数学建模小题库
- 格式:doc
- 大小:48.50 KB
- 文档页数:1
大学数学建模课程真题试卷一、选择题(每题 5 分,共 20 分)1、在数学建模中,以下哪种模型常用于预测未来的趋势?()A 线性回归模型B 逻辑回归模型C 聚类分析模型D 决策树模型2、对于一个优化问题,若目标函数为凸函数,约束条件为线性,则该问题属于()A 线性规划问题B 非线性规划问题C 凸规划问题D 整数规划问题3、以下哪个方法常用于求解微分方程?()A 有限差分法B 蒙特卡罗方法C 层次分析法D 主成分分析法4、在建模过程中,数据预处理的主要目的是()A 减少数据量B 提高数据质量C 增加数据多样性D 便于数据存储二、填空题(每题 6 分,共 30 分)1、数学建模的基本步骤包括:问题提出、_____、模型假设、模型建立、模型求解、模型分析与检验、_____。
2、线性规划问题的标准形式中,目标函数为_____,约束条件为_____。
3、常见的概率分布有_____、_____、正态分布等。
4、评价模型优劣的指标通常包括准确性、_____、_____等。
5、一个具有 n 个变量,m 个约束条件的线性规划问题,其可行域是由_____个顶点组成的凸多边形。
三、简答题(每题 10 分,共 30 分)1、请简述层次分析法的基本步骤。
2、解释什么是敏感性分析,并说明其在数学建模中的作用。
3、给出一个实际问题,并简述如何将其转化为数学建模问题。
四、应用题(20 分)某工厂生产 A、B 两种产品,已知生产 A 产品每件需要消耗原材料2 千克,劳动力 3 小时,利润为 5 元;生产 B 产品每件需要消耗原材料 3 千克,劳动力 2 小时,利润为 4 元。
现有原材料 180 千克,劳动力 150 小时,问如何安排生产计划,才能使工厂获得最大利润?(1)建立数学模型(8 分)(2)使用软件求解(给出求解过程和结果)(12 分)接下来,我们对这份试卷进行一下分析。
选择题部分主要考查了学生对数学建模中一些基本概念和常见模型方法的理解。
数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。
该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。
2.用长8米的角钢切割钢窗用料。
每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。
公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。
制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。
大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。
生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。
公司每天有24小时的机器时间和40小时的人工时间可用。
如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。
每名顾客的平均服务时间是5分钟。
假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。
请计算银行的平均排队长度和顾客的平均等待时间。
三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。
产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。
如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。
水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。
每个水库的供水能力不同,每个城市的需求也不同。
如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。
请考虑季节性因素和趋势,并给出预测的置信区间。
六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。
如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。
如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。
希望这些练习题能够帮助学生在数学建模的道路上更进一步。
数学建模知识竞赛题库1.请问计算机中的二进制源于我国古代的哪部经典? DA.《墨经》B.《诗经》C.《周书》D.《周易》2.世界上面积最大的高原是? DA.青藏高原B.帕米尔高原C.黄土高原D.巴西高原3.我国海洋国土面积约有多少万平方公里? BA.200B.300C.280D.3404.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是BA.猫B.飞鸽C.海鸥D.鹰5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?BA.红色B.蓝色C.灰色D.绿色6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D )A. [1 0 1]B. [1 1 1]C. [0 0 1]D.[0 0 0]7.秦始皇之后,有几个朝代对长城进行了修葺? AA.7个B.8个C.9个D.10个8.中国历史上历时最长的朝代是?AA.周朝B.汉朝C.唐朝D.宋朝9我国第一个获得世界冠军的是谁?CA 吴传玉B 郑凤荣C 荣国团D 陈镜开10.我国最早在奥运会上获得金牌的是哪位运动员?BA.李宁B.许海峰C.高凤莲D.吴佳怩11.围棋共有多少个棋子?BA.360B.361C.362D.36512下列属于物理模型的是:AA水箱中的舰艇B分子结构图C火箭模型D电路图13名言:生命在于运动是谁说的?CA.车尔尼夫斯基B.普希金C.伏尔泰D.契诃夫14.饱食后不宜剧烈运动是因为BA.会得阑尾炎B.有障消化C.导致神经衰弱D.呕吐15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。
