大学物理习题集.doc
- 格式:doc
- 大小:1.59 MB
- 文档页数:13
⼤学物理习题集⼤学物理(1)习题集(适⽤对象:14级⼟⽊⼯程专业)【说明】题号前标有(〇)的,表⽰该题考查点为1-2个,较易;题号后标有(*)的,表⽰该题考查点3个或3个以上,较难,其余考查点为2-3个,难度⼀般。
练习⼀质点运动的描述 (2)练习⼆圆周运动 (3)练习三⽜顿运动定律 (4)练习四冲量和动量 (6)练习五功和能 (7)练习六刚体定轴转动 (9)练习七绕定轴转动的刚体的转动定律 (11)练习⼋⾓动量和⾓动量守恒定律 (13)练习九分⼦运动论 (15)练习⼗热⼒学基础 (16)练习⼀质点运动的描述⼀.选择题1、(〇)质点是⼀个:【】(A )质量很⼩的物体.(B )根据其运动情况,被看作具有质量⽽没有⼤⼩和形状的理想物体.(C )只能作平动的物体.(D )体积很⼩的物体.2、(〇)某质点的运动⽅程为x=3t-5t 3+6(SI),则该质点作【】(A )匀加速直线运动,加速度沿X 轴正⽅向; (B) 匀加速直线运动,加速度沿X 轴负⽅向; (C) 变加速直线运动,加速度沿X 轴正⽅向; (D)变加速直线运动,加速度沿X 轴负⽅向3、⼀质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则⼀秒钟后质点的速度:【】(A) 等于零(B) 等于-2m/s (C) 等于2m/s(D) 不能确定。
4、如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向边运动。
设该⼈以匀速度V 0收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是【】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
5、(*)某物体的运动规律为t kv dtdv2-=,式中的k 为⼤于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是【】(A) 02v kt 21v += (B) 02v kt 21v +-= (C) 02v 1kt 21v 1+= (D)2v 1kt 21v 1+-=⼆.填空题6、⼀质点沿x 轴作直线运动,其运动⽅程为x=3+5t+6t 2-t 3(SI),则质点在t=0时刻的速度;加速度为零时,该质点的速度。
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
大学物理习题集上册大学物理教学部二00九年九月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习一质点运动的描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四功和能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五冲量和动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习七转动定律(续)角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习八力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习九理想气体状态方程热力学第一定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十等值过程绝热过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十一循环过程热力学第二定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十二卡诺循环卡诺定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十三物质的微观模型压强公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十四理想气体的内能分布律自由程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习二十三薄膜干涉劈尖牛顿环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄38 练习二十四单缝衍射光栅衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 练习二十五光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41 练习二十六光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43部分物理常量万有引力常量G=6。
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
《大学物理》课程习题集一、单选题11.下列哪一种说法是正确的()(A)运动物体加速度越大,速度越快(B)作直线运动的物体,加速度越来越小,速度也越来越小(C)切向加速度为正值时,质点运动加快(D)法向加速度越大,质点运动的法向速度变化越快2.下列说法中哪一个是正确的()(A)加速度恒定不变时,质点运动方向也不变(B)平均速率等于平均速度的大小(C)当物体的速度为零时,其加速度必为零(D)质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速3.关于向心力,以下说法中正确的是(A)是除物体所受重力、弹力以及摩擦力以外的一种新的力(B)向心力就是做圆周运动的物体所受的合力(C)向心力是线速度变化的原因(D)只要物体受到向心力的作用,物体就做匀速圆周运动4.如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率V0收绳,绳长不变,湖水静止,则小船的运动是()(A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动5.一质点作竖直上抛运动,下列的V-t图中哪一幅基本上反映了该质点的速度变化情况。
()6. 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A ) 与速度成正比 (B )与速度平方成正比(C )与速度成反比 (D )与速度平方成反比7. 抛物体运动中,下列各量中不随时间变化的是 ( )(A )v (B )v (C )t v d (D )dt v d8. 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作 ( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动9. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为( )(A )t d dr ; (B )dtr d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 10. 一质点在平面上作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V ,平均速率为V ,它们之间的关系必定有( )(A )V V V V == , (B )V V V V =≠ ,(C )V V V V ≠≠ , (D )V V V V ≠= ,11. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中,( )(A )物体的加速度是不断变化的。
