2017届高考数学一轮复习第六章数列第四节数列求和课后作业理
- 格式:doc
- 大小:91.00 KB
- 文档页数:6
数列中的构造问题数列中的构造问题是历年高考的一个热点内容,主、客观题均可出现,一般通过构造新的数列求数列的通项公式.题型一 形如a n +1=pa n +f (n )型命题点1 a n +1=pa n +q (p ≠0,1,q ≠0)例1 (1)数列{a n }满足a n =4a n -1+3(n ≥2)且a 1=0,则a 2 024等于( )A .22 023-1B .42 023-1C .22 023+1D .42 023+1(2)已知数列{a n }的首项a 1=1,且1a n +1=3a n +2,则数列{a n }的通项公式为__________.听课记录:______________________________________________________________ ________________________________________________________________________ 命题点2 a n +1=pa n +qn +c (p ≠0,1,q ≠0)例2 已知数列{a n }满足a n +1=2a n -n +1(n ∈N +),a 1=3,求数列{a n }的通项公式. ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 命题点3 a n +1=pa n +q n (p ≠0,1,q ≠0,1)例3 (1)已知数列{a n }中,a 1=3,a n +1=3a n +2·3n +1,n ∈N +.则数列{a n }的通项公式为() A .a n =(2n +1)·3n B .a n =(n -1)·2nC .a n =(2n -1)·3nD .a n =(n +1)·2n(2)在数列{a n }中,a 1=1,且满足a n +1=6a n +3n ,则a n =________.听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 形式 构造方法a n +1=pa n +q 引入参数c ,构造新的等比数列{a n -c }a n +1=pa n +qn +c 引入参数x ,y ,构造新的等比数列{a n +xn +y }a n +1=pa n +q n 两边同除以q n +1,构造新的数列⎩⎨⎧⎭⎬⎫a n q n跟踪训练1 (1)在数列{a n }中,a 1=1,a n +1=2a n +2n .则数列{a n }的通项公式a n 等于( )A .n ·2n -1B .n ·2nC .(n -1)·2nD .(n +1)·2n(2)(2023·黄山模拟)已知数列{a n }满足a 1=1,(2+a n )·(1-a n +1)=2,设⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,则a 2 023(S 2 023+2 023)的值为( )A .22 023-2B .22 023-1C .2D .1(3)已知数列{a n }满足a n +1=2a n +n ,a 1=2,则a n =________.题型二 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1)例4 (1)已知数列{a n }满足:a 1=a 2=2,a n =3a n -1+4a n -2(n ≥3),则a 9+a 10等于( )A .47B .48C .49D .410(2)已知数列{a n }满足a 1=1,a 2=2,且a n +1=2a n +3a n -1(n ≥2,n ∈N +).则数列{a n }的通项公式为a n =________.听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 可以化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两个根,若1是方程的根,则直接构造数列{a n -a n -1},若1不是方程的根,则需要构造两个数列,采取消元的方法求数列{a n }.跟踪训练2 若x =1是函数f (x )=a n +1x 4-a n x 3-a n +2x +1(n ∈N +)的极值点,数列{a n }满足a 1=1,a 2=3,则数列{a n }的通项公式a n =________.题型三 倒数为特殊数列⎝⎛⎭⎫形如a n +1=pa n ra n+s 型 例5 (1)已知数列{a n }满足a 1=1,a n +1=a n 4a n +1(n ∈N +),则满足a n >137的n 的最大取值为( ) A .7 B .8 C .9 D .10(2)(多选)数列{a n }满足a n +1=a n 1+2a n (n ∈N +),a 1=1,则下列结论正确的是( ) A.2a 10=1a 3+1a 17B.1{2}n a 是等比数列 C .(2n -1)a n =1 D .3a 5a 17=a 49 听课记录:______________________________________________________________ ________________________________________________________________________思维升华两边同时取倒数转化为1a n+1=sp·1a n+rp的形式,化归为b n+1=pb n+q型,求出1a n的表达式,再求a n.跟踪训练3已知函数f(x)=x3x+1,数列{a n}满足a1=1,a n+1=f(a n)(n∈N+),则数列{a n}的通项公式为____________.。
高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
§6.4数列的通项及数列求和基础知识自主学习要点梳理1 •若已知数列{a}W/£a n+1-a n=f (n),且f (1) + f (2) +…+f (n)可求,则可用—求数列的通项和累加法2•若已知数列{a}满足=f (n),且f⑴・f(2)・…・f (n)可求,则可用_求数列的通项a..©+1累积法推导方法:乘公比,错位相减法.■ % —jq\_q\_q3 •等差数列前n 项和S 产推导方法:— 等比数列前n 项和n(a x +a n )n(n-V). na x H d[到序相加法q#1.4 •常见数列的前n项和(1)(2)(3);n(n + V) 2+4+6+…+2n= _____ ; 21+3+5+...+(2n-1)=_; n2+n*1+2+3+…+n=(4) 12+22+32+..+n2= ;n2(5) 13+23+33+.. +n3=«(n + l)(2n + l)⑷+ 1)]22j5. (1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(4)倒序相加:例如,等差数列前n项和公式的推导.6 •常见的拆项公式有⑴1n(n +l)1 1n n + 1"2)(2M-1)(2〃 + 1) 2n +1⑶]Qn + Yn +1=、/ H +1—、ft ・基础自测1 •已知等比数^ij{a n},a1=3,>4a1> 2a2> 83成等差数列,则a34-a4+a5等于()A.33B.72C.84D.189解析由题意可设公比为q,贝!Ia2=a1q,a3=a1q2, •/4a2=4a14-a3,-,4a1q=4a14-a1q2,Xa1=3,/.q=2 ・ a3+a4+a5=a1q2(1+q4-q2)=3X4X(1+2+4)=84 ・2如蹈鶯肆严,…,ag…是首项为1,公比为3的等A. B. Cc.23〃+3 2解析时二先®)+ (a3-a2)3* ^(a^)2=a n=2lx(l_3")1一3 '_3〃一1 "" ■•2=n2f-F — 1 1 —i2 222〃 321, 1 164=5 +M,AA2~1 +23-已知数列6}的通项公式是a 产,其中前侦柚卜A.13 劇64解析*-*a n = 则项数n 等于)C.9D.62"D1 戶, 1 心+前,.*/6n=n -4•若数列{aj 的通项公式为a n =2n +2n-1,K>J 数列{a ;}的前n 项和为A.2n +n 2-1 C.2n+1+n 2-2解析S n =2(1_2") | 卅(1 + 2—1)B.2n+1+n 2-1 D.2n +n 2-2=2n+1-2+n 2.5擞列J_ _! _____ 5麺1项________ ! _______ A 2・5'5・8'8・11,© —1)・(3〃 + 2)‘和为()BA. B.n C・——.n 6n + 43n + 2解析餾数列通项公式71 + 16〃+ 4 n + 2得前n项和1 =1 _______________ 1(3〃一1)•⑶2 + 2) _ 3 3〃一1 _3n + 2c1Z1 1 1 1 1 1 1 1S =—( ------- 1 ------- 1 ---------nA H -------------------------- "3 2 5 5 8 8 11 3〃一1 3n + 2= 1(1__1 “ 〃 .32 3n + 2 6n + 4题型分类深度剖析题型一由递推公式求通项公式【例1】分别求满足下列条件的数列的通项公式.(1)设{a」是首项为1的正项数列,且(n+1) +a n+1a n=O(n=1,2,3,...);⑵已知数列代}满足酩尸,a1=2.依据已知数列的递推关系适当地进行变形"+1 n的差百%或通项的商_2—匕La n + 2的规律融H-12 2%卄1 _ na n可寻找数列的通项解(1)方法一•・•数列{aj是首项为1的正项数列,#0/.令=t,/.(n+1)t2+t-n=0, a n為+i・•・[伽(t+1)=0,・・t=。
2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。
第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。
§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。
第04讲 数列求和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析题型一:裂项相消求和法 题型二:错位相减求和法 题型三:分组求和法 题型四:倒序相加求和法第四部分:高考真题感悟1.公式法(1)等差数列前n 项和公式11()(1)22n n n a a n n dS na +-==+; (2)等比数列前n 项和公式111(1)11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩2.裂项相消求和法:裂项相消求和法就是把数列的各项变为两项之差,使得相加求和时一些正负项相互抵消,前n 项和变成首尾若干少数项之和,从而求出数列的前n 项和.①21111(1)1n n n n n n ==-+++②1111()()n n k k n n k=-++③211111()41(21)(21)22121n n n n n ==---+-+④1111()(1)(2)2(1)(1)(2)n n n n n n n =-+++++1k= 3.错位相减求和法:错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 4.分组求和法:如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法. 5.倒序相加求和法:即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.1.(2022·福建·厦门一中高二阶段练习)若数列{}n a 满足()11n a n n =+,则{}n a 的前2022项和为( )A .12023B .20222023C .12022D .20212022【答案】B 解:由题得()11111n a n n n n ==-++,所以{}n a 的前2022项和为11111112022112232022202320232023-+-++-=-=. 故选:B2.(2022·全国·高三专题练习(文))若数列{an }的通项公式为an =2n +2n -1,则数列{an }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +n -2 D .2n +1+n 2-2【答案】D由题可知:设数列{an }的前n 项和为n S 所以12n n S a a a =+++即()()22221321n n n S =+++++++-所以()212[1(21)]122n n n n S -+-=+-故1222n n S n +=-+故选:D3.