A.行B.列C.对角线D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?AA.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役17色盲患者最普遍的不易分辨的颜色是什么?AA.红绿B.蓝绿C.红蓝D.绿蓝18下列哪种症状是没有理由遗传的?A.精神分裂症B.近视C.糖尿病D.口吃19下面哪个变量是正无穷大变量?(A )A. InfB. NaNC. realmaxD. realmin20泼水节是我国哪个少数民族的节日?DA.彝族B.回族C.壮族D.傣族21被称为画圣的是古代哪位画家?AA吴道子B.顾恺之C.韩干D.张择端22我国第一部有声影片是AA四郎探母B.定军山C.林则徐D.玉人何处23奔驰原产于哪国?CA美国B.日本C.德国D.英国24.菲利浦电器是哪一国家的产品?BA.日本B.美国C.德国D.英国25奥运会每四年举办一次,为期不超过多少天?BA.14天B.16天C.20天D.21天26.看鱼鳞能识鱼鳞,鱼鳞上的一圈代表?AA.半岁B.一岁C.一岁半D.两岁27.世界上最长的动物是哪一种?BA.鲸鱼B.水母C.恐龙D.大象28.山东山西中的山是指?BA.泰山B.太行山C.沂蒙山D.恒山29坦克是哪个国家发明的?AA英国 B.德国 C.美国 D.法国30我军三大纪律,八项注意中三大纪律不包括?A不贪污受贿 B.一切听从指挥 C.不拿群众一针一线 D.一切缴获要归公31雨后彩虹,美丽可目,但在1928年1月7日,由马德拉岛到开普敦的海面上,出现了一道奇特的彩虹,在能见度很差的雾霭中有一光晕,晕环下部似乎能触及船侧,你知道这道彩虹成什么颜色吗?DA.红色B.蓝白色C.蓝色D.白色32.“牛郎织女”的故事是众口皆碑的神话传说,你知道牛郎星属于什么星座吗?BA.天琴座B.天鹰座C.金牛座D.狮子座33世界上曾有六次截流,中国就有三次,都在长江上,其中有两次是长江三峡截流,另一次是哪项工程?CA.都江堰B.黄河C.葛洲坝D.钱塘江34唐代诗人有称“诗圣”的杜甫“诗仙”的李白等,你可知道被人颂称“诗魔”的是谁?AA.白居易B.王维C.刘禹锡D.李商隐35“君子之交淡如水,小人之交甘若醴”出自下列哪部作品?BA.老子B.庄子C.论语D.史记36.在Word2003文档中,对图片设置下列哪种环绕方式后,可以形成水印效果。
2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。
已知|a - 3| + (b + 2)² = 0,则 a + b = _______。
已知一个正方体的棱长是6cm,则它的体积是_______ cm³。
方程2x - 3 = 5 的解是x = _______。
已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。
三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。
解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。
四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。
若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。
求这辆汽车的平均速度。
数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。
这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。
可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。
- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。
有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。
通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。
二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。
这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。
我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。
- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。
但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。
我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。
三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。
如果定价太高,同学们就不买了;定价太低,又赚不到钱。