大学物理习题集(农科类)大学物理课部2007年8月1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄332练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄37部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量3练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。
OR ErE ∝1/r 21.选择题1.如果对某一闭合曲面的电通量为S E d ⋅⎰S=0,以下说法正确的是( ) A .S 面上的E 必定为零 B .空间电荷的代数和为零 C .S 面内的电荷必定为零 D .S 面内电荷的代数和为零2.如图所示为一轴对称性静电场的E ~r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小, r 表示离对称轴的距离)( ) A .“无限长”均匀带电直线B .半径为R 的“无限长”均匀带电圆柱体C .半径为R 的“无限长”均匀带电圆柱面D .半径为R 的有限长均匀带电圆柱面3.关于静电场中某点电势值的正负,下列说法中正确的是 ( ) A .电势值的正负取决于电势零点的选取B .电势值的正负取决于电场力对试验电荷作功的正负C .电势值的正负取决于产生电场的电荷的正负D .电势值的正负取决于置于该点的试验电荷的正负4.真空中平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性均匀电介质,则电容C 、极板间电压V 、电场强度E 、电场的能量W 将(↑表示增大,↓表示减小) ( ) A .C ↓,U ↑,W ↑,E ↑ B .C ↑,U ↓,W ↓,E 不变 C .C ↓,U ↑,W ↑,E ↓ D .C ↑,U ↓,W ↓,E ↓5.运动的电荷在其周围空间 ( ) A .只产生电场 B .只产生磁场C .既产生电场,也产生磁场D .既不产生电场,也不产生磁场6.对于某一回路l ,积分=⋅⎰l B d lμ0 I ≠0,则可以肯定 ( )A .回路上有些点的B 可能为零,有些可能不为零,或所有点可能全不为零. B .回路上所有点的B 一定不为零.C .回路上有些点的B 一定为零.D .回路上所有点的B 可能都为零.7.如图所示,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?( )A .B .C .D . 8.对单匝线圈,取自感系数的定义式为L Iφ=。
大学物理习题集(一)大学物理教研室2010年3月目???????????? 录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一? 库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二? 电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三? 高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四? 静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五? 场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六? 静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七? 静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10 练习八? 恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九? 磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十? 霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一?毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二?毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三?安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四? 静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五?电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六? 感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七? 互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八? 麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九? ?狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十? 相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一? 热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二? 光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三?德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四?薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量????? G=6.67×10?11N·m2·kg?2重力加速度?????? ?g=9.8m/s2阿伏伽德罗常量?? ?N A=6.02×1023mol?1摩尔气体常量???? ?R=8.31J·mol?1·K?1玻耳兹曼常量?????k=1.38×10?23J·K?1斯特藩?玻尔兹曼常量?? = 5.67×10-8 W·m?2·K?4标准大气压?????? ?1atm=1.013×105Pa真空中光速?????? ?c=3.00×108m/s基本电荷????????? e=1.60×10?19C电子静质量??????? m e=9.11×10?31kg质子静质量??????? m n=1.67×10?27kg中子静质量??????? m p=1.67×10?27kg真空介电常量????? ?0= 8.85×10?12 F/m真空磁导率???? ????0=4?×10?7H/m=1.26×10?6H/m普朗克常量??????? h = 6.63×10?34 J·s维恩常量?????????b=2.897×10?3m·K说明:字母为黑体者表示矢量练习一? 