
7.{1}
8.3
9.3
10.-1或-12
11.解 因为A B ,所以a 2-3a +4=8或a 2-3a +4=a .
由a 2-3a +4=8,得a =4或a =-1;
由a 2-3a +4=a ,得a =2.
经检验:当a =2时集合A 、B 中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1、4.
12.解 ∵A ∪B =A ,∴B ⊆A .
又A ={x |-2≤x ≤5},
当B =∅时,由m +1>2m -1,解得m <2.
当B ≠∅时,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,
2m -1≤5.
解得2≤m ≤3.
综上可知,m ∈(-∞,3].
13.解 原命题:若a ≥0,则x 2+x -a =0有实根.
逆否命题:若x 2+x -a =0无实根,则a <0.
判断如下:
∵x 2+x -a =0无实根,
∴Δ=1+4a <0,∴a <-14
<0, ∴“若x 2+x -a =0无实根,则a <0”为真命题.
即命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真命题.。