这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。
通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。
- 逻辑:现在有很多网红店,门口总是排着长长的队伍。
这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。
数学建模小学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:A2. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?A. 16B. 24C. 32D. 48答案:C3. 一个数的3倍是45,这个数是多少?A. 15B. 12C. 10D. 5答案:A4. 一个班级有40名学生,其中女生占全班人数的1/3,那么女生有多少人?A. 10B. 13D. 20答案:D5. 一个数加上它的一半等于10,这个数是多少?A. 5B. 6C. 7D. 8答案:B6. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 20答案:A7. 一个数的4倍是32,这个数是多少?A. 6B. 8C. 10D. 12答案:B8. 一个班级有60名学生,其中男生占全班人数的2/3,那么男生有多少人?A. 40B. 50C. 60D. 809. 一个数减去它的1/4等于9,这个数是多少?A. 12B. 11C. 10D. 9答案:A10. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 25C. 20D. 15答案:A二、填空题(每题4分,共20分)1. 一个数的5倍加上20等于50,这个数是______。
答案:62. 一个数的3倍减去10等于20,这个数是______。
答案:103. 一个班级有50名学生,其中男生占全班人数的3/5,那么男生有______人。
答案:304. 一个数的2倍减去5等于15,这个数是______。
答案:105. 一个长方形的长是12厘米,宽是8厘米,那么它的面积是______平方厘米。
答案:96三、解答题(每题10分,共50分)1. 一个数的4倍加上8等于40,求这个数。
答案:设这个数为x,则有4x + 8 = 40。
解这个方程,我们得到4x = 32,所以x = 8。
一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。
12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。
3.北美地区有几个国家?写出它们的名字。
4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。
5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。
6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。
7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。
15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。
16.将16进制的数字20转化为10进制的数字。
17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。
9•求208素因子分解。
10. 用Lindo 求解下列整数线性规划问题。
max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。
一、选择题(每题5分,共20分)1. 下列哪项不是数学建模的基本步骤?A. 提出问题B. 收集数据C. 分析问题D. 解决问题2. 下列哪个公式是求解一元二次方程的公式?A. \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)B. \( y = mx + b \)C. \( z = \frac{a}{b} \)D. \( \sin(\theta) = \frac{opposite}{hypotenuse} \)3. 在下列函数中,哪个函数的图像是一条直线?A. \( f(x) = x^2 + 2x + 1 \)B. \( f(x) = 2x + 3 \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = \log_2(x) \)4. 下列哪个单位是测量长度的国际单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 安培(A)5. 在下列几何图形中,哪个图形是轴对称的?A. 正方形B. 长方形C. 三角形D. 圆形二、填空题(每题5分,共20分)6. 若一个长方体的长、宽、高分别为a、b、c,则其体积V可以表示为______。
7. 若一个圆的半径为r,则其周长C可以表示为______。
8. 若一个等差数列的首项为a1,公差为d,第n项为an,则an可以表示为______。
9. 若一个等比数列的首项为a1,公比为q,第n项为an,则an可以表示为______。
10. 若一个直角三角形的两条直角边分别为a和b,斜边为c,则根据勾股定理,c 可以表示为______。
三、解答题(每题15分,共45分)11. (15分)某学校计划组织一次校园运动会,共有50名学生报名参加。
已知参加100米短跑的学生有20人,参加200米中长跑的学生有15人,参加跳远的学生有10人。