库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 ??0 r3),以下说法正确的是(A) ?r→0时, E→∞;(B)? r→0时,q不能作为点电荷,公式不适用;(C)? r→0时,q仍是点电荷,但公式无意义;(D)? r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A)? E正比于f;(B)? E反比于q0;(C)? E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12 ,当放入第三个电荷Q后,以下说法正确的是(A)? f12的大小不变,但方向改变, q1所受的总电场力不变;(B) ?f12的大小改变了,但方向没变, q1受的总电场力不变;(C)? f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D)? f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图1.1所示,一电荷线密度为?的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则?和Q的数量关系式为????????? ,且?与Q为????? 号电荷 (填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1 ;将其撤走,改放一个等量的点电荷?q ,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为???????????????? ?.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图1.2所示, 则圆心O处的场强大小E = ???????????????,场强方向为?????????????? ?.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为?,如图1.2所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为?= ?0 sin?, 式中?0为一常数, ?为半径R与X轴所成的夹角, 如图1.3所示,试求环心O处的电场强度.练习二? 电场强度(续)? 电通量一.选择题1. 以下说法错误的是(A)? 电荷电量大,受的电场力可能小;(B)??????? 电荷电量小,受的电场力可能大;(C)??????? 电场为零的点,任何点电荷在此受的电场力为零;(D)?????? 电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图2.1,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)?? ??R2E/2 .(B)? ??R2E/2.(C) ??R2E.(D) ???R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和?q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)?? ?q2/(4??0d2 ) .(B) ?q2/(?0 S) .(C)? 2q2/(?0 S).(D)? q2/(2?0 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+?和??,点P1和P2与两带电线共面,其位置如图2.2所示,取向右为坐标X正向,则=?????????????????? ?,=????????????????? .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ?????????????????????,带电量为d q= ??????????????????,此细园环在中心轴线上距圆心x的一点产生的电场强度E= ????????????????????.3.如图2.3所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ?,法线向外,电场与S面的夹角为?,则通过袋形曲面的电通量为???????????? ?.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A)? S面上的E必定为零;(B)? S面内的电荷必定为零;(C)? 空间电荷的代数和为零;(D)? S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量? 0,以下说法正确的是(A)? S面上所有点的E必定不为零;(B)? S面上有些点的E可能为零;(C)? 空间电荷的代数和一定不为零;(D)? 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A)? 如高斯面上E处处为零,则该面内必无电荷;(B)? 如高斯面内无电荷,则高斯面上E处处为零;(C)? 如高斯面上E处处不为零,则高斯面内必有电荷;(D)? 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E)? 高斯定理仅适用于具有高度对称的电场.4.图3.1示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B)? 半径为R的“无限长”均匀带电圆柱体;(C)? 半径为R的“无限长”均匀带电圆柱面;(D)? 半径为R的有限长均匀带电圆柱面.5.如图3.2所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) ?q / 24?0.(B) ?q / 12?0.(C) ?q / 6 ?0 .(D) ?q / 48?0.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为? (??0)及?2? ,如图3.3所示,试写出各区域的电场强度EⅠ区E的大小???????? ??????,方向???????????????? ?;Ⅱ区E的大小??????????? ???,方向???????????????? ?;Ⅲ区E的大小?????????????? ,方向???????????????? ?.2.如图3.4所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量?= ????????????????;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为????????????? ?,?????????????????? .3.点电荷q1、q2、q3和q4在真空中的分布如图3.5所示,图中S为闭合曲面,则通过该闭合曲面的电通量=?????????? ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是???????????.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为?,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为?的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图3.6所示, 求:(1) 在球形空腔内,球心O?处的电场强度E0;(2) 在球体内P点处的电场强度E.设O?、O、P三点在同一直径上,且= d.练习四? 静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元?S, 并把它移至无穷远处(如图4.1),若选无穷远为零电势参考点,且将?S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)?? -i Q?S/[(4?R2 )2?0 ];[Q/(4??0R)][1-?S/(4?R2)].