(2022·全国·高三专题练习(文))设4()42xx f x =+,1231011111111f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A .4B .5C .6D .10【答案】B由于()()1144114242x xxx f x f x --+-=+=++,故原式11029565111111111111f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 4.(2022·江苏·高二课时练习)求和:()10132kk =+∑.【答案】2076()10231013232+++3+2+++kk =+=+⋅⋅⋅∑()(32)()(32)231030(2222)=++++⋅⋅⋅+102(12)3012-=+- 113022=-+ 2076=题型一:裂项相消求和法例题1.(2022·浙江省淳安中学高二期中)数列的前2022项和为( )A B C 1 D 1【答案】B记的前n项和为nT,则2022140452T=+)112=;故选:B例题2.(2022·河南安阳·高二阶段练习(理))已知{}n a是递增的等差数列,13a=,且13a,4a,1a成等比数列.(1)求数列{}n a的通项公式;(2)设数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和为nT,求证:11156nT≤<.【答案】(1)21na n=+(2)见解析.(1)设{}n a的公差为d,因为13a,4a,1a成等比数列,所以()()222411333331220a a a d d d d=⋅⇒+=+⇒-=,因为{}n a是递增,所以0d>,故2d=,所以21na n=+.(2)()()111111212322123n na a n n n n+⎛⎫==-⎪++++⎝⎭,所以11111111112355721232323nTn n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为123n+单调递减,所以n T单调递增,故当1n=时,min11()15nT T==,而111123236n nT⎛⎫=-<⎪+⎝⎭,故11156nT≤<.例题3.(2022·辽宁·沈阳市第八十三中学高二阶段练习)已知n S为等差数列{}n a的前n项和,321S=,555S=.(1)求n a、n S;(2)若数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和n T,求满足225nT>的最小正整数n.【答案】(1)an=4n﹣1,22nS n n=+(2)19(1)设等差数列{an }的公差为d ,则11323212545552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,即117211a d a d +=⎧⎨+=⎩,解得134a d =⎧⎨=⎩,故()34141n a n n =+-=-,2(341)22n n n S n n +-==+ (2)由(1)得,1111111414344143n n a a n n n n +⎛⎫=⋅=- ⎪-+-+⎝⎭.故111111111...437471144143n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1114343129n n n ⎛⎫=-= ⎪++⎝⎭,令225n T >有129225n n +>,即241825n n >+,解得18n >,故满足满足225nT >的最小正整数为19例题4.(2022·全国·高三专题练习)已知正项数列{}n a 的前n 项和n S 满足:12(N )n n S a a n +=-∈,且123+1,a a a ,成等差数列.(1)求数列{}n a 的通项公式; (2)令()()()2221N log log n n n b n a a ++=∈⋅,求证:数列{}n b 的前n 项和34n T <.【答案】(1)()2N nn a n +=∈(2)证明见解析(1)由题意:()12,n n S a a n N +=-∈,()-1-112,2,N n n S a a n n +∴=-≥∈ 两式相减得到-1=2(2,)n n a a n n N +≥∈,又0n a >,{}n a ∴是首项为1a ,公比为2的等比数列, 再由123+1,a a a ,成等差数列得,得()2132+1a a a =+, 即()11122+14a a a =+,则1=2a ,{}n a ∴的通项公式为()2N n n a n +=∈.(2)由题意知,22211111()(2)22log 2log 2n n n b n n n n +===-++⋅1111111111(1)232435112n T n n n n ∴=-+-+-++-+--++ 11113111122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭3N ,4n n T +∈∴<例题5.(2022·河南濮阳·高二期末(文))已知数列{}n a 的前n 项和为n S ,12a =,且25a =,()*11232,n n n S S S n n +--+=≥∈N .(1)求数列{}n a 的通项公式;(2)已知n b 是n a ,1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)31n a n =-(2)()232nn +(1)当2n ≥时,()()113n n n n S S S S +----=, 故13n n a a +-=,又12a =,且25a =, 213a a -=,满足13n n a a +-=,故数列{}n a 为公差为3的等差数列,通项公式为()21331n a n n =+-⨯=-,(2)由题意得:()()23132n b n n =-+,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 则()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭ 例题6.(2022·海南华侨中学高二期中)设等比数列{}n a 满足124a a +=,318a a -=. (1)求{}n a 的通项公式;(2)若()()112311n n n n b a a -+⨯=++,记数列{}n b 的前n 项和为n T ,求n T 的取值范围.【答案】(1)13-=n n a (2)11,42⎡⎫⎪⎢⎣⎭(1)解:设公比为q ,由124a a +=,318a a -=,所以1121148a a q a q a +=⎧⎨-=⎩,解得11a =,3q =, 所以13-=n n a .(2)解:由(1)及()()112311n n n n b a a -+⨯=++,所以()()111231131313131n n n n n n b ---⨯==-++++,所以0112231111111113131313131313131n n n T -=-+-+-++-++++++++011113131231n n =-=-+++ 因为()()1111111111123023123131313131n n n n n n n n n T T -+++-⨯⎛⎫⎛⎫-=---=-=>⎪ ⎪++++++⎝⎭⎝⎭,即n T 单调递增, 所以114n T T ≥=,又1112312n n T =-<+,所以1142n T ≤<,即11,42n T ⎡⎫∈⎪⎢⎣⎭;题型二:错位相减求和法例题1.(2022·全国·高三专题练习) 1232482n nnS =++++=( ) A .22n n n -B .1222n n n +--C .1212n n n +-+D .1222n nn +-+【答案】B 由1232482n nn S =++++, 得23411111112322222n n S n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234111111112222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111222211222212n n n n n n n n n ++++⎛⎫- ⎪--⎛⎫⎛⎫⎝⎭=-=--⋅= ⎪ ⎪⎝⎭⎝⎭-.所以1222n n nn S +--=. 故选:B.例题32.(2022·青海玉树·高三阶段练习(理))已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,且111a b ==,32312S b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若1n n n c a b +=,求数列{}n c 的前n 项和n T .【答案】(1)32n a n =-,14n n b -=(2)()1414n n T n +=+-(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 由题意得:13312a d +=,解得:3d =, 所以()13132n a n n =+-=-, 由2312b =得:24b =,所以214a q a ==, 所以14n n b -=(2)()1324nn n n c a b n +==-⋅, 则()2344474324n n T n =+⨯+⨯++-①, ()2341444474324n n T n +=+⨯+⨯++-②,两式相减得:()23413434343434324n n n T n +-=+⨯+⨯+⨯++⨯--()()111164433241233414n n n n n +++-=+⨯--=-+--,所以()1414n n T n +=+-例题3.(2022·江苏泰州·模拟预测)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且22n n S a =-,2log =n n n b a a .(1)求数列{}n a 的通项公式; (2)求证:当2n ≥时,4n n T S ≥+. 【答案】(1)2n n a =(2)证明见解析(1)因为22n n S a =-,所以1122a a =-,则12a =, 当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,化简得12n n a a -=,所以数列{}n a 是以2为首项,2为公比的等比数列,因此2n n a = (2)()12122212n n n S +-==--,22log 2log 22n n nn n n b a a n =⋅=⋅=⋅,则212222nn T n =⨯+⨯++⨯……, 所以231212222n n T n +=⨯+⨯++⨯……,两式相减得()231122222n n n T n ++=-⨯-+++⋅……,即()()231121222222212n nn n n T n n ++-=-++++⋅=-+⋅+-……,故()1122n n T n +=-+.所以当2n ≥时,()()()111122222244n n n n n T S n n +++-=-+--=-+≥,所以4n n T S ≥+.例题4.(2022·宁夏·银川一中模拟预测(文))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .【答案】(1)21n a n =-,12n n b -=;(2)1242n n n S -+=-. (1)依题意,等比数列{}n b 的公比322b q b ==,则有2122n n n b b q --==,因此,111a b ==, 由851a b +=得85115a b =-=,等差数列{}n a 的公差81281a a d -==-,1(1)21n a a n d n =+-=-, 所以数列{}n a 、{}n b 的通项公式分别为:21n a n =-,12n n b -=.(2)由(1)知,111222n n n n n a n nc b -++===, 则23123412222n n n S -=+++++, 于是得23111231222222n n nn nS --=+++++, 两式相减得:23111()11112212122222211222nn n n nn n n S n --+=+++++-=-=--, 所以1242n n n S -+=-. 例题5.(2022·辽宁·建平县实验中学高二期中)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且26S =,314S =. (1)求数列{}n a 的通项公式; (2)若21n nn b a -=,求数列{}n b 的前n 项和n T . 