请根据这些信息,建立一个数学模型来分析参加不同运动项目的学生人数之间的关系。
12. (15分)某商店销售一种新产品,已知每件产品的成本为100元,售价为150元。
2023数学建模国赛题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y=sin2xB. y=cos2xC. y=tanxD. y=∣sinx∣若实数a,b满足a>b,则下列不等式一定成立的是()A. a2>b2B. ac2>bc2C. a+a1>b+b1D. ab<1已知loga2<logb2<0,则下列不等式成立的是()A. a>b>1B. b>a>1C. 0<a<b<1D. 0<b<a<1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,S5=15,则公差d= _______。
已知圆x2+y2=4与直线y=kx+b相切,且直线在y轴上的截距为2,则k= _______。
若a,b是两个不共线的向量,且AB⟶=2a+kb,CB⟶=a+b,CD⟶=−2a−b,则k= _______时,A,B,D三点共线。
三、解答题(共54分)1.(本题满分12分)已知函数f(x)=lnx−xa。
(1)求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值为23,求实数a的值。
2.(本题满分14分)在ΔABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=41。
(1)求sinC的值;(2)求ΔABC的面积。
3.(本题满分14分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为23,且过点P(1,23)。
(1)求椭圆C的方程;(2)过点E(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点坐标为(m,n),求m的取值范围。
4.(本题满分14分)已知函数f(x)=31x3−21x2+cx+d有极值点x1,x2,且x1<x2,x1+2x2=0。
(1)求c的取值范围;(2)证明:f(x1)>41。
数学建模知识竞赛试题库一、填空题1.随着电子计算机的出现和科学技术的迅猛发展,数学的应用已不再局限于传统的物理领域,而正以空前的广度和深度逐步渗透到人类活动的各个领域。
生物、医学、军事、社会、经济、管理……,各学科、各行业都涌现出大量的实际课题,亟待人们去研究、去解决。
2.数学是研究现实世界数量关系和空间形式的科学。
3.数和形是数学研究的最基本的对象,自然界无不可以用数和形以及它们的发展和变化形态及规律加以描述的,因此数学是无时不在,无处不在的。
4.“科学技术是生产力”,而数学是生产力发展的基石和源泉。
5.当今信息时代的一个重要特点是数学的应用向一切领域渗透,高科技与数学的关系关系日益密切,产生了许多与数学相结合的新科学,如数学化学、数学生物学、数学地质学、数学社会学等。
6.“信息时代高科技的竞争本质上是数学的竞争”,“当今如此受到称颂的‘高科技’本质上是一种数学技术”。
7.数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
8.数学模型具有预测、判别、解释三大作用,其中预测功能是数学模型价值的最重要的体现。
9.数学模型的预测功能就是用数学模型的知识和规律预测未来的发展,为人们的行为提供指导。
10.数学模型的判别功能就是用数学模型来判断原来知识、认识的可靠性。
11.数学模型的解释功能就是用数学模型说明事物发生的原因。
12.一般来说,数学建模时为了构建数学模型而进行的准备、假设、建立、求解、分析、检验和应用的全过程。
13.数学建模的基本方法有:1)机理分析法2)数值分析法3)构造分析法4)现成数学法5)直观分析法14.建立数学模型的主要步骤是:(1)准备(2)假设(3)建模(4)求解(5)分析(6)检验(7)应用15.鉴别所建立数学模型好坏的方法就是让它接受实践的检验。
16.建模中常用的数学方法有初等模型、微分方程模型、差分方程模型、优化模型等。
1.求下列积分的数值解:⎰+∞+-⋅23223x x x dxfunction y = myfun(x)y = 1./(x.*(x.^2 - 3*x + 2 ).^(1/3)); warning off allQ = quad(@myfun,2,100000) Q = quad(@myfun,2,10000000)Q = quad(@myfun,2,1000000000000000) warning on当上限为100000,10000000,1000000000时, 定积分的值为x=1.4389,1.4396,1.4396。
因此,可以将1.4396作为此定积分的值。
2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ⎰=10),()(,画出]10,10[-∈h 时,)(h g 的图形。
syms t,syms h;f=exp(t+h)*cos(t+h)+(t+h)^2*sin(t+h); int(f,t,0,10) ans =1/2*exp(10+h)*cos(10+h)+1/2*exp(10+h)*sin(10+h)-98*cos(10+h)-20*cos(10+h)*h-cos(10+h)*h^2+20*sin(10+h)+2*sin(10+h)*h-1/2*exp(h)*cos(h)-1/2*exp(h)*sin(h)+cos(h)*h^2-2*cos(h)-2*sin(h)*hezplot('1/2*exp(10+h)*cos(10+h)+1/2*exp(10+h)*sin(10+h)-98*cos(10+h)-20*cos(10+h)*h-cos(10+h)*h^2+20*sin(10+h)+2*sin(10+h)*h-1/2*exp(h)*cos(h)-1/2*exp(h)*sin(h)+cos(h)*h^2-2*co s(h)-2*sin(h)*h',[-10,10])3.画出16)5(22=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。