(B)?? i Q?S/[(4?R2 )2?0 ];[Q/(4??0R)][1-?S/(4?R2)].(C)? ?i Q?S/[(4?R2 )2?0 ];[?Q/(4??0R)][1-?S/(4?R2)].(D) -i Q?S/[(4?R2 )2?0 ];[?Q/(4??0R)][1-?S/(4?R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图4.2,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A)? .(B)? .(C)? .(D) ?.5.一电量为?q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图4.3所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图4.4所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = ???????????????.2.如图4.5,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致,从A点经任意路径到B点的场强线积分= ??????????????????????.3.如图4.5所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为– q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点, 则电场力所作的功为????????????????????? ?.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为? , 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五? 场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3.如图5.1,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) ?E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) ?E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) ?E M =E N =0 ,Q在M、N处都不产生电场;(D)? E M≠0,E N≠0,Q在M、N处都产生电场;??? (E)? E M =E N =0 ,Q在M、N处都产生电场.4.如图5.2,原先不带电的金属球壳的球心处放一点电荷q1 , 球外放一点电荷q2 ,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A)? F1=F2=F3=F=0.(B) ?F1= q1 q2 / ( 4 ??0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C)? F1= q1 q2 / ( 4 ??0d2 ) , F2 = 0,F3 =? q1 q2 / ( 4 ??0d2 ) (即与F1反向), F=0 .(D) ?F1= q1 q2 / ( 4 ??0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) ?F1= q1 q2 / ( 4 ??0d2 ) , F2=? q1 q2 / ( 4 ??0d2 ) (即与F1反向), F3= 0, F=0 .5.如图5.3,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电?Q, 则B球(A)??? 带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中,? P与E的夹角为?角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿?角增加的方向转过180°的过程中,电场力作功为A =??????????????? .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是?????????????? ;若电势随空间坐标作线性变化, 则该区域的场强分布是????????????????????? ?.3.一“无限长”均匀带电直线,电荷线密度为?,在它的电场作用下,一质量为m,带电量为q的质点以直线为轴线作匀速圆周运动,该质点的速率v = ?????????????????????????.三.计算题1.如图5.4所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度?1,和外表面上电荷线密度?2之比值?1/?2.2.已知某静电场的电势函数U =-+ ln x (S I) ,求点(4,3,0)处的电场强度各分量值.练习六? 静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图6.1.C、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为?A、?C、?D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) ?A>?D ,?C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) ?A>?D ,?C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) ?A=?C ,?D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) ?D>0 ,?C <0 ,?A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图6.2,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)??????? 0.(B)? ?Q.(C)? +Q/2.(D)? –Q/2.3.导体A接地方式如图6.3,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图6.4,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为?.以下关于P点电场强度大小的答案中,正确的是(A) ? / (2?0 ) + q /[4??0 ( d-R )2 ];(B) ? / (2?0 )-q /[4??0 ( d-R )2 ];(C) ? / ?0 + q /[4??0 ( d-R )2 ];(D)? / ?0-q /[4??0 ( d-R )2 ];(E)? / ?0;(F) 以上答案全不对.二.填空题1.如图6.5,一平行板电容器, 极板面积为S,,相距为d ,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间,则导体薄板C的电势U C = ????????????????????????.2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度?= ??????????????????, 地面电荷是???????????????? 