【答案】(1)()*2n n a n =∈N (2)2332n nn T +=-(1)设等比数列{}n a 的公比为q ,当1q =时,1n S na =,所以2126S a ==,31314S a ==,无解.当1q ≠时,()111n n a q S q -=-,所以()()21231316,1114.1a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩解得12a =,2q 或118a =,23q =-(舍).所以()1*222n n n a n -=⨯=∈N .(2)21212n n n n n b a --==.所以231135232122222n n nn n T ---=+++++①,则234111352321222222n n n n n T +--=+++++②,①-②得,2341112222212222222n n n n T +-=+++++-234111111212222222nn n +-⎛⎫=+++++- ⎪⎝⎭1111111213234221222212-++⎛⎫- ⎪-+⎝⎭=+⨯-=--n n n n n .所以2332n nn T +=-. 题型三:分组求和法例题1.(2022·新疆克孜勒苏·高一期中)数列112,134 ,158 ,1716 , ...,1(21)2n n -+ ,的前n 项和n S 的值等于( )A .2112nn +-B .21212nn n -+-C .22112n n -+-D .2112nn n -+-【答案】A可得()231111135212222n n S n =++++-+++++()2111121122112212n n n n n ⎛⎫- ⎪+-⎝⎭=+=+--.故选:A.例题2.(2022·辽宁·沈阳市第五十六中学高二阶段练习)数列{n a }中,1(1)(43)n n a n -=--,前n 和为n S ,则6S 为( ) A .-12 B .16 C .-10 D .12【答案】A解:因为1(1)(43)n n a n -=--,所以()()()6123456=+++++S a a a a a a ,()()()159131721=-+-+-,()34=⨯-, 12=-,故选:A例题3.(2022·安徽·合肥一六八中学模拟预测(文))设数列{}n a 的前n 项和为n S ,已知1222,(1)2n n n a a a -+=+-=,则60S =_________. 【答案】960由12(1)2n n n a a -++-=,当n 为奇数时,有22n n a a ++=;当n 为偶数时,22n n a a +-=, ∴数列{}n a 的偶数项构成以2为首项,以2为公差的等差数列, 则()()601357575924685860S a a a a a a a a a a a a =+++++++++++++3029152********⨯=⨯+⨯+⨯=, 故答案为:960.例题4.(2022·辽宁·鞍山市华育高级中学高二期中)已知数列{}n a 是等差数列,{}n b 是等比数列,23b =,39b =,11a b =,144a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和n S . 【答案】(1)21n a n =-,13n n b -=(2)2312n n S n -=+(1)设等比数列{}n b 的公比为q ,则323b q b ==,2123n n n b b q --∴==; 又111a b ==,14427a b ==,设等差数列{}n a 的公差为d ,则141213a a d -==, ()12121n a n n ∴=+-=-.(2)由(1)得:()1213n n c n -=-+;()()()()112121321133n n n n S a a a b b b n -∴=++⋅⋅⋅++++⋅⋅⋅+=++⋅⋅⋅+-+++⋅⋅⋅+212113312132n n n n n +---=⋅+=+-. 例题5.(2022·湖北·安陆第一高中高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为正项等比数列,满足213a b ==,424S S =,26b +是1b 与3b 的等差中项. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =+,n T 是数列{}n c 的前n 项和,求n T . 【答案】(1)21n a n =-,3n n b =;(2)2113322n n T n +=+⨯-.(1)设等差数列{}n a 的公差为d ,依题意可知: ()21111314324422a a d a d a d a d =+=⎧=⎧⎪⇒⎨⎨⨯=+=+⎩⎪⎩, 所以数列{}n a 的通项公式为()12121n a n n =+-=-,设等比数列{}n b 的公比为q ,依题意可知:()21326b b b +=+,又13b =,所以()2223633230q q q q +=+⇒--=,又0q >,∴3q =,所以数列{}n b 的通项公式为1333n nn b -=⨯=;(2)由(1)可知:()213nn n n c a b n =+=-+所以()()()()()11221212n n n n n T a b a b a b a a a b b b =++++++=+++++++()()2131312113321322nn n n n+-+-=+=+⨯--. 例题6.(2022·重庆八中模拟预测)在等比数列{}n a 中,123,,a a a 分别是下表第一,第二,第三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(1)写出123,,a a a ,并求数列n a 的通项公式;(2)若数列{}n b 满足2(1)log nn n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【答案】(1)14a =,28a =,316a =,12n n a +=;(2)2224n n ++-.(1)由题意知:14a =,28a =,316a =, 因为{}n a 是等比数列,所以公比为2,所以数列{}n a 的通项公式12n n a +=.(2)∵()11122(1)log (1)log (12221)n n nn n n n n n b a a n +++=++-=+-=+-,∴21232n n S b b b b =++++()()23212222345221n n n +=++++⎡-+-+--++⎤⎣⎦()22222122412n n n n +-=+=+--,题型四:倒序相加求和法例题1.(2022·江西·南城县第二中学高二阶段练习(文))德国大数学家高斯年少成名,被誉为数学届的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008 B .1009 C .2018 D .2019【答案】B解:因为4()42xx f x =+,且114444()(1)1424242244--+-=+=+=+++⨯+x x x xx x xf x f x , 令1232018()()()()2019201920192019=++++S f f f f , 又2018201720161()()()()2019201920192019=++++S f f f f , 两式相加得:212018=⨯S , 解得1009S =, 故选:B例题2.(2022·江西九江·高二期末(文))德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行123100++++的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列298299-=-n n a n ,则1298+++=a a a ( )A .96B .97C .98D .99【答案】C 令1297989694969897959597=++++=++++S a a a a , 9897219896949697959597=++++=++++S a a a a , 两式相加得:969496989896949629795959797959597S ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭96989496969498969829797959595959797⎛⎫⎛⎫⎛⎫⎛⎫=++++++++=⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴98S =, 故选:C .例题3.(2022·全国·高三专题练习)已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的前20项和为( )A .100B .105C .110D .115【答案】D因为函数()y f x =满足()(1)1f x f x +-=, 121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭①, 121(1)(0)n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②, 由①+②可得21n a n =+,12n n a +∴=, 所以数列{}n a 是首项为1,公差为12的等差数列,其前20项和为20120121152+⎛⎫+ ⎪⎝⎭=. 故选:D.例题4.(2022·辽宁·沈阳市第一二〇中学高二期中)已知定义在R 上的函数()320237338982022f x x ⎛⎫=-+ ⎪⎝⎭,则12320221949194919491949f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭___________. 【答案】73由()320237338982022f x x ⎛⎫=-+ ⎪⎝⎭,得3320232023202373202373194919493898202238982022f x x x ⎛⎫⎛⎫⎛⎫-=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()33202320237320237373194938982022389820221011f x f x x x ⎛⎫⎛⎫⎛⎫+-=-++-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设12320221949194919491949S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 20222021202011949194919491949S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, 由+①②,得 1202222021202212194919491949194919491949S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+ 即7373732101110111011S =++⋅⋅⋅+,于是有73220221011S =⨯,解得73S =, 所以1232022731949194919491949f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:73.例题5.(2022·黑龙江·鹤岗一中高二阶段练习)已知函数()1e e xx f x =+,数列{}n a 为等比数列,0n a >,1831a =,则()()()()123365ln ln ln ln f a f a f a f a ++++=______.【答案】3652∵()e e 1xx f x =+,∴()()e e e e 1)e (e 1)2e e 1e 1e 1(e 1)(e (e 1)2e x x x x x x x xxx x x x xf x f x -------++++++-=+===++++++. ∵数列{}n a 是等比数列,∴2136523641831a a a a a ====,∴2136523643651183ln ln ln ln ln ln ln 0a a a a a a a +=+==+==.设()()()36512365ln ln ln S f a f a f a =+++,① 则()()()3653653641ln ln ln S f a f a f a =+++,②①+②,得()()()()()()()()()3651365236436512ln ln ln ln ln ln S f a f a f a f a f a f a =++++++365=,∴3653652S =. 