初中数学建模题目一、代数方程建模1. 小明每天早上7点上学,他以每分钟70米的速度走到学校,需要30分钟。
请问小明家离学校的距离是多少?2. 一个化肥厂生产化肥,每生产一吨需要耗电40度。
如果电费每度为0.6元,那么生产100吨化肥需要多少电费?二、几何图形建模1. 一个矩形花园的长是15米,宽是8米。
要在花园四周种上花边,花边的总长度是多少?2. 一个三角形ABC的三边长分别为3、4、5厘米,求三角形的面积?三、概率统计建模1. 一盒子里有红球和白球共10个,其中红球有6个。
如果随机从盒子里摸出一个球,那么摸到红球的概率是多少?2. 小华在数学考试中得了85分,全班平均分是90分。
求小华的分数高于全班平均分的概率?四、函数关系建模1. 小明从家里出发去公园,走了1小时后,他走了3公里。
如果他的速度保持不变,请问他还需要多少时间才能到达公园?2. 一个水库的水位高度与降雨量有关,当降雨量为50毫米时,水位会上升5米。
求水库的水位高度与降雨量的函数关系。
五、三角函数建模1. 一个摩天轮的高度为40米,直径为50米。
当摩天轮转过一圈时,求最顶端点到地面的高度?2. 一个登山队要从山脚爬到山顶,已知山的斜度为60度,登山队爬了300米后,他们还有多远才能到达山顶?六、数列建模1. 一个自然数列的前两项分别为1和2,以后各项都是其前面各项的和。
求这个数列的第10项是多少?2. 一个商场销售某商品,每件商品的进价为8元,售价为10元。
每天售出50件,求一个月(30天)后,商场能赚多少钱?七、线性规划建模1. 某地计划建设一个生态公园,需要种上一些树木。
已知种一棵树需要花费100元,而生态公园的总预算是5000元。
问在满足预算限制的条件下,最多能种多少棵树?2. 某公司生产两种产品:产品A的单价为20元,利润率为20%;产品B的单价为15元,利润率为15%。
公司现有资金20万元,问应如何安排两种产品的生产量,才能使公司获得最大利润?。
【必刷题】2024七年级数学下册数学建模初步专项专题训练(含答案)试题部分一、选择题:1. 下列哪个选项是数学建模的基本步骤?()A. 提出问题B. 建立模型C. 求解模型D. 验证模型2. 在数学建模中,下列哪个环节是最关键的?()A. 数据收集B. 模型假设C. 模型求解D. 模型分析3. 以下哪个数学方法常用于数学建模?()A. 微积分B. 线性规划C. 概率论D. 数列4. 七年级下册数学建模初步中,以下哪个实例不属于数学建模?()A. 计算手机话费B. 估算公交车到站时间C. 制作班级成绩分布图D. 探究植物生长规律5. 在建立数学模型时,以下哪个步骤是必不可少的?()A. 确定变量B. 选择合适的数学工具C. 编写程序D. 绘制图表6. 以下哪个数学软件在数学建模中应用广泛?()A. WordB. ExcelC. PythonD. Photoshop7. 在数学建模中,以下哪个环节可以帮助我们更好地理解问题?()A. 数据分析B. 模型假设C. 模型检验D. 模型推广8. 以下哪个数学方法不适用于解决线性规划问题?()A. 图解法B. 代数法C. 微分法D. 整数规划法9. 在数学建模中,以下哪个环节需要对模型进行优化?()A. 模型建立B. 模型求解C. 模型检验D. 模型应用10. 以下哪个数学问题适合用数学建模方法解决?()A. 计算圆的面积B. 解一元二次方程C. 探究温度与时间的关系D. 制作班级课程表二、判断题:1. 数学建模就是用数学方法解决实际问题。
()2. 在数学建模过程中,数据收集是可有可无的环节。
()3. 数学建模中,模型假设越复杂,越能准确地描述实际问题。
()4. 数学建模的目的是为了找到唯一正确的答案。
()5. 在数学建模中,模型的检验和评价是不可或缺的环节。
()三、计算题:1. 已知某物体运动的距离与时间的关系为s=5t+2,其中s为距离(米),t为时间(秒)。
高考数学试卷一、单选题1.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=2.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=- 3.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.56.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.307.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞8.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位9.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .63二、填空题13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
数学建模习题习题一1.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。
试构造模型并求解。
2.模仿1.4节商过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河方案,并使渡河次数尽量地少。