电荷(填正或负).3.如图6.6所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为?????????????????? 、???????????????????? 、?????????????????? 、???????????????????? .三.计算题1.半径分别为r1 = 1.0 cm 和r2 =2.0 cm 的两个球形导体, 各带电量q = 1.0×10?8C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量; (2)各球的电势.2.如图6.7,长为2l的均匀带电直线,电荷线密度为?,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七? 静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = ?0(?r?1)E , 电位移矢量公式为D = ?0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.?(C) 二公式只适用于各向同性且均匀的电介质.?(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A=?Q r /(4??0r3) ,现以A为中心,再放上一个半径为? ,相对电容率为? r的介质球,如图7.1所示,此时下列各公式中正确的是(A)? A点的电场强度E?A=E A /? r;(B) ?;(C)? =Q/?0;(D)? 导体球面上的电荷面密度? = Q /( 4?R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) ?C↓,U↑,W↑,E↑.(B)? C↑,U↓,W↓,E不变.(C) ?C↑,U↑,W↑,E↑.(D) ?C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度?增大为原来的2倍,则电场的能量变为原来的(A) ?2倍.(B)? 1/2倍.(C)? 1/4倍.(D) ?4倍.二.填空题1.一平行板电容器,充电后断开电源,? 然后使两极板间充满相对介电常数为?r的各向同性均匀电介质, 此时两极板间的电场强度为原来的??????????????? ?倍,? 电场能量是原来的???????????? ?倍.2.在相对介电常数?r = 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = ??????????????????.3.一平行板电容器两极板间电压为U ,其间充满相对介电常数为?r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = ???????????????????????????.三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R1 =2cm ,R2= 5cm,其间充满相对介电常数为?r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图7.2所示为其横截面),试求距离轴线R=3.5cm处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功?练习八? 恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图9.1(1)所示,并联时如图9.1(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A)? I1 =I2?? ??J1 = J2? ??I1? = I2? ???J1?= J2?.(B) ?I1 =I2?? ??J1 >J2? ?I1?<I2? ???J1?= J2?.(C) ?I1<I2?? ?J1 = J2? ??I1? = I2? ???J1?>J2?.(D)? I1<I2?? ?J1 >J2? ?I1?<I2? ???J1?>J2?.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(?1>?2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A)? I1<I2?? ??J1<J2? ??I1? = I2? ???J1?= J2?.(B) ?I1 =I2?? ???J1 =J2? ???I1? = I2? ???J1?=J2?.(C) ?I1=I2?? ??J1 = J2? ??I1?<I2? ??J1?<J2?.(D)? I1<I2?? ??J1<J2? ??I1?<I2? ???J1?<J2?.?3.室温下,铜导线内自由电子数密度为n = 8.5 × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)?? 1.5 ×10-4米/秒.(B) 1.5 ×10-2米/秒.(C) 5.4 ×102米/秒.(D) 1.1 ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为?的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图9.3所示,则在柱与筒之间与轴线的距离为r的点的电场强度为:(A) 2?rI/ (l2?).(B) I/(2?rl?).(C) Il/(2?r2?).(D) I?/(2?rl).5.在如图9.4所示的电路中,两电源的电动势分别为?1、?2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) ?2-?1-I1 R1+I2 R2-I3 R.(B) ?2+?1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) ?2-?1-I1(R1-r1)+I2(R2-r2) .(D) ?2-?1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = ?????????????????.(铜电阻率1.67×10?6? · cm , 铝电阻率2.66×10?6? · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J =????? ?????????, J的方向与电场E的方向???????????????? ?.3.有一根电阻率为?、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为?????????? ?;若导线中自由电子数密度为n,则电子平均漂移速率为??????????????? ?.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为?的绝缘材料,求两球壳之间的电阻.2.在如图9.5所示的电路中,两电源的电动势分别为?1=9V和?2 =7V,内阻分别为r1 = 3?和r2= 1?,电阻R=8?,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图10.1所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) ?=arccos(eBD/p).(B) ?=arcsin(eBD/p).(C) ?=arcsin[BD /(ep)].(D) ?=arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图10.2所示,则(A)?? 两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为?,则(A)??? 其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图10.3所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1?v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1?T2,q1向顺时针方向旋转,q2向逆时针方向旋转;?(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=5.0×10-2m的螺旋运动,如图10.4所示,则磁场的方向?????????????? ?, 电子速度大小为?????????????? ?.2. 磁场中某点处的磁感应强度B=0.40i-0.20j (T), 一电子以速度v=0.50×106i+1.0×106j (m/s)通过该点,则作用于该电子上的磁场力F=?????????????????? .3.在匀强磁场中,电子以速率v=8.0×105m/s作半径R=0.5cm的圆周运动.则磁场的磁感应强度的大小B=????????????????? ?.三.计算题1.如图10.5所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为?,假定盘绕其轴线OO?以角速度?转动,磁场B垂直于轴线OO?,求圆盘所受磁力矩的大小。
同济大学大学物理-基础习题集1(质点运动学)涵盖内容:本练习卷所含内容为质点运动学和质点动力学两章,考察了比较基础简单的应用,也适用于高中学生一、单选题1.沿直线运动的物体,其速度大小与时间成反比,则其加速度大小与速度大小的关系是A.与速度大小的平方成正比B.与速度大小成正比C.与速度大小成反比D.与速度大小的平方成反比2.运动方程表示质点的运动规律, 运动方程的特点是A.坐标系选定后, 方程的形式是唯一的B.绝对的, 与参考系的选择无关C.只适用于惯性系D.参考系改变, 方程的形式不一定改变3.下列哪一种说法是正确的A.在圆周运动中,加速度的方向一定指向圆心。
B.匀速率圆周运动的速度和加速度都恒定不变。
C.物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零。
D.物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
4.有一个人以4m/s 的速度从A 地跑向B 地去拿快递,在B 地附近的小店休息片刻后,以6m/s 的速度从B 地跑回A 地,请问其整个运动过程中的平均速度为A.4.8m/sB.0C.5m/sD.5.5m/s 5.一个支点在做曲线运动,r 表示其位置矢量,s 表示路程,τ表示曲线的切线方向。
下列几个表达式中,正确的表达式为6.一抛射物体的初速度为0v ,抛射角为θ,则该抛物线最高点处的曲率半径为A.∞B.C.D.0 7.如图所示,路灯距离地面的高度为H ,跑步者的身高为h,如果人以匀速背向灯光跑步,则人头的影子移动的速度为A.B. C. D. 8.在电梯内用弹簧秤称量物体的重量, 当电梯静止时称得一物体重量50kg, 当电梯作匀变速运动时称得其重量为40kg, 则该电梯的加速度A.大小为0.8g, 方向向下B.大小为0.8g, 方向向上C.大小为0.2g, 方向向下D.大小为0.2g, 方向向上 9.用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置A.绳子的拉力和重力是惯性离心力的反作用力B.绳子的拉力和重力的合力是惯性离心力的反作用力C.都有法向加速度D.都有切向加速度v dt ds A =.a dt dv B.=τa dtdv C =||.v dt dr D.=g v 20θg v 220cos 题6图题7图v H h H -v h Hv H h v hH H -10.大白和一艘重量为600Kg的船一起在平静的水面上匀速向前行驶,并且其速度为2m/s,已知大白的重量为60Kg,现在水面突然出现了一个受伤的海豚,于是大白相对于船以一水平速度v向前跳出船中,大白跳起后,船速减为原来的一半,这说明v大小为(假设所有阻力不计)A.0B.11m/sC.12m/sD.20m/s11.一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点A.比原来更远B.比原来更近C.仍和原来一样D.条件不足不能判定12.一轮船作匀变速航行时所受阻力与速率平方成正比.当轮船的速率加倍时, 轮船发动机的功率是原来的A.2倍B.3倍C.4倍D.8倍13. 在下列叙述中,错误的是A.保守力做正功时相应的势能将减少B.势能是属于物体体系的C.势能是个相对量,与参考零点的选择有关D.势能的大小与初、末态有关, 与路径无关14.停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高1m,不计绳梯的质量, 则气球将A.向下移动1米B.向上移动1米C.向上移动0.5米D.向下移动0.5米15.质点系的内力可以改变A.系统的总动量B.系统的总质量C.系统的总角动量D.系统的总动能题14图16.质点组内部保守力作功量度了A.质点组势能的变化B.质点组动能与势能的转化C.质点组动能的变化D.质点组机械能的变化17.作用在质点组的外力的功与质点组内力作功之和量度了A.质点组内部机械能与其它形式能量的转化B.质点组动能的变化C.质点组动能与势能的转化D.质点组内能的变化18.已知A、B两质点,A的质量大于B的质量,受到相等的冲量作用, 则A.A比B的动量增量大B.A与B的动能增量相等C.A比B的动量增量少D.A与B的动量增量相等二、简答题1.如图所示,湖中有一艘被拉住的小船,岸上有人用绳子跨定滑轮拉扯该小船靠岸,当人以匀速v1拉船时,船移动的速度v是多少?已知滑轮距离水面距离为h,到原来船的位置处的绳长为L0。
说明:字母为黑体者表示矢量练习一 库仑定律 电场强度一.选择题1. 关于试验电荷以下说法正确的是:(A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷; (C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2. 关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是(A) r →0时, E →∞;(B) r →0时,q 不能作为点电荷,公式不适用; (C) r →0时,q 仍是点电荷,但公式无意义;(D) r →0时,q 已成为球形电荷,应用球对称电荷分布来计算电场.3. 在点电荷激发的电场中,如以点电荷为中心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.4. 图1.1所示为一沿X 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和−λ ( x > 0),则XOY 坐标平面上(0, a )点处的场强为: 图1.1(A ) 0. (B)i a02πελ. (C)i a 04πελ. (D) )(40j i +aπελ.5. 在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是(A) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化;(B) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化. (C) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (D) f 12的大小改变了,但方向没变, q 1受的总电场力不变; 二.填空题11. 如图1.2所示,真空中一半径为R 的均匀带电球面,Q ( Q > 0). 今在球面上挖去一非常小的面积ΔS(连同电荷设不影响原来的电荷分布,则挖去ΔS E = , 其方向为 .2. 两个电量都是+q 的点电荷, 相距为2a , 连线中点为O . 线的中垂线上放另一点电荷-q 0, 距O 点为x 。