故答案为:3652例题6.(2022·全国·高二课时练习)已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005.因为()442x x f x =+,所以()1144214242442x x xx f x ---===++⨯+, 所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 两式相加得22010S =,故1005S =.例题7.(2022·全国·高三专题练习)已知函数()21122f x x x =+,数列{}n a 的前n 项和为n S ,点()()*,N n n S n ∈均在函数()f x 的图象上,函数()442x x g x =+.(1)求数列{}n a 的通项公式; (2)求()()1g x g x +-的值;(3)令()*2021n n a b g n ⎛⎫=∈ ⎪⎝⎭N ,求数列{}n b 的前2020项和2020T .【答案】(1)n a n =(2)1(3)1010(1)因为点()()*,N n n S n ∈均在函数()f x 的图象上,所以21122n S n n =+,当2n ≥时,()()2211111112222n n n a S S n n n n n -=-=+----=, 当1n =时,111a S ==,适合上式,所以n a n =. (2)因为()442x x g x =+,所以()114214242x x xg x ---==++, 所以()()42114242x x x g x g x +-=+=++.(3)由(1)知n a n =,可得20212021n n a n b g g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以2020122020122020202120212021T b b b g g g ⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,① 又因为2020202020191202020191202120212021T b b b g g g ⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,② 因为()()11g x g x +-=,所以①+②,得202022020T =, 所以20201010T =.1.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341123212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和. 【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. (1)设{}n a 的公比为q ,1a 为23,a a 的等差中项, 212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 3.设数列{}n a 满足13a =,134n n a a n +=-.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{2}nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+. 证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n n n n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n na n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+. [方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211nn n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n n n a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22nn S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.。
第4节 数列求和【最新考纲】 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.【高考会这样考】 1.考查等差、等比数列的求和;2.以数列求和为载体,考查数列求和的各种方法和技巧;3.综合考查数列和集合、函数、不等式、解析几何、概率等知识的综合问题.要 点 梳 理1.求数列的前n 项和的方法(1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2 =na 1+n (n -1)2d . ②等比数列的前n 项和公式(ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.2.常见的裂项公式(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n . [友情提示]1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.应用裂项相消法时,应注意消项的规律具有对称性,即前面剩第几项则后面剩倒数第几项.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.答案 (1)√ (2)√ (3)× (4)√2.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.答案 C3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n +n -2 解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2. 答案 C4.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =2 0182 019,则n 等于________. 解析 a n =1n (n +1)=1n -1n +1, S n =a 1+a 2+…+a n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. 令n n +1=2 0182 019,得n =2 018. 答案 2 0185.若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n =4,所以2a n =(f (0)+f (1))+⎝⎛⎭⎫f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+(f (1)+f (0))=4(n +1),即a n =2(n +1).答案 a n =2(n +1)题型分类 考点突破考点一 公式法求和【例1】 已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解 (1)设{a n }公差为d ,{b n }公比为q ,由题意得⎩⎪⎨⎪⎧-1+d +q =2,-1+2d +q 2=5,解得⎩⎪⎨⎪⎧d =1,q =2或⎩⎪⎨⎪⎧d =3,q =0(舍去), 故{b n }的通项公式为b n =2n -1.(2)由已知得⎩⎪⎨⎪⎧-1+d +q =2,1+q +q 2=21,解得⎩⎪⎨⎪⎧q =4,d =-1或⎩⎪⎨⎪⎧q =-5,d =8. ∴当q =4,d =-1时,S 3=-6;当q =-5,d =8时,S 3=21.规律方法 1.数列求和应从通项入手,若无通项,则先求通项.2.通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.【变式练习1】 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解 (1)设{a n }的公差为d ,由a 1=1,a 2+a 4=10得1+d +1+3d =10,所以d =2,所以a n =a 1+(n -1)d =2n -1.(2)由(1)知a 5=9.设{b n }的公比为q ,由b 1=1,b 2·b 4=a 5得qq 3=9,所以q 2=3,所以{b 2n -1}是以b 1=1为首项,q ′=q 2=3为公比的等比数列,所以b 1+b 3+b 5+…+b 2n -1=1·(1-3n )1-3=3n -12. 考点二 分组转化法求和【例2】 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【变式练习2】 已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2, 解得q =2或q =-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1, 所以a 1·1-261-2=63,得a 1=1. 所以a n =2n -1. (2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2. 考点三 裂项相消法求和【例3】 已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2.(1)求数列{a n }的通项公式;(2)记b n =2a n a n +1,设{b n }的前n 项和为S n .求最小的正整数n ,使得S n >2 0182 019. 解 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *. (2)因为b n =2a n a n +1=12n -1-12n +1, 所以S n =⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=1-12n +1,令1-12n +1>2 0182 019, 解得n >1 009,故取n =1 010.规律方法 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【变式练习3】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n . 解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3, 解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2=34-12⎝⎛⎭⎫1n +1+1n +2. 考点四 错位相减法求和(易错警示)【例4】 求和:1+2x +3x 2+…+nx n -1.解 当x =1时,S n =1+2+3+…+n =n (n +1)2; 当x ≠1时,设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+…+(n -1)x n -1+nx n ,② ①-②得(1-x )S n =1+x +x 2+…+x n -1-nx n .③即S n =1-x n (1-x )2-nx n1-x. 规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.2.在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.易错警示 (1)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.(2)在利用等比数列求和公式求和时,应注意分清是n 项还是n -1项.【变式练习4】 已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5.(1)求数列{a n }的通项公式; (2)设b n =a n ·3n ,求数列{b n }的前n 项和T n .解 (1)由题意,得S n n=a 1+n -1,即S n =n (a 1+n -1), 所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5.解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,n =1时也满足.故a n =2n -1.(2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n ,则3T n =1×32+3×33+…+(2n -1)·3n +1. ∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1, 则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1=(2-2n )·3n +1-6, 故T n =(n -1)·3n +1+3.