3.利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型:(1)分段的指数增长模型。
将时间分为若干段,分别确定增长率r 。
(2)阻滞增长模型。
换一种方法确定固有增长率r 和最大容量m x 。
4.说明1.5节中Logistic 模型(9)可以表为)(01)(t t r mex t x --+=,其中0t 是人口增长出现拐点的时刻,并说明0t 与r, m x 的关系.5.假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+∆t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
6.某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。
次日早8:00沿同一条路径下山,下午5:00回旅店。
某乙说,甲必在二天中的同一时刻经过路径中的同一地点。
为什么?7.37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。
问共需进行多少场比赛,共需进行多少轮比赛。
如果是n支球队比赛呢?8.甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
9.某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家,一旦他提前下班搭早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了10分钟。
初中数学模型试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方是25,那么这个数是()A. 5B. -5C. 5或-5D. 以上都不对答案:C2. 一个等腰三角形的两边长分别为4和6,那么第三边的长度是()A. 2B. 4C. 6D. 无法确定答案:C3. 如果一个角的补角是120°,那么这个角的度数是()A. 60°B. 30°C. 120°D. 180°答案:B4. 计算下列表达式的值:(2x+3)(x-1)()A. 2x^2 - x + 3B. 2x^2 - 5x + 3C. 2x^2 + x - 3D. 2x^2 - x - 3答案:B5. 一个数的绝对值是5,这个数可能是()A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是()A. 5B. 7C. 9D. 12答案:A7. 以下哪个选项是不等式的解集:2x - 3 > 5()A. x > 4B. x < 4C. x > 2D. x < 2答案:A8. 一个数的立方是-8,那么这个数是()A. -2B. 2C. -2或2D. 以上都不对答案:A9. 一个圆的半径是3,那么这个圆的面积是()A. 9πB. 18πC. 27πD. 36π答案:C10. 计算下列表达式的值:(3x-2)^2()A. 9x^2 - 12x + 4B. 9x^2 + 12x + 4C. 9x^2 - 6x + 4D. 9x^2 + 6x + 4答案:A二、填空题(每题4分,共20分)11. 如果一个数的平方根是3,那么这个数是______。
答案:912. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
答案:1113. 一个三角形的内角和是______。
答案:180°14. 一个数的相反数是-7,那么这个数是______。
数学模型选修课考查题
1、某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿。
次日早8:00沿同一路径下山,下午5:00回到旅店。
某乙说,甲必在两天中的同一时刻经过路径中的同一地点。
为什么?
2、如图,用宽ω的布条缠绕直径d 的圆柱形管
道,要求布条不重叠,问布条与管道轴线的夹
角α应多大?若知道管道长度l ,需用多长布
条(可考虑两端的影响)?如果管道是其它形
状(如截面是6边形,椭圆等等)呢?
3、建立不允许缺货的生产销售存贮模型。
设生产速率为常数k ,销售速率为常数r ,k r <。
在每个生产周期T 内,开始的一段时间(00t T <<)一边生产一边销售,后
来的一段时间(0T t T <<)只销售不生产,画出贮存量()q t 的图形。
设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期。
讨论k r 和k r ≈的情况。
4、某公司将4种不同含硫量的液体原料(分别记为甲、乙、丙、丁)混合生产两种产品(分别记为A ,B )。
按照生产工艺的要求,原料甲、乙、丁必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B 。
已知原料甲、乙、丙、丁的含硫量分别是3,1,2,1(%),进货价格分别为6,16,10,15(千元/吨);产品A ,B 的含硫量分别不能超过2.5,1.5(%),售价分别为9,15(千元/吨)。
根据市场信息,原料甲、乙、丙的供应没有限制,原料丁的供应量最多为50吨;产品A ,B 的市场需求量分别为100吨、200吨。
问应如何安排生产?
5、用层次分析法解决一个实际问题,可参考下列问题:
(1) 学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。
可分
为相对评价和绝对评价两种情况讨论。
(2) 你要购置一台个人电脑,考虑功能、价格等的因素,如何做出决策。
(3) 为大学毕业的青年建立一个选择志愿的层次结构模型。
(4) 你的家乡准备集资兴办一座小型饲养场,是养猪,还是养鸡、养鸭、养兔……。