大学物理习题集(农科类)大学物理课部2005年1月目录部分物理常量练习一质点力学中的基本概念和基本定律练习二流体静力学与流体的流动练习三液体的表面性质练习四伯努力方程及应用练习五黏滞流体的流动练习六流体力学习题课练习七简谐振动的特征及描述练习八简谐振动的合成练习九平面简谐波练习十波的干涉练习十一振动和波动习题练习十二光的干涉练习十三光的衍射练习十四光的偏振练习十五光学习题课练习十六理想气体动理论的基本公式练习十七能量均分定理练习十八气体分子按速率分布律和按能量分布律练习十九热力学第一定律对理想气体的应用练习二十循环过程练习二十一热力学第二定律熵及熵增加原理练习二十二热学习题课练习二十三电场强度练习二十四高斯定理练习二十五电势练习二十六电场中的导体和电介质练习二十七电场习题课练习二十八电流及运动电荷的磁场练习二十九磁场中的高斯定理和安培环路定理练习三十电流与磁场的相互作用练习三十一磁场习题课练习三十二光的二象性粒子的波动性练习三十三量子力学部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量练习一 质点力学的基本概念和基本定律一.选择题1.一质点沿x 轴作直线运动,其v —t 曲线如图1.1所示,如t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为(A) 0.(B) 5m .(C) 2m . (D) -2m .(E) -5m .2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3.一质点作直线运动,某时刻的瞬时速度为v =2m/s, 瞬时加速度为a =-2m/s 2, 则一秒钟后质点的速度(A) 于零.(B) 等于 2m/s . (C) 等于2m/s . (D) 不能确定.4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平 均速度为v ,平均速率为v ,它们之间的关系必定有 (A) v = v ,v ≠v . (B) v ≠v , v =v . (C) v ≠v , v ≠v . (D) v = v , v =v .5.质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率)(A) d v/d t . (B) v 2/R .(C) d v/d t + v 2/R .(D) [(d v/d t )2+(v 4/R 2)]1/2.二.填空题-图1.11.悬挂在弹簧上的物体在竖直方向上振动,振动方程为y=A sinω t,其中A、ω均为常量,则(1)物体的速度与时间的函数关系为;(2)物体的速度与坐标的函数关系为.2.在x 轴上作变加速直线运动的质点,已知其初速度 为v 0,初始位置为x 0加速度为a=Ct 2 (其中C 为常 量),则其速度与时间的关系v= ,运动方程为 x= .3.灯距地面高度为h 1,一个人身高为h 2, 在灯下以匀 速率v 沿水平直线行走, 如图1.2所示.则他的头 顶在地上的影子M 点沿地面移动的速度 v M = .三、计算题1.有一质点沿x 轴做直线运动,t 时刻的坐标为x=4.5 t 2-2 t 3. (m)试求:(1)第二秒内的平均速度;(2)第二秒末的瞬时速度;(3)第二秒内的路程。
基本知识点:1.静电场高斯定理:无电解质:有电介质:说明电场是:2.静电场环路定理:说明电场是:3.D,E,P三者的关系和联系稳恒磁场高斯定理:说明电场是:4.稳恒磁场环路定理:无磁解质:有磁介质:说明电场是:5.H,B,M三者的关系和联系6.电场的能量和磁场的能量7.电磁感应定律内容,表达,方向的判定(掌握楞次定律)8.自感和互感的联系与区别9.传导电流,磁化电流,位移电流的区别10.麦克斯韦方程组及其内涵电磁学部分Array 1.求距离均匀带电细棒为a 的p点处电场强度和电势。
2.求一均匀带电圆环轴线上任一点x处的电势,并用两种方法求P点的电势。
长度带电量为λ。
4.均匀带电无限大平面的电场(作图).5.计算均匀带电球面的电场中的电势分布。
球面半径为R,总带电量为q。
.6.两平行放置的带电大金属板A和B,面积均为S,A板带电Q A,B板带电Q B,忽略边缘效应,求两块板四个面的电荷面密度。
7.在内外半径分别为R1和R2的导体球壳内,有一个半径为r 的导体小球,小球与球壳同心,让小球与球壳分别带上电荷量q和Q。
试求:(1)小球的电势Vr,球壳内、外表面的电势;(2)小球与球壳的电势差;(3)若小球接地,再求小球与球壳的电势差。
8.平行板电容器两板极的面积为S,如图所示,两板极之间充有两层电介质,电容率分别为ε 1 和ε 2 ,厚度分别为d1 和d2 ,电容器两板极上自由电荷面密度为±σ。
求(1)在各层电介质的电位移和场强,(2)两层介质表面的极化电荷面密度(3)电容器的电容.(4)电容器中的能量。
9.载流长直导线的磁场设有长为L的载流直导线,其中电流为I。
计算距离直导线为a处的P点的磁感应强度10.载流长直导线的磁场设有长为L的载流直导线,其中电流为I。
计算距离直导线为a 处的P点的磁感应强度11.求载流无限长直螺线管内的磁场12.有一根很长的同轴电缆,由一圆柱形导体和一同轴圆筒状导体组成,圆柱的半径为R1,圆筒的内外半径分别为R1和R2,如图所示。
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
⼤学物理习题集⼤学物理习题集(农科类)⼤学物理课部2007年8⽉1⽬录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习⼀质点⼒学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1练习⼆流体静⼒学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1练习三液体的表⾯性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习四伯努⼒⽅程及应⽤┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习六流体⼒学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习⼋简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平⾯简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习⼗波的⼲涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习⼗⼀振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10练习⼗⼆⼏何光学基本定律球⾯反