错误! 课后练习A 组 (时间:25分钟)一、选择题1.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100=( )A .50B .75C .100D .125解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d =50+50×12=75.答案 B2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.答案 B4.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,S 6=5+6+1+(-5)+(-6)+(-1)=0. 又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.答案 C5.已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( ) A. 2 016-1 B. 2 017-1C. 2 018-1D. 2 018+1 解析 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n =n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.答案 C二、填空题6.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1). 答案 n (n +1)7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n=________.解析 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0,又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列,故S n =2(1-3n )1-3=3n -1. 答案 3n -18.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为________.解析 各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为 15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个).答案 1 360三、解答题9.已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63.(1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n .解(1)由题意,得⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2, ∴{a n }的通项公式为a n =2n +1.(2)由(1)得b n =2a n +a n =22n +1+(2n +1)=2×4n +(2n +1),所以T n =2×(4+42+…+4n )+(3+5+…+2n +1)=2×4(1-4n )1-4+n (3+2n +1)2=83(4n -1)+n 2+2n . 10.S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,则2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n 3(2n +3). B 组 (时间:20分钟)11.在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N *,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,25 B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D .(-∞,1] 解析 由已知,a n +(-1)n =[3+(-1)1]·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N *恒成立,∴λ≤23; 当n 为奇数时, a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1,由a 1+a 2+…+a n ≥λa n +1得,λ≤2n +1-12n +1-1=1,对n ∈N *恒成立, 综上可知λ≤23.答案 C12.已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =________.解析 因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7,所以a k =78.答案 7813.设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎨⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,同时a 2=3a 1,∴数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,此时T 2符合,T 1不符合,∴T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
第4讲 数列求和一、知识梳理 1.数列求和方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+(2n -1)=n 2; (3)2+4+6+8+…+2n =n 2+n . 3.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.常用结论记住常用的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、教材衍化1.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)解析:选 A.第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 014B .2 015C .2 016D .2 017解析:选D.a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.故选D. 3. 1+2x +3x 2+…+nxn -1=________(x ≠0且x ≠1).解析:设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+3x 3+…+nx n,② ①-②得:(1-x )S n =1+x +x 2+…+xn -1-nx n=1-x n1-x -nx n,所以S n =1-x n(1-x )2-nx n1-x. 答案:1-x n(1-x )2-nxn 1-x一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )答案:(1)√ (2)√ (3)× 二、易错纠偏常见误区|K(1)不会分组致误; (2)错位相减法运用不熟练出错.1.已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为________.解析:设所求的数列前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 解析:S n =1×2+2×22+3×23+…+n ×2n,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.答案:(n -1)2n +1+2分组转化求和(师生共研)(2020·某某模拟)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解】 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n. 因为b n =a 2n +2a n -1, 所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±,且{b n },{}为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,,n 为偶数的数列,其中数列{b n },{}是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+ (2),…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+ (2)=2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+ (2)=22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n , 故b n =2n+(-1)nn . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52. 所以T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2020·某某市部分区联考)已知数列{a n }是等差数列,数列{b n }是等比数列,且a 1=1,a 3+a 4=12,b 1=a 2,b 2=a 5.(1)求{a n }和{b n }的通项公式;(2)设=(-1)na nb n (n ∈N +),求数列{}的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,因为a 1=1,a 3+a 4=12, 所以2a +5d =12,所以d =2,所以a n =2n -1.设等比数列{b n }的公比为q ,因为b 1=a 2,b 2=a 5, 所以b 1=a 2=3,b 2=a 5=9, 所以q =3,所以b n =3n.(2)由(1)知,a n =2n -1,b n =3n,所以=(-1)n ·a n ·b n =(-1)n ·(2n -1)·3n =(2n -1)·(-3)n, 所以S n =1·(-3)+3·(-3)2+5·(-3)3+…+(2n -1)·(-3)n,① 所以-3S n =1·(-3)2+3·(-3)3+…+(2n -3)·(-3)n +(2n -1)·(-3)n +1,②①-②得,4S n =-3+2·(-3)2+2·(-3)3+…+2·(-3)n-(2n -1)·(-3)n +1=-3+2·(-3)2[1-(-3)n -1]1+3-(2n -1)·(-3)n +1=32-4n -12·(-3)n +1. 所以S n =38-4n -18·(-3)n +1.运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减,如本题先把①式两边同乘以-3得到②式,再把两式错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·某某模拟)设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a na n -1=3(n ≥2), 又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3,所以{a n }是首项为1,公比为3的等比数列, 所以a =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n .裂项相消法求和(师生共研)(2020·某某八所重点高中4月联考)设数列{a n }满足a 1=1,a n +1=44-a n(n ∈N +).(1)求证:数列{1a n -2}是等差数列; (2)设b n =a 2na 2n -1,求数列{b n }的前n 项和T n . 【解】 (1)证明:因为a n +1=44-a n ,所以1a n +1-2-1a n -2=144-a n-2-1a n -2=4-a n2a n -4-1a n -2=2-a n 2a n -4=-12,为常数. 因为a 1=1,所以1a 1-2=-1,所以数列{1a n -2}是以-1为首项,-12为公差的等差数列. (2)由(1)知1a n -2=-1+(n -1)(-12)=-n +12, 所以a n =2-2n +1=2nn +1, 所以b n =a 2n a 2n -1=4n2n +12(2n -1)2n =4n 2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12(12n -1-12n +1), 所以T n =b 1+b 2+b 3+…+b n=n +12(1-13+13-15+15-17+…+12n -1-12n +1)=n +12(1-12n +1)=n +n2n +1, 所以数列{b n }的前n 项和T n =n +n2n +1.利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ·⎝ ⎛⎭⎪⎫1a n -1a n +2,1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1(a n ≠0).1.数列{a n }满足a 1=1, a 2n +2=a n +1(n ∈N +).(1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1, 又由已知易得a n >0, 所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.2.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.并项求和(师生共研)(2020·某某八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)na 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)na 2n +1a n a n +1=(-1)n 2n +1n (n +1)=(-1)n (1n +1n +1),所以S 2n =b 1+b 2+b 3+…+b 2n =-(1+12)+(12+13)-(13+14)+…+(12n +12n +1)=-1+12n +1=-2n2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”;三是数列{a n }是周期数列.[提醒] 运用并项求和法求数列的前n 项和的突破口是会观察数列的各项的特征,如本题,数列{b n }的通项公式为b n =(-1)n2n +1n (n +1),易知数列{b n }是摆动数列,所以求和时可以将各项进行适当合并.(2020·某某某某二检)已知数列{a n }的前n 项和S n =n 2-2kn (k ∈N +),S n 的最小值为-9.(1)确定k 的值,并求数列{a n }的通项公式;(2)设b n =(-1)n·a n ,求数列{b n }的前2n +1项和T 2n +1.解:(1)由已知得S n =n 2-2kn =(n -k )2-k 2,因为k ∈N +,则当n =k 时,(S n )min =-k 2=-9,故k =3.所以S n =n 2-6n .因为S n -1=(n -1)2-6(n -1)(n ≥2),所以a n =S n -S n -1=(n 2-6n )-[(n -1)2-6(n -1)]=2n -7(n ≥2). 当n =1时,S 1=a 1=-5,满足a n =2n -7, 综上,a n =2n -7.(2)依题意,得b n =(-1)n ·a n =(-1)n(2n -7), 则T 2n +1=5-3+1+1-3+5-…+(-1)2n(4n -7)+(-1)2n +1[2(2n +1)-7]=5-=5-2n .数列与其他知识的交汇问题一、数列与不等式的交汇问题(2020·某某某某二模)设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n+S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为________.【解析】 因为S n +S n -1-2S n S n -1=2na n (n ≥2), 所以S n +S n -1-2S n S n -1=2n (S n -S n -1)(n ≥2), 所以(2n +1)S n -1-(2n -1)S n =2S n S n -1(n ≥2). 易知S n ≠0,所以2n +1S n -2n -1S n -1=2(n ≥2).令b n =2n +1S n,则b n -b n -1=2(n ≥2),又b 1=3S 1=3a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列,所以b n =2n -1,所以2n +1S n =2n -1,所以S n =2n +12n -1.所以S 1S 2…S m =3×53×…×2m +12m -1=2m +1≥2 019,所以m ≥1 009.即使得S 1S 2…S m ≥2 019成立的正整数m 的最小值为1 009. 【答案】 1 009解决本题的关键:一是细观察、会构造,即通过观察所给的关于S n ,a n 的关系式,思考是将S n 往a n 转化,还是将a n 往S n 转化;二是会解不等式,把求出的相关量代入已知不等式,转化为参数所满足的不等式,解不等式即可求出参数的最小值.二、数列与三角函数的综合(2020·某某某某4月联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且3sin B -sin C b -a =sin A +sin B c .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sin A =1,且a 2,a 4,a 8成等比数列,b n =1a n a n +1,求数列{b n }的前n 项和S n .【解】 (1)由3sin B -sin C b -a =sin A +sin Bc ,根据正弦定理可得3b -c b -a =b +a c,即b 2+c 2-a 2=3bc , 所以cos A =b 2+c 2-a 22bc =32,由0<A <π,得A =π6.(2)由(1)知,A =π6,设数列{a n }的公差为d (d ≠0),因为a 1sin A =1,所以a 1sin π6=12a 1=1,解得a 1=2.因为a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 所以d 2=2d .又d ≠0,所以d =2,则a n =2n ,b n =1a n a n +1=12n (2n +2)=14(1n -1n +1),则S n =14[(1-12)+(12-13)+…+(1n -1n +1)]=14(1-1n +1)=n 4n +4.破解数列与三角函数相交汇问题的策略:一是活用两定理,即会利用正弦定理和余弦定理破解三角形的边角关系;二是会用公式,即会利用等差数列与等比数列的通项公式求解未知量;三是求和方法,针对数列通项公式的特征,灵活应用裂项相消法、分组求和法、错位相减法等求和.三、数列与函数的综合(2020·某某某某5月联考)已知等差数列{a n }的前n 项和为S n ,公差d >0,a 6和a 8是函数f (x )=154ln x +12x 2-8x 的极值点,则S 8=( )A .-38B .38C .-17D .17【解析】 因为f (x )=154ln x +12x 2-8x ,所以f ′(x )=154x +x -8=x 2-8x +154x=(x -12)(x -152)x,令f ′(x )=0,解得x =12或x =152.又a 6和a 8是函数f (x )的极值点,且公差d >0, 所以a 6=12,a 8=152,所以⎩⎪⎨⎪⎧a 1+5d =12,a 1+7d =152,解得⎩⎪⎨⎪⎧a 1=-17,d =72.所以S 8=8a 1+8×(8-1)2×d =-38,故选A.【答案】 A破解数列与函数相交汇问题的关键:一是会利用导数法求函数的极值点;二是会利用等差数列的单调性,若公差大于0,则该数列单调递增,若公差小于0,则该数列单调递减,若公差等于0,则该数列是常数列,不具有单调性;三是会利用公式法求和,记清等差数列与等比数列的前n 项和公式,不要搞混.四、数列中的新定义问题(2020·某某模拟)数列{a n }的前n 项和为S n ,定义{a n }的“优值”为H n =a 1+2a 2+…+2n -1a n n,现已知{a n }的“优值”H n =2n,则S n =________.【解析】 由H n =a 1+2a 2+…+2n -1a n n=2n,得a 1+2a 2+…+2n -1a n =n ·2n ,①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n -1,②由①-②得2n -1a n =n ·2n -(n -1)2n -1=(n +1)2n -1,即a n =n +1(n ≥2),当n =1时,a 1=2也满足式子a n =n +1, 所以数列{a n }的通项公式为a n =n +1, 所以S n =n (2+n +1)2=n (n +3)2.【答案】n (n +3)2破解此类数列中的新定义问题的关键:一是盯题眼,即需认真审题,读懂新定义的含义,如本题,题眼{a n }的“优值”H n =2n的含义为a 1+2a 2+…+2n -1a n n=2n;二是想“减法”,如本题,欲由等式a 1+2a 2+…+2n -1a n =n ·2n 求通项,只需写出a 1+2a 2+…+2n -2a n -1=(n -1)·2n -1,通过相减,即可得通项公式.五、数列中的新情境问题(2020·某某六校第二次联考)已知{a n }是各项均为正数的等比数列,且a 1+ a 2=3,a 3-a 2= 2,等差数列{b n }的前n 项和为S n ,且b 3=5,S 4=16.(1)求数列{a n },{b n }的通项公式;(2)如图,在平面直角坐标系中,有点P 1(a 1,0),P 2(a 2,0),…,P n (a n ,0),P n +1(a n +1,0),Q 1(a 1,b 1),Q 2(a 2,b 2),…,Q n (a n ,b n ),若记△P n Q n P n +1的面积为,求数列{}的前n 项和T n .【解】 (1)设数列{a n }的公比为q ,因为a 1+a 2=3,a 3-a 2=2,所以⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q 2-a 1q =2,得3q 2-5q -2=0,又q >0, 所以q =2,a 1=1,则a n =2n -1.设数列{b n }的公差为d ,因为b 3=5,S 4=16,所以⎩⎪⎨⎪⎧b 1+2d =5,4b 1+6d =16,解得⎩⎪⎨⎪⎧b 1=1,d =2,则b n =2n -1.(2)由(1)得P n P n +1=a n +1-a n =2n -2n -1=2n -1,P n Q n =b n =2n -1,故=S △P n Q n P n +1=2n -1(2n -1)2=(2n -1)2n -2,则T n =c 1+c 2+c 3+…+=12×1+1×3+2×5+…+(2n -1)2n -2,① 2T n =1×1+2×3+4×5+…+(2n -1)2n -1,②由①-②得,-T n =12+2(1+2+…+2n -2)-(2n -1)·2n -1=12+2(1-2n -1)1-2-(2n -1)2n -1=(3-2n )2n -1-32,故T n =(2n -3)2n -1+32(n ∈N +).数列中新情境问题的求解关键:一是观察新情境的特征,如本题中的各个直角三角形的两直角边长的特征;二是会转化,如本题,把数列{}的通项公式的探求转化为直角三角形的两直角边长的探求;三是活用数列求和的方法,如本题,活用错位相减法,即可得数列{}的前n 项和.[基础题组练]1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n,n ∈N +,则S 60的值为( ) A .990 B .1 000 C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.已知函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5).当n ∈N +时,a n =f (n )-1f (n )·f (n +1),记数列{a n }的前n 项和为S n ,当S n =1033时,n 的值为( )A .7B .6C .5D .4解析:选D.因为函数f (x )=a x+b (a >0,且a ≠1)的图象经过点P (1,3),Q (2,5),所以⎩⎪⎨⎪⎧a +b =3,a 2+b =5,所以⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =4(舍去),所以f (x )=2x+1,所以a n =2n+1-1(2n +1)(2n +1+1)=12n +1-12n +1+1, 所以S n =⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-19+…+ ⎝ ⎛⎭⎪⎫12n +1-12n +1+1=13-12n +1+1, 令S n =1033,得n =4.