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12练习⼗三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习⼗四光的⼲涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15练习⼗五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习⼗六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17练习⼗七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18练习⼗⼋理想⽓体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19练习⼗九能量均分定理⽓体分⼦按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习⼆⼗热⼒学第⼀定律对理想⽓体的应⽤┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习⼆⼗⼀循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22练习⼆⼗⼆热⼒学第⼆定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习⼆⼗三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习⼆⼗四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习⼆⼗五⾼斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习⼆⼗六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习⼆⼗七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习⼆⼗⼋电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习⼆⼗九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31练习三⼗磁场中的⾼斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习三⼗⼀电流与磁场的相互作⽤┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄332练习三⼗⼆磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习三⼗三光的⼆象性粒⼦的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三⼗四量⼦⼒学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄37部分物理常量引⼒常量G=6.67×10-11N2·m2·kg-2重⼒加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔⽓体常量R=8.31J·mol-1·K-1标准⼤⽓压1atm=1.013×105Pa玻⽿兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电⼦质量m e=9.11×10-31kg 中⼦质量m n=1.67×10-27kg质⼦质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2?N-1m-2真空中磁导率µ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ?s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2?K4说明:字母为⿊体者表⽰⽮量3练习⼀质点⼒学的基本概念和基本定律⼀.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动⽅程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.⼆.填空题1. ⼀⼩球沿斜⾯向上运动,其运动⽅程为s=5+4t-t2 (SI),则⼩球运动到最⾼点的时刻为t=秒.2. ⼀质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动⽅程为x= (SI).三、计算题1. 湖中有⼀条⼩船,岸边有⼈⽤绳⼦通过岸上⾼于⽔⾯h的滑轮拉船,设⼈收绳的速率为v0,求船的速度u和加速度a.2. ⼀⼈站在⼭脚下向⼭坡上扔⽯⼦,⽯⼦初速为v0,与⽔平夹⾓为θ(斜向上),⼭坡与⽔平⾯成α⾓.(1) 如不计空⽓阻⼒,求⽯⼦在⼭坡上的落地点对⼭脚的距离s;(2) 如果α值与v0值⼀定,θ取何值时s最⼤,并求出最⼤值s max.练习⼆流体静⼒学与流体的流动⼀.选择题1.⽐重计分别浸在油、⽔、⽔银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。
⼤学物理习题集(48下)城市学院⼤学物理下学期练习题第九章电磁感应⼀.单项选择题:1、半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平⾯与磁场⽅向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹⾓060=α时,线圈中已通过的电量与线圈⾯积及转动的时间的关系是:(A )与线圈⾯积成正⽐,与时间⽆关。
(B )与线圈⾯积成正⽐,与时间成正⽐。
(C )与线圈⾯积成反⽐,与时间成正⽐。
(D )与线圈⾯积成反⽐,与时间⽆关。
2、如右图,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场⽅向的轴O O '转动(⾓速度ω与B 同⽅向),BC 的长度为棒长的3/1,则:(A )A 点⽐B 点电势⾼。
(B )A 点与B 点电势相等。
(C )A 点⽐B 点电势低。
(D )有稳恒电流从A 点流向B 点。
3、⼀根长为L 的铜棒,在均匀磁场B 中以匀⾓速度ω旋转着,B的⽅向垂直铜棒转动的平⾯,如图。
设0=t 时,铜棒与Ob 成θ⾓,则在任⼀时刻t 这根铜棒两端之间的感应电动势是:(A ))cos(2θωω+t B L (B )t B L ωωcos 212(C ))cos(22θωω+t B L (D )B L 2ω(E )B L 221ω4、⾃感为H 25.0的线圈中,当电流在s )16/1(内由A 2均匀减⼩到零时,线圈中⾃感电动势的⼤⼩为:(A )V 3108.7-?。
(B )V 0.2。
(C )V 0.8。
(D )V 2101.3-?。
5、对于单匝线圈取⾃感系数的定义式为I L m /Φ=。
当线圈的⼏何形状、⼤⼩及周围磁介质分布不变,且⽆铁磁性物质时,若线圈中的电流强度变⼩,则线圈的⾃感系数L :(A )变⼤,与电流成反⽐关系。
(B )变⼩。
(C )不变。
(D )变⼤,但与电流不成反⽐关系。
6、两个相距不太远的平⾯圆线圈,怎样放置可使其互感系数近似为零?设其中⼀线圈的轴线恰通过另⼀线圈的圆⼼。
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。