故选D.4.(2020·某某某某期末)在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),则该数列的前100项之和是( )A .18B .8C .5D .2解析:选C.因为a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N +),所以a 3=3-1=2,a 4=2-3=-1,a 5=-1-2=-3,a 6=-3+1=-2,a 7=-2+3=1,a 8=1+2=3,a 9=3-1=2,…,所以{a n }是周期为6的周期数列,因为100=16×6+4,所以S 100=16×(1+3+2-1-3-2)+(1+3+2-1)=5.故选C.5.已知数列{a n }满足a 1=1,a n +1·a n =2n(n ∈N +),则S 2 018等于( ) A .22 018-1B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2,所以a n +2a n=2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.故选B.6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.解析:因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.因此S 2 017=S 2 016+a 2 017=(a 1+a 2+a 3+a 4)+…+(a 2 009+a 2 010+a 2 011+a 2 012)+(a 2 013+a 2 014+a 2 015+a 2 016)+a 2 017=2 0164×2+a 1=1 008.答案:1 0087.(2020·某某三湘名校(五十校)第一次联考)已知数列{a n }的前n 项和为S n ,a 1=1.当n ≥2时,a n +2S n -1=n ,则S 2 019=________.解析:由a n +2S n -1=n (n ≥2),得a n +1+2S n =n +1,两式作差可得a n +1-a n +2a n =1(n ≥2),即a n +1+a n =1(n ≥2),所以S 2 019=1+2 0182×1=1 010.答案:1 0108.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N +),记T n=1S 1+1S 2+…+1S n(n ∈N +),则T 2 018=________.解析:由a n +2-2a n +1+a n =0(n ∈N +),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n=2n (n +1)=2(1n -1n +1),T n =1S 1+1S 2+…+1S n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1,故T 2 018=2×2 0182 018+1=4 0362 019. 答案:4 0362 0199.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n4(n ∈N +).(1)求数列{a n }的通项公式;(2)设b n =4na n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n4①,所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N +) ②,①-②得4n -1a n =14(n ≥2,n ∈N +),所以a n =14n (n ≥2,n ∈N +).由于a 1=14,故a n =14n (n ∈N +).(2)由(1)得b n =4na n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12(12n +1-12n +3),故T n =12(13-15+15-17+…+12n +1-12n +3)=12(13-12n +3)=n 6n +9. 10.已知数列{a n }的前n 项和为S n ,S n =3a n -12.(1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1.(2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③则3T n =0×31+1×32+2×33+…+(n -1)×3n.④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n=3-3n1-3-(n -1)×3n =(3-2n )×3n-32.所以T n =(2n -3)×3n+34.[综合题组练]1.(2020·某某五个一名校联盟第一次诊断)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 018项的和为( )A .1 008B .1 009C .2 017D .2 018解析:选D.设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,所以数列{a n cos n π}的前 2 018项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 017+b 2 018)=2×2 0182=2 018.故选D.2.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76B .78C .80D .82解析:选B.由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,两式相减得a n +2+a n =(-1)n·(2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.已知数列{a n },若a n +1=a n +a n +2(n ∈N +),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为________.解析:由“凸数列”的定义及b 1=1,b 2=-2,得b 3=-3,b 4=-1,b 5=2,b 6=3,b 7=1,b 8=-2,…,所以数列{b n }是周期为6的周期数列,且b 1+b 2+b 3+b 4+b 5+b 6=0,于是数列{b n }的前2 019项和等于b 1+b 2+b 3=-4.答案:-44.(2020·某某质量监测)已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N +),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n=2n (n +1)2.因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n=2⎝ ⎛⎭⎪⎫11-12+12-13+13-14+…+1n -1n +1=2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 答案:2n n +15.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4na n a n +1=(-1)n(12n -1+12n +1), 当n 为偶数时,T n =-(1+13)+(13+15)-(15+17)+…-(12n -3+12n -1)+(12n -1+12n +1),所以T n =-1+12n +1=-2n2n +1. 当n 为奇数时,T n =-(1+13)+(13+15)-(15+17)+…+(12n -3+12n -1)-(12n -1+12n +1), 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.。
第4节数列求和一、选择题1.等差数列{a n}中,已知公差d=12,且a1+a3+…+a99=50,则a2+a4+…+a100=()A.50B.75C.100D.125解析a2+a4+…+a100=(a1+d)+(a3+d)+…+(a99+d)=(a1+a3+…+a99)+50d=50+50×12=75.答案 B2.数列{a n}的前n项和为S n,已知S n=1-2+3-4+…+(-1)n-1·n,则S17=()A.9B.8C.17D.16解析S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案 A3.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×『(1-2)+(3-4)+…+(99-100)』=4×(-50)=-200.答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于()A.5B.6C.7D.16解析根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,S6=5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.答案 C5.(2018·安徽江南十校联考)已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( ) A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n =n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.答案 C二、填空题6.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1). 答案 n (n +1)7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n=________.解析 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0,又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列,故S n =2(1-3n )1-3=3n -1. 答案 3n -18.(2018·衡水质检)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为________. 解析 各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为 15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个).答案 1 360三、解答题9.(2018·西安质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63.(1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n .解(1)由题意,得⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2, ∴{a n }的通项公式为a n =2n +1.(2)由(1)得b n =2a n +a n =22n +1+(2n +1)=2×4n +(2n +1),所以T n =2×(4+42+…+4n )+(3+5+…+2n +1)=2×4(1-4n )1-4+n (3+2n +1)2=83(4n -1)+n 2+2n .10.(2015·全国Ⅰ卷)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,则2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1,得b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =n 3(2n +3). 能力提升题组(建议用时:20分钟)11.(2018·华中师大联盟质量测评)在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N *,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,25 B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D.(-∞,1』解析 由已知,a n +(-1)n =『3+(-1)1』·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N *恒成立,∴λ≤23; 当n 为奇数时, a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1,由a 1+a 2+…+a n ≥λa n +1得,λ≤2n +1-12n +1-1=1,对n ∈N *恒成立, 综上可知λ≤23.答案 C12.(2017·成都诊断)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =________.解析 因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+nn +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7,所以a k =78.答案 7813.(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎨⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,同时a 2=3a 1,∴数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,此时T 2符合,T 1不符合,∴T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
【创新方案】2017届高考数学一轮复习 第六章 数列 第四节 数列求和课后作业 理[全盘巩固]一、选择题1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116 D.1582.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15 3.已知等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 015项和为( )A.2 0142 015 B.2 0152 016 C.2 0162 015 D.2 0172 0164.(2016·太原模拟)已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2 015=( )A .31 008-2 B .2×31 008C.32 015-12 D.32 015+125.(2016·常德模拟)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 015的值为( )A .2 015B .2 013C .1 008D .1 007 二、填空题6.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 016项的和等于________.7.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.8.在公差d <0的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列,则|a 1|+|a 2|+|a 3|+…+|a n |=________.三、解答题9.已知数列{}a n 是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{}a n 的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 10.已知等比数列{a n }的前n 项和为S n ,公比q >0,S 2=2a 2-2,S 3=a 4-2. (1)求数列{a n }的通项公式; (2)令c n=⎩⎪⎨⎪⎧log 2a nn 2n +,n 为奇数,na n,n 为偶数,T n 为{c n }的前n 项和,求T 2n .[冲击名校]1.1-4+9-16+…+(-1)n +1n 2等于( )A.n n +2B .-n n +2C .(-1)n +1n n +2D .以上答案均不对2.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项之和S 2 016等于( )A .2 008B .2 010C .1D .03.数列{a n }是等差数列,数列{b n }满足b n =a n a n +1a n +2(n ∈N *),设S n 为{b n }的前n 项和.若a 12=38a 5>0,则当S n 取得最大值时n 的值为________.4.(2015·山东高考)设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .答 案 [全盘巩固]一、选择题1.解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得-q31-q=1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.2.解析:选A 记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.3.解析:选B 设等差数列{a n }的公差为d ,则a 4=a 1+3d =4,S 4=4a 1+6d =10,联立解得a 1=d =1,所以a n =a 1+(n -1)d =n ,1a n a n +1=1nn +=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 015项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 015-12 016=1-12 016=2 0152 016.4.解析:选A 由a n +2=3a n ,可得数列{a n }的奇数项与偶数项分别构成等比数列,所以S 2 015=(a 1+a 3+…+a 2 015)+(a 2+a 4+…+a 2 014)=1-31 0081-3+-3 1 0071-3=31 008-2.5.解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 015=a 1+(a 2+a 3)+…+(a 2 014+a 2 015)=1 008,故选C.二、填空题6.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n=⎩⎪⎨⎪⎧12,n =2k -k ∈N *,1,n =2k k ∈N *,故数列的前 2 016项的和等于S 2 016=1 008×⎝ ⎛⎭⎪⎫1+12=1512.答案:1 5127.解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-28.解析:由已知可得(2a 2+2)2=5a 1a 3,即4(a 1+d +1)2=5a 1·(a 1+2d )⇒(11+d )2=25(5+d )⇒121+22d +d 2=125+25d ⇒d 2-3d -4=0⇒d =4(舍去)或d =-1,所以a n =11-n .当1≤n ≤11时,a n ≥0,∴|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =n 10+11-n2=n 21-n2;当n ≥12时,a n <0,∴|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a 11-(a 12+a 13+…+a n )=2(a 1+a 2+a 3+…+a 11)-(a 1+a 2+a 3+…+a n )=2×1121-112-n 21-n2=n 2-21n +2202.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧n 21-n 2,1≤n ≤11,n 2-21n +2202,n ≥12.答案:⎩⎪⎨⎪⎧n 21-n2,1≤n ≤11,n 2-21n +2202,n ≥12三、解答题9.解:(1)由题设知a 1a 4=a 2a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1a 4=8或⎩⎪⎨⎪⎧a 1=8a 4=1(舍去).设等比数列{a n }的公比为q ,由a 4=a 1q 3得q =2,故a n =a 1q n -1=2n -1,n ∈N *.(2)S n =a 1-qn1-q=2n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1 =1S 1-1S n +1=1-12n +1-1,n ∈N *.10.解:(1)∵S 2=2a 2-2,S 3=a 4-2,∴S 3-S 2=a 4-2a 2,即a 3=a 4-2a 2, ∴q 2-q -2=0,解得q =2或q =-1(舍去). 又a 1+a 2=2a 2-2,∴a 2=a 1+2,∴a 1q =a 1+2,代入q ,解得a 1=2,∴a n =2×2n -1=2n.(2)c n=⎩⎪⎨⎪⎧1n n +,n 为奇数,n2n,n 为偶数,∴T 2n =(c 1+c 3+c 5+…+c 2n -1)+(c 2+c 4+…+c 2n ) =11×3+13×5+15×7+…+1n -n ++222+424+626+…+2n 22n .记M 1=11×3+13×5+…+1n -n +,则M 1=121-13+13-15+…+12n -1-12n +1=n 2n +1,记M 2=222+424+626+…+2n -222n -2+2n22n , ①则14M 2=224+426+628+…+2n -222n +2n22n +2, ② ①-②得34M 2=2⎝ ⎛⎭⎪⎫122+124+126+…+122n -2n 22n +2=2·14⎝ ⎛⎭⎪⎫1-14n 1-14-2n22n +2=23⎝⎛⎭⎪⎫1-14n -2n 22n +2,∴M 2=89-89·122n -83·n 22n +2=89⎝ ⎛⎭⎪⎫1-4+3n 22n +2,∴T 2n =n 2n +1+89⎝ ⎛⎭⎪⎫1-4+3n 22n +2.[冲击名校]1.解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n2+2n-2=-n n +2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+n --1]2+n 2=n n +2,综上可得,原式=(-1)n +1n n +2.2.解析:选D 由已知得a n =a n -1+a n +1(n ≥2), ∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1, 2 008,2 009. 由此可知数列为周期数列,周期为6,且S 6=0. ∵2 016=6×336,∴S 2 016=S 6=0.3.解析:设{a n }的公差为d ,由a 12=38a 5>0得a 1=-765d ,d <0,所以a n =⎝ ⎛⎭⎪⎫n -815d ,从而可知当1≤n ≤16时,a n >0; 当n ≥17时,a n <0.从而b 1>b 2>…>b 14>0>b 17>b 18>…,b 15=a 15a 16a 17<0,b 16=a 16a 17a 18>0,故S 14>S 13>…>S 1,S 14>S 15,S 15<S 16,S 16>S 17>S 18>….因为a 15=-65d >0,a 18=95d <0,所以a 15+a 18=-65d +95d =35d <0,所以b 15+b 16=a 16a 17(a 15+a 18)>0,所以S 16>S 14,故当S n 取得最大值时n =16.答案:164.解:(1)因为2S n =3n+3,所以2a 1=3+3,故a 1=3. 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3, n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13.当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n =13+[1×3-1+2×3-2+…+(n -1)×31-n],所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n .经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .。