浙教版七年级下册数学第三章测试题
- 格式:docx
- 大小:54.79 KB
- 文档页数:4
浙江七年级数学下第三章《整式的乘除》常考题一、单选题(共30分)1.(本题3分)(2018·浙江嘉兴·七年级期末)计算a 2•a 3,结果正确的是( ) A .a 5 B .a 6 C .a 8 D .a 9【答案】A 【解析】 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答. .【详解】同底数幂相乘,底数不变,指数相加. m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键. 2.(本题3分)(2021·浙江浙江·七年级期末)若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( ) A .5 B .2.5C .25D .10【答案】A 【解析】 【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算;再根据单项式除以单项式的法则计算,然后将x 2a =5代入即可求出原代数式的值. 【详解】(2x 3a )2÷4x 4a =4644a a x x ÷=2a x , ∵x 2a =5,∵原式= x 2a =5. 故选A. 【点睛】3.(本题3分)(2021·浙江浙江·七年级期中)已知3,5a b x x ==,则32a b x -=( ) A .2725B .910 C .35D .52【答案】A 【解析】 【分析】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案. 【详解】 ∵x a =3,x b =5,∵x 3a-2b =(x a )3÷(x b )2 =33÷52 =2725. 故选A. 【点睛】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键. 4.(本题3分)(2020·浙江杭州·七年级期末)下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+ B .()()ax y ax y --- C .)()(ab c ab c --- D .()()m n m n +--【答案】D 【解析】 【分析】根据平方差公式对各选项进行逐一分析即可. 【详解】解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意; C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意; D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . 【点睛】5.(本题3分)(2021·浙江浙江·七年级期末)若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6【答案】D【解析】【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∵a=1,b=﹣6,故选:D.【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.6.(本题3分)(2021·浙江浙江·七年级期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2【答案】C【解析】【详解】根据题意得出矩形的面积是(a+1)2﹣(a﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a﹣1)2=a2+2a+1﹣(a2﹣2a+1)=4a(cm2).故选C.7.(本题3分)(2018·浙江·七年级阶段练习)已知x2+mx+25是完全平方式,则m的值为()【解析】 【分析】根据完全平方式的特点求解:a 2±2ab +b 2. 【详解】∵x 2+mx +25是完全平方式, ∵m =±10, 故选B . 【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.8.(本题3分)(2021·浙江吴兴·七年级期末)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【解析】 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可. 【详解】第一个图形空白部分的面积是x 2-1, 第二个图形的面积是(x+1)(x-1). 则x 2-1=(x+1)(x-1).本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.9.(本题3分)(2021·浙江浙江·七年级期末)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是()A.B.C.D.【答案】B【解析】【详解】∵222x y x y xy+=++,(2)44>), 则这个图∵若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y形应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选B.10.(本题3分)(2019·浙江瑞安·七年级期中)已知18n++是一个有理数的平方,则221n不能为()-B.10C.34D.36A.20【答案】D【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+218+1=218+2•29+1=(29+1)2,此时n=9+1=10,218是乘积二倍项时,2n+218+1=2n+2•217+1=(217+1)2,此时n=2×17=34,1是乘积二倍项时,2n+218+1=(29)2+2•29•2-10+(2-10)2=(29+2-10)2,综上所述,n可以取到的数是10、34、-20,不能取到的数是36.故选D.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共21分)11.(本题3分)(2020·浙江杭州·七年级期末)若2y=+,则用含x的代数式表=mx,34m示y=______.【答案】3+x2【解析】【分析】直接利用幂的乘方运算法则表示出y与x之间的关系即可.【详解】解:∵x=2m,∵y=3+4m=3+22m=3+(2m)2=3+x2.故答案为:3+x2.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.(本题3分)(2021·浙江浙江·七年级期中)计算:(3)2-⋅=_______.a ab【答案】-6a2b【解析】【分析】根据单项式乘单项式法则计算求解即可.【详解】解:-3a•2ab=(-3×2)•(a•a)•b故答案为:-6a 2b . 【点睛】此题考查了单项式乘单项式,熟记单项式乘单项式法则是解题的关键.13.(本题3分)(2018·浙江义乌·七年级期末)某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为__ 【答案】a +3b ﹣2. 【解析】 【分析】根据题意列出算式,在利用多项式除以单项式的法则计算可得. 【详解】根据题意,长方形的宽为(3a 2+9ab ﹣6a )÷3a =a +3b ﹣2, 故答案为a +3b ﹣2. 【点睛】本题主要考查整式的除法,解题的关键是掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.(本题3分)(2018·浙江仙居·七年级期末)如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为________.【答案】10 【解析】 【分析】原式去括号合并整理后,将a+8b 的值代入计算即可求值. 【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b ), 当a+8b=-5时,原式=10. 故答案为10 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15.(本题3分)(2021·浙江杭州·七年级期中)多项式(8)(23)mx x +-展开后不含x 一次项,则m =________. 【答案】12【分析】乘积含x 项包括两部分,∵mx×2,∵8×(-3x ),再由展开后不含x 的一次项可得出关于m 的方程,解出即可. 【详解】解:(mx+8)(2-3x ) =2mx-3mx 2+16-24x =-3mx 2+(2m-24)x+16,∵多项式(mx+8)(2-3x )展开后不含x 项, ∵2m-24=0, 解得:m=12, 故答案为:12. 【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.16.(本题3分)(2018·浙江·余姚市兰江中学七年级期中)已知130x x+-=,则221x x +=________. 【答案】7 【解析】 【分析】利用完全平方和公式()2222a b a ab b +=++解答; 【详解】 解:130x x+-= ∵13,x x+= ∵22211()2927x x x x ,+=+-=-= 即2217.x x += 故答案为7. 【点睛】考查完全平方公式,熟记公式是解题的关键,属于易错题.22(2016)(2019)n n -+-=________.【答案】7 【解析】 【分析】先设2016n a ,2019n b ,则(2016)(2019)1n n --=可化为1ab =,22(2016)(2019)n n 22a b =+22abab ,再将2016n a ,2019n b 代入,然后求出结果【详解】解:设:2016n a ,2019n b , 则(2016)(2019)1n n --=可化为:1ab = ∵22(2016)(2019)n n22(2016)(2019)n n22a b =+()22a b ab =--将2016n a ,2019n b ,1ab =代入上式, 则22(2016)(2019)n n22016201921nn2327=【点睛】本题考查了对完全平方公式的应用,能熟记公式,并能设2016n a ,2019n b ,然后将原代数式化简再求值是解此题的关键,注意:完全平方公式为∵ 222()2a b a ab b +=++,∵222()2a b a ab b -=-+.三、解答题(共49分)18.(本题9分)(2020·浙江义乌·七年级期末)计算:(1)()23210-⨯;(2)()232()2⋅-+-a a a ;(3)()2321(23)(5)x x x x x ++-+-【答案】(1)6410⨯;(2)43a ;(3)32341015x x x +++ 【解析】 【分析】(2)先算乘方,再算乘法,最后算加法; (3)先算乘法,再算加减法. 【详解】解:(1)()23210-⨯,=()()223210-⨯,=6410⨯;(2)()232()2⋅-+-a a a , =34()4a a a ⋅-+, =444a a -+, =43a ;(3)()2321(23)(5)x x x x x ++-+- =()3223632715x x x x x ++---,=3223632715x x x x x ++-++, =32341015x x x +++ 【点睛】本题考查了整式的混合运算,整式混合运算的顺序是先乘方,后乘除,再加减.如果有括号,先算括号内.19.(本题6分)(2021·浙江浙江·七年级期末)(1)已知m +n =4,mn =2,求m 2+n 2的值;(2)已知am =3,an =5,求a 3m ﹣2n 的值. 【答案】(1)12;(2)2725【解析】 【分析】(1)先根据完全平方公式得出m 2+n 2=(m +n )2﹣2mn ,再求出答案即可;(2)先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,最后求出答案即可. 【详解】解:(1)∵m +n =4,mn =2, ∵m 2+n 2=42﹣2×2=12;(2)∵am =3,an =5,∵a 3m ﹣2n=a 3m ÷a 2n=(am )3÷(an )2=33÷52 =2725. 【点睛】本题考查了同底数幂的除法,幂的乘方,完全平方公式等知识点,能灵活运用知识点进行计算是解此题的关键,注意:(a +b )2=a 2+2ab +b 2.20.(本题8分)(2021·浙江·七年级专题练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值.【答案】16【解析】【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=,∵3m =,∵原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.21.(本题8分)(2019·浙江桐乡·七年级期中)王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?【答案】(1)木地板需要4ab m 2,地砖需要11ab m 2;(2)王老师需要花23abx 元.【解析】【详解】试题分析:(1)根据长方形面积公式计算出卧室面积即为木地板的面积,客厅的面积+卫生间的面积+厨房的面积就是需要铺的地砖面积;(2)利用总面积×单价=总钱数求解即可.试题解析:(1)卧室的面积是2b (4a -2a )=4ab (平方米),厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.22.(本题8分)(2021·浙江浙江·七年级期末)从边长为 a 的正方形剪掉一个边长为b 的正方形(如图 1),然后将剩余部分拼成一个长方形(如图 2).(1)上述操作能验证的等式是 (请选择正确的一个)A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣b 2=(a +b )(a ﹣b )C .a 2+ab =a (a +b )(2)若 x 2﹣9y 2=12,x +3y =4,求 x ﹣3y 的值;(3)计算:2222211111(1)(1)(1)(1)(1)23420192020-----.【答案】(1)B (2)3 (3)20214040【解析】【分析】 (1)分别根据图1和图2表示阴影部分的面积,即可得解;(2)利用(1)的结论求解即可;(3)利用(1)的结论进行化简计算即可.【详解】(1)根据阴影部分的面积可得()()22a b a b a b -=+-故上述操作能验证的等式是B ;(2)∵22912x y -=∵()()3312x y x y +-=∵34x y +=∵()4312x y -=∵33x y -=;(3)2222211111(1)(1)(1)(1)(1)23420192020-⨯-⨯-⨯⨯-⨯- 111111111111111111112233442019201920202020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭31425320202018202120192233442019201920202020=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的证明以及应用是解题的关键.23.(本题10分)(2021·浙江浙江·七年级期末)若x 满足(7)(4)2x x --=,求22(7)(4)x x -+-的值:解:设7,4x a x b -=-=,则(7)(4)2(7)(4)3x x ab a b x x --==+=-+-=,所以22222222(7)(4)(7)(4)()23225x x x x a b a b ab -+-=-+-=+=+-=-⨯=请仿照上面的方法求解下面的问题(1)若x 满足(8)(3)3x x --=,求22(8)(3)x x -+-的值;(2)已知正方形ABCD 的边长为x E F ,,分别是AD DC ,上的点,且25AE CF ==,,长方形EMFD 的面积是28,分别以MF DF 、为边作正方形,求阴影部分的面积.【答案】(1)19;(2)33.【解析】【分析】(1)设8,3x a x b -=-=,从而可得3,5ab a b =+=,再利用完全平方公式进行变形运算即可得;(2)先根据线段的和差、长方形的面积公式可得(2)(5)28x x --=,再利用正方形MFRN 的面积减去正方形DFGH 的面积可得阴影部分的面积,然后仿照(1)的方法思路、结合平方差公式进行变形求解即可得.【详解】(1)设8,3x a x b -=-=,则3,5ab a b =+=,所以2222(8)(3)x x a b -+-+=,2()2a b ab =+-,2523=-⨯,19=;(2)由题意得:2,5MF DE x DF x ==-=-,(2)(5)28DE DF x x ⋅=--=, 因为阴影部分的面积等于正方形MFRN 的面积减去正方形DFGH 的面积, 所以阴影部分的面积为2222(2)(5)MF DF x x -=---,设2,5x m x n -=-=,则28,3mn m n =-=,所以222()()43428121m n m n mn +=-+=+⨯=,由平方根的性质得:11+=m n 或110m n +=-<(不符题意,舍去),所以2222(2)(5)x x m n ---=-,=+-,m n m n()()=⨯,113=,33故阴影部分的面积为33.【点睛】本题考查了乘法公式与图形面积,熟练掌握并灵活运用乘法公式是解题关键.。
浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。
浙教新版七年级下册数学第3章《整式的乘除》测试卷时间:100分钟;满分:100分班级:___________姓名:___________座号:___________成绩:___________一.选择题(共10小题,共30分)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6 2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12 3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x64.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.95.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y206.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b 7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±39.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy 10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1二.填空题(共5小题,共20分)11.若a4•a2m﹣1=a11,则m=.12.计算:20+(﹣)﹣1=.13.若a2b=2,则代数式2ab(a﹣2)+4ab=.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.三.解答题(共8小题,共50分)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.21.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)223.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.参考答案与试题解析部分一.选择题(共10小题)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6【分析】根据同底数幂的乘法法则计算即可.【解答】解:﹣(﹣m2)•(﹣m)3•(﹣m)=﹣(﹣m2)•(﹣m3)•(﹣m)=m2+3+1=m6.故选:C.2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12【分析】分别根据同底数幂的乘法法则,合并同类项的法则以及幂的乘方运算法则逐一判断即可.【解答】解:a3•a3=a6,故选项A不合题意;a3与a2不是同类项,所以不能合并,故选项B不合题意;(a2)3=a6,故选项C不合题意;(a4)3=a12,正确,故选项D符合题意.故选:D.3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6【分析】先算乘方,再算除法即可.【解答】解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.4.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9【分析】先算零次幂,再算乘除即可.【解答】解:原式=1××(﹣)=﹣,故选:B.5.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y20【分析】根据单项式乘单项式的法则计算,判断即可.【解答】解:A、4a3•2a2=8a5,本选项错误;B、2x4•3x4=6x8,本选项正确;C、3x2•4x2=12x4,本选项错误;D、3y4•5y4=15y8,本选项错误;故选:B.6.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b【分析】根据单项式除以单项式的法则计算即可.【解答】解:15a3b÷(﹣5a2b)=15÷(﹣5)•a3﹣2•b1﹣1=﹣3a.故选:C.7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大【分析】原式利用多项式乘以多项式法则计算,根据结果中不含x的一次项,求出a与b 的关系即可.【解答】解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,即a与b一定是互为相反数.故选:A.8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±3【分析】先根据平方差公式进行计算,再求出(a+b)2的值,最后求出答案即可.【解答】解:∵(2a+2b﹣3)(2a+2b+3)=40,∴(2a+2b)2﹣32=40,∴4(a+b)2=49,∴(a+b)2=,∴a+b=±,故选:C.9.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy【分析】利用A=(3x+4y)2﹣(3x﹣4y)2,然后利用完全平方公式展开合并即可.【解答】解:∵(3x+4y)2=9x2+24xy+16y2,(3x﹣4y)2=9x2﹣24xy+16y2,∴A=9x2+24xy+16y2﹣(9x2﹣24xy+16y2)=48xy.故选:B.10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵y2+my+1是完全平方式,∴m=±2,故选:B.二.填空题(共5小题)11.若a4•a2m﹣1=a11,则m=4.【分析】根据同底数幂的乘法法则解答即可.【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.12.计算:20+(﹣)﹣1=﹣1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.13.若a2b=2,则代数式2ab(a﹣2)+4ab=4.【分析】根据单项式与多项式相乘的运算法则把原式化简,代入计算即可.【解答】解:2ab(a﹣2)+4ab=2a2b﹣4ab+4ab=2a2b,当a2b=2时,原式=2×2=4,故答案为:4.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=﹣4m3n,.【分析】原式根据题中的新定义计算即可求出值.【解答】解:解:根据题中的新定义得:原式=6mn•(﹣2n2m3)÷3mn2=﹣4m3n,故答案为﹣4m3n.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为18.【分析】设正方形的边长,根据方程的思想,正方形的面积公式和已知阴影部分的面积构建一个方程组,数形结合,整体法求出正方形A、B的面积之和为18.【解答】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.三.解答题(共8小题)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.【分析】根据同底数幂的乘法法则计算即可.【解答】解:(1)(x+y)3•(x+y)•(x+y)2=(x+y)3+1+2=(x+y)6;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3=(n﹣m)2+2+3=(n﹣m)7;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2=x n+2﹣x n﹣2+4+x n+2=x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2=﹣p3+3+2=﹣p8.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.【分析】(1)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m)=m2﹣4n2﹣m2+2mn﹣n2﹣3mn+4n2=﹣n2﹣mn,当m=2,n=﹣1时,原式=﹣1+2=1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.【分析】(1)直接利用幂的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算得出答案;(3)直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.【解答】解:(1)∵x m=4,x n=8,∴x2m=(x m)2=16;(2)∵x m=4,x n=8,∴x m+n=x m•x n=4×8=32;(3)∵x m=4,x n=8,∴x3m﹣2n=(x m)3÷(x n)2=43÷82=1.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.【分析】(1)根据整式的运算法进行化简后即可求出答案;(2)先将原式化简,然后将m与n代入原式即可求出答案.【解答】解:(1)原式=x4﹣3x3+nx2+mx3﹣3mx2+mnx+3x2﹣9x+3n=x4﹣3x3+mx3+nx2﹣3mx2+3x2+mnx﹣9x+3n=x4+(m﹣3)x3+(n﹣3m+3)x2+mnx﹣9x+3n由于展开式中不含x2项和x3项,∴m﹣3=0且n﹣3m+3=0,∴解得:m=3,n=6,(2)由(1)可知:m+n=9,mn=18,∴(m+n)2=m2+2mn+n2,∴81=m2+n2+36,∴m2+n2=45,∴原式=9×(45﹣18)=24321.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=3代入求解即可;(2)由x﹣y=5可得x2+y2﹣2xy=25,结合x2+y2=51,可得2xy=26,由完全平方公式计算结果;(3)利用完全平方公式求值即可.【解答】解:(1)因为x+y=5,xy=3,所以x2+y2=(x+y)2﹣2xy=25﹣6=19;即x2+y2的值是19;(2)∵x﹣y=5,∴(x﹣y)2=x2+y2﹣2xy=25,又∵x2+y2=51,∴2xy=26,∴(x+y)2=x2+y2+2xy=51+26=77;即(x+y)2的值是77;(3)解:∵x2﹣3x﹣1=0∴x﹣3﹣=0,∴x﹣=3,∴x2+=(x﹣)2+2=11,即x2+的值是11.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)2【分析】(1)根据矩形的面积公式计算;(2)①根据正方形的面积公式表示出阴影部分的面积,根据图形表示出阴影部分的面积,得到等式,根据完全平方公式证明结论;②根据①的结论计算即可.【解答】解:(1)矩形的面积=(a+4)2﹣(a+1)2=a2+8a+16﹣a2﹣2a﹣1=6a﹣15;(2)①如图2,阴影部分的面积=a2+b2,如图3,阴影部分的面积=(a+b)2﹣2ab,则得到等式a2+b2=(a+b)2﹣2ab,证明:(a+b)2﹣2ab=a2+2ab+b2﹣2ab=a2+b2;②(2018﹣m)2+(m﹣2016)2=(2018﹣m+m﹣2016)2﹣2×(m﹣2016)(2018﹣m)=4+2009×2=4022.23.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:(a+b)2﹣4ab,(a ﹣b)2;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:(a+b)2﹣4ab =(a﹣b)2;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.【分析】(1)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)化简后可知:相等;(3)利用(a+b)2﹣4ab=(a﹣b)2可求解.【解答】解:(1)(a+b)2﹣4ab或(a﹣b)2,故答案为:(a+b)2﹣4ab,(2)∵(a+b)2﹣4ab=a2﹣2ab+b2=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;(3)由(2)知:(x﹣y)2=(x+y)2﹣4xy,∵x+y=8,xy=7,∴(x﹣y)2=64﹣28=36.。
浙教版七年级数学下册第3章检测卷一、选择题(每题3分,共30分) 1.计算(-x 3)2的结果是( )A .x 5B .-x 5C .x 6D .-x 62.下列计算正确的是( )A .2a -2=12aB .(2a +b )(2a -b )=2a 2-b 2C .2a ·3b =5abD .3a 4÷(2a 4)=323.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( ) A .3.7×10-5 g B .3.7×10-6 g C .3.7×10-7 gD .3.7×10-8 g4.在下列计算中,不能用平方差公式计算的是( )A .(m -n )(-m +n )B .()x 3-y 3()x 3+y 3C .(-a -b )(a -b )D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )(第9题)A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分) 11.已知x n =4,则x 3n =________. 12.计算:(2a )3·(-3a 2)=________.13.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 14.若(a 2-1)0=1,则a 的取值范围是________.15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________. 17.对实数a ,b 定义运算☆如下:a ☆b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a ≤b ,a ≠0),如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.计算:(1)-23+13(2 018+3)0-⎝ ⎛⎭⎪⎫-13-2;(2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(3)(-2+x)(-2-x); (4)(a+b-c)(a-b+c).20.先化简,再求值:[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.21.(1)已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图②中阴影部分的面积.(3)观察图②你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.(写出过程)(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)答案一、1.C 2.D3.D 提示:1 mg=10-3 g,将0.000 037 mg用科学记数法表示为3.7×10-5×10-3=3.7×10-8(g).故选D.4.A 提示:A中m和-m符号相反,n和-n符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 提示:因为a+b=m,ab=-4,所以(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m.故选D.6.A 提示:3x-2y=3x÷32y=3x÷9y=47.故选A.7.A 提示:(x+m)(x+3)=x2+(3+m)x+3m,因为乘积中不含x的一次项,所以m+3=0,所以m=-3.故选A.8.B9.A10.C 提示:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以A的末位数字是6.二、11.6412.-24a513.514.a≠±115. 2 019 提示:由已知得x2-x=1,所以-x3+2x2+2 018=-x(x2-x)+x2+2018=-x+x2+2 018=2 019.16.±317.118.23 提示:由题意知⎝ ⎛⎭⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=-56x 2y 2-43xy +1.(3)原式=(-2)2-x 2=4-x 2.(4)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc .20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )=(2x 2-4xy )÷(4x )=12x-y .因为x -2y =2,所以12x -y =1.所以原式=1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.提示:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值. (2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260, 所以b >c >a >d . 22.解:(1)m -n .(2)方法一:(m -n )2;方法二:(m +n )2-4mn .(3)(m+n)2-4mn=(m-n)2,即(m+n)2-(m-n)24=mn.(4)由(3)可知(a-b)2=(a+b)2-4ab,∵a+b=7,ab=5,∴(a-b)2=49-20=29.23.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.因为展开式中不含x2和x3项,所以p-3=0,q-3p+8=0,解得p=3,q=1.24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab 平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元.七年及数学下册计算专项练习1.计算:(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 023-3125.(3)-32+4×327; (4)16+|2-3 3|-3-64-(-6)2+ 3.(5)16+38-(-5)2; (6)(-2)3+|1-2|×(-1)2 021-3125.(7)35+23-|35-23|; (8)(-2)2-327+|3-2|+ 3. (9) 214+0.01-3-8;(10) (10)3-0.125+|3-2|-3-34+|3|-(-2)2.2.求下列各式中x 的值:(1)x 2-81=0; (2)x 3-3=38.(3)⎩⎨⎧6x +5y =31,①3x +2y =13;②(4)⎩⎨⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②(5)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10; (6)解不等式:x -52+1>x -3;(7)解不等式组:⎩⎨⎧x +5≤0,3x -12≥2x +1,并写出它的最大负整数解.(8)⎩⎨⎧3x -2y =-1,3x -4y =-5; (9)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1). 参考答案1.解:(1)原式=4+2-5=1.(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (3)原式=-9+2×3=-3.(4)原式=4+3 3-2+4-6+3=4 3. (5)原式=4+2-5=1;(6)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (7)原式=35+23-35+23=4 3. (8)原式=2-3+2-3+3=1.解:(9)原式=32+0.1+2=3.6. (10)原式=-0.5+2-3-32+3-2=-2.2.解:(1)依题意,得x 2=81,根据平方根的定义,得x =±9.(2)依题意,得x 3=278,根据立方根的定义,得x =32. 解:(3)②×2得,6x +4y =26,③①-③得,y =5.将y =5代入①得,6x +25=31,则x =1.所以方程组的解为⎩⎨⎧x =1,y =5.(4)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.解:(5)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.②-①,得4y =2,解得y =12.所以原方程组的解为⎩⎨⎧x =3,y =12.(6)去分母,得(x -5)+2>2(x -3),去括号,得x -5+2>2x -6,移项,得x -2x >-6+5-2,合并同类项,得-x >-3,系数化为1,得x <3.(7)解不等式x +5≤0,得x ≤-5.解不等式3x -12≥2x +1,得x ≤-3.所以不等式组的解集为x ≤-5.所以它的最大负整数解为-5.解:(8)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2.把y =2代入①,得x =1.所以这个方程组的解是⎩⎨⎧x =1,y =2.(9)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),②由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.。
第三章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 6B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 4D .54x n ·25x m =12x mn2.下列各式中,能用平方差公式计算的是 ( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+D 、))((b a b a -+- 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= 32-,则a²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 16-b 16 D .a 8-b 8nm a ba10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
浙教版七年级数学下册第3章测试题及答案3.1 同底数幂的乘法一.选择题(共5小题)1.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.2.计算(﹣3x)2的结果是()A.6x2B.﹣6x2C.9x2D.﹣9x23.计算()3×()4×()5之值与下列何者相同?()A.B.C.D.4.已知,8x=256,32y=256,则(2018)(x﹣1)(y﹣1)()A.0B.1C.2018D.2565.下列运算正确的是()A.a2•a3=a6B.a3+a3=a6C.a•a3=a4D.(﹣a2)3=a6二.填空题(共5小题)6.计算:(﹣3a2bc3)2b﹣2a4b(bc3)2=.7.计算:(﹣t)2•t6=.8.已知关于x、y的方程组,则代数式22x•4y=.9.计算:(﹣8)2017×0.1252018=.10.已知94=3a×3b,则a+b=.三.解答题(共5小题)11.规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.12.(1)已知2x=3,2y=5,求2x+y的值;(2)x﹣2y+1=0,求:2x÷4y×8的值.13.图中是小明完成的一道作业题,请你参考小明答方法解答下面的问题:(1)计算:①82008×(﹣0.125)2008;②()11×(﹣)13×()12.(2)若2•4n•16n=219,求n的值.14.若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果2×8x×16x=222,求x的值;(2)如果(27x)2=38,求x的值.15.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.参考答案一.1.A 2.C 3.B 4.C 5.C二.6.7a4b3c67.t88.9.﹣0.125 10.8三.11.解:(1)∵a*b=2a×2b,∴2*3=22×23=4×8=32;(2)∵2*(x+1)=16,∴22×2x+1=24,则2+x+1=4,解得x=1.12.解:(1)∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15;(2)∵x﹣2y+1=0,∴x﹣2y=﹣1,∴2x÷4y×8=2x﹣2y+3=22=4.13.解:(1)①82008×(﹣0.125)2008=(﹣8×0.125)2008=(﹣1)2008=1;②原式=(﹣××)11××(﹣)2=﹣×=﹣;(2)由已知得,2•4n•16n=219,则2•22n•24n=219,故1+2n+4n=19,解得n=3.14.解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22.解得x=3.(2)∵(27x)2=36x=38,∴6x=8,解得x=.15.解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.3.2 单项式的乘法一.选择题(共5小题)1.计算:(﹣3x2)•(﹣4x3)的结果是()A.12x5B.﹣12x5C.12x6D.﹣7x5 2.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2 3.下列计算结果正确的是()A.a2a3=a5B.2a2×3a2=5a4C.(a3)2=a5D.2a+3a2=5a34.下列计算,结果等于a3的是()A.a+a2B.a4﹣a C.2a•a D.a5÷a2 5.下列运算正确的是()A.a3+a4=a7B.a3÷a4=a C.2a3•a4=2a7D.(2a4)3=8a7二.填空题(共5小题)6.计算:(﹣3a3)2•a2的结果是.7.计算:0.6a2b•a2b2﹣(﹣10a)•a3b3=.8.计算:(﹣3x3)2•xy2=9.计算:2a2•3ab=.10.(3xy2)2+(﹣4xy3)(﹣xy)=.三.解答题(共5小题)11.计算:3a3•2a5﹣(a2)4.12.计算:(1)(﹣x)2•x3﹣2x3•(﹣x)2﹣x•x4;(2)﹣(a2b)3+2a2b(﹣3a2b)2.13.计算:(﹣3x2y)2•(﹣x3yz).14.计算:(1)(﹣2x2)3+(﹣3x3)2+(x2)2•x2;(2)(﹣2xy2)3+(xy3)2•x.15.[(﹣m3)2(﹣n2)3]3.参考答案一.1.A 2.D 3.A 4.D 5.C二.6.9a87.a4b38.9x7y29.6a3b 10.13x2y4三.11.解:原式=6a8﹣a8=a8.12.解:(1)(﹣x)2•x3﹣2x3•(﹣x)2﹣x•x4=x5﹣2x5﹣x5=﹣2x5;(2)﹣(a2b)3+2a2b(﹣3a2b)2=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3.13.解:(﹣3x2y)2•(﹣x3yz)==.14.解:(1)(﹣2x2)3+(﹣3x3)2+(x2)2•x2=﹣8x6+9x6+x6=2x6;(2)(﹣2xy2)3+(xy3)2•x=﹣8x3y6+x3y6=﹣7x3y6.15.解:[(﹣m3)2(﹣n2)3]3=[m6•(﹣n6)]3=﹣m18n18.3.3 多项式的乘法一.选择题(共4小题)1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.32.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1B.a=﹣3,b=1C.a=0,b=0D.a=3,b=83.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4B.﹣2C.0D.44.下列计算错误的是()A.(x+a)(x+b)=x2+(a+b)x+abB.(x+a)(x﹣b)=x2+(a+b)x+abC.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab)D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab二.填空题(共8小题)5.若(x+1)(x+a)展开是一个二次二项式,则a=6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a;③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为.(把所有正确结论的序号都填在横线上)7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)=.8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q=.9.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片张.(第9题图)10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.11.计算下列各式,然后回答问题.(a+4)(a+3)=;(a+4)(a﹣3)=;(a﹣4)(a+3)=;(a﹣4)(a﹣3)=.(1)从上面的计算中总结规律,写出下式结果.(x+a)(x+b)=.(2)运用上述结果,写出下列各题结果.①(x+2008)(x﹣1000)=;②(x﹣2005)(x﹣2000)=.12.已知m,n满足|m+1|+(n﹣3)2=0,化简(x﹣m)(x﹣n)=.三.解答题(共6小题)13.已知将(x3+mx+n)(x2﹣3x+4)展开的结果不含x3和x2项.(m,n为常数)(1)求m、n的值;(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.14.探究新知:(1)计算:(a﹣2)(a2+2a+4)=;(2x﹣y)(4x2+2xy+y2)=;(x+3)(x2﹣3x+9)=;(m+3n)(m2﹣3mn+9n2)=.发现规律:(2)上面的多项式乘法计算很简洁,用含a、b字母表示为(a﹣b)(a2+ab+b2)=;(a+b)(a2﹣ab+b2)=.(3)计算:①(4﹣x)(16+4x+x2);②(3x+2y)(9x2﹣6xy+4y2).15.如图所示,某规划部门计划将一块长为(3a+b)米,宽为(2a+b)米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.(第15题图)16.已知有理数a、b、c满足|a﹣b﹣3|+(b+1)2+|c﹣1|=0,求(﹣3ab)•(a2c﹣6b2c)的值.17.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(第17题图)(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.18.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.参考答案一.1.D 2.A 3.D 4.B二.5.﹣1或0 6.①④7.﹣8 8.﹣6 9.7 10.3a2+4ab﹣15b2 11.解:(a+4)(a+3)=a2+7a+12;(a+4)(a﹣3)=a2+a﹣12;(a﹣4)(a+3)=a2﹣a﹣12;(a﹣4)(a﹣3)=a2﹣7a+12.(1)(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2008)(x﹣1000)=x2+1008x﹣2 008 000;②(x﹣2005)(x﹣2000)=x2﹣4 005x+4 010 000.12.解:∵|m+1|+(n﹣3)2=0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则原式=x2﹣(m+n)x+mn=x2﹣2x﹣3.三.13.解:(1)(x3+mx+n)(x2﹣3x+4),=x5﹣3x4+4x3+mx3﹣3mx2+4mx+nx2﹣3nx+4n,=x5﹣3x4+(4+m)x3+(n﹣3m)x2+(4m﹣3n)x+4n,由题意,得,解得,(2)(m+n)(m2﹣mn+n2)=m3+n3.当m=﹣4,n=﹣12时,原式=(﹣4)3+(﹣12)3=﹣64﹣1728=﹣1792.14.解:(1)(a﹣2)(a2+2a+4)=a3﹣8;(2x﹣y)(4x2+2xy+y2)=8x3﹣y3;(x+3)(x2﹣3x+9)=x3+27;(m+3n)(m2﹣3mn+9n2)=m3+27n3.(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(a+b)(a2﹣ab+b2)=a3+b3.(3)①(4﹣x)(16+4x+x2)=43﹣x3=64﹣x3;②(3x+2y)(9x2﹣6xy+4y2)=(3x)3+(2y)3=27x3+8y3.15.解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).16.解:由|a﹣b﹣3|+(b+1)2+|c﹣1|=0,得.解得.(﹣3ab)•(a2c﹣6b2c)=﹣3a3bc+18ab3c,当时,原式=﹣3×23×(﹣1)×1+18×2×(﹣1)3×1=24﹣36=﹣12.17.解:①(a+2b)(2a+b)=2a2+5ab+2b2;②画出的图形如答图.(第17题答图)(答案不唯一,只要画图正确即得分)18.解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.3.4 乘法公式一.选择题(共4小题)1.下列多项式相乘不能用平方差公式的是()A.(2﹣x)(x﹣2)B.(﹣3+x)(x+3)C.(2x﹣y)(2x+y)D.2.下列运算正确的是()A.(a﹣2b)(a﹣2b)=a2﹣4b2B.(﹣a+2b)(a﹣2b)=﹣a2+4b2C.(a+2b)(﹣a+2b)=a2﹣4b2D.(﹣a﹣2b)(﹣a+2b)=a2﹣4b23.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣24.如图所示的图形面积由以下哪个公式表示()(第4题图)A.a2﹣b2=(a﹣b)(a+b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)二.填空题(共5小题)5.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式.(第5题图)6.如图,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是.(第6题图)7.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.8.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.9.已知一个长方形的长和宽分别是a,b,它的周长是6,面积是2,则a2+b2=.三.解答题(共5小题)10.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)11.已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米,分别求出大正方形和小正方形的边长.12.我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(第12题图)(1)写出由图2所表示的数学等式:;写出由图3所表示的数学等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.13.图②是一个直角梯形.该图案可以看作由2个边长为a、b、c的直角三角形(图①)和1个腰长为c 的等腰直角三角形拼成.(第13题图)(1)根据图②和梯形面积的不同计算方法,可以验证一个含a、b、c的等式,请你写出这个等式,并写出其推导过程;(2)若直角三角形的边长a、b、c满足条件:a﹣b=1,ab=4.试求出c的值.14.杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半叶贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律.结合杨辉三角并观察下列各式及其展开式:(1)根据上式各项系数的规律,求出(a+b)9的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.(第14题图)参考答案一.1.A 2.D 3.C 4.A二.5.a2﹣b2=(a+b)(a﹣b)6.a+10 7.2﹣8.﹣10 9.5三.10.解:(1)由题可得,(1﹣x)(1+x+x2+x3+…+x n)=1﹣x n+1.(2)①1+2+22+23+24+ (22018)=﹣(1﹣2)(1+2+22+23+24+ (22018)=﹣(1﹣22019)=22019﹣1;②214+215+…+2100=(1+2+22+23+24+...+2100)﹣(1+2+22+23+24+ (213)=﹣(1﹣2)(1+2+22+23+24+...+2100)+(1﹣2)(1+2+22+23+24+ (213)=﹣(1﹣2101)+(1﹣214)=2101﹣214.11.解:设大小正方形的边长分别为a厘米,b厘米,根据题意,得4a﹣4b=96,a2﹣b2=(a+b)(a﹣b)=960,把a﹣b=24代入,得a+b=40,解得a=32,b=8,则大小正方形的边长分别为32厘米,8厘米.12.解:(1)由图2可得正方形的面积为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac由图3可得阴影部分的面积是(a﹣b﹣c)2=a2﹣b2﹣c2﹣2bc﹣2(a﹣b﹣c)c﹣2(a﹣b﹣c)b=a2+b2+c2+2bc ﹣2ab﹣2ac.即(a﹣b﹣c)2=a2+b2+c2+2bc﹣2ab﹣2ac.(2)由(1)可得a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac)=(a+b+c)2﹣2(ab+bc+ac)=112﹣2×38=45.13.解:(1)这个等式为:a2+b2=c2.梯形的面积可表示为(a+b)(a+b)=(a+b)2,或ab×2+c2=ab+c2,∴(a+b)2=ab+c2,即a2+b2=c2.(2)由(1)中的关系式a2+b2=c2.,且c>0,得c=∵a﹣b=1,ab=4∴c==3.14.解:(1)依据规律可得到各项的系数分别为1;9;26;84;126;126;84;26;9;1.∴(a+b)9=a9+9a8b+26a7b2+84a6b3+126a5b4+126a4b5+84a3b6+26a2b7+9ab8+b9.(2)25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=1.3.5 整式的化简一.选择题(共3小题)1.如果3a2+5a﹣1=0,那么代数式5a(3a+2)﹣(3a+2)(3a﹣2)的值是()A.6B.2C.﹣2D.﹣62.已知a2﹣5=2a,代数式(a﹣2)2+2(a+1)的值为()A.﹣11B.﹣1C.1D.113.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()(第3题图)A.14B.16C.8+5D.14+二.填空题(共2小题)4.已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.5.已知m+n=mn,则(m﹣1)(n﹣1)=.三.解答题(共10小题)6.先化简,再求值:求5(3x2y﹣xy2﹣1)﹣(xy2+3x2y﹣5)的值,其中x=﹣,y=.7.求证:代数式(2x+3)(3x+2)﹣6x(x+3)+5x+16的值与x无关.8.已知(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项.(1)分别求m,n的值;(2)先化简再求值:2n2+(2m+n)(m﹣n)﹣(m﹣n)2.9.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x=﹣1.10.先化简,再求值:(x+2)2+(x+2)•(x﹣1)﹣2x2,其中x=.11.(1)先化简,再求值:(a+2)•(a﹣2)+a(4﹣a),其中a=.(2)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.12.求(x﹣1)(x+2)+3x(x﹣3)﹣4(x+1)2的值,其中x=.13.先化简,再求值[(2x﹣y)2﹣(2x+3y)(2x﹣3y)﹣xy]÷5y(其中x=﹣,y=2).14.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=1.15.若(2x﹣y)2+|y+2|=0,求代数式[(2x+y)(y﹣2x)﹣y(6x+y)]÷(﹣2x)的值.参考答案一.1.A 2.D 3.C二.4.8 5.1三.6.解:5(3x2y﹣xy2﹣1)﹣(xy2+3x2y﹣5)=15x2y﹣5xy2﹣5﹣xy2﹣3x2y+5=12x2y﹣6xy2,当x=﹣,y=时,原式=12×(﹣)2×﹣6×(﹣)×()2=1+=.7.证明:∵(2x+3)(3x+2)﹣6x(x+3)+5x+16=6x2+4x+9x+6﹣6x2﹣18x+5x+16=22,∴代数式(2x+3)(3x+2)﹣6x(x+3)+5x+16的值与x无关.8.解:(1)(x2+mx+1)(x2﹣2x+n)=x4﹣2x3+nx2+mx3﹣2mx2+mnx+x2﹣2x+n=x4+(﹣2+m)x3+(n﹣2m+1)x2+(mn﹣2)x+n,∵(x2+mx+1)(x2﹣2x+n)的展开式中不含x2和x3项,∴﹣2+m=0,n﹣2m+1=0,解得m=2,n=3;(2)2n2+(2m+n)(m﹣n)﹣(m﹣n)2=2n2+2m2﹣2mn+mn﹣n2﹣m2+2mn﹣n2=m2+mn,当m=2,n=3时,原式=4+6=10.9.解:原式=4x2﹣1﹣(3x2﹣2x+3x﹣2)=4x2﹣1﹣3x2+2x﹣3x+2=x2﹣x+1,当x=﹣1时,原式=(﹣1)2﹣(﹣1)+1=2﹣2+1﹣+1+1=5﹣3.10.解:原式=x2+4x+4+x2﹣x+2x﹣2﹣2x2=5x+2,当x=时,原式=5+2.11.解:(1)原式=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=1﹣4=﹣3;(2)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4)+9,由x2﹣4x﹣1=0,得到x2﹣4x=1,则原式=3+9=12.12.解:原式=x2+x﹣2+3x2﹣9x﹣4x2﹣8x﹣4=﹣16x﹣6,当x=﹣时,原式=12﹣6=6.13.解:原式=(4x2﹣4xy+y2﹣4x2+9y2﹣xy)÷5y=(10y2﹣5xy)÷5y=﹣x+2y,当x=﹣,y=2时,原式=.14.解:原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=1时,原式=2+1=3.15.解:∵(2x﹣y)2+|y+2|=0,∴2x﹣y=0,y+2=0,解得x=﹣1,y=﹣2,则原式=(y2﹣4x2﹣6xy﹣y2)÷(﹣2x)=2x+3y=﹣2﹣6=﹣8.3.6 同底数幂的除法一.选择题(共4小题)1.若2x﹣3y+z﹣2=0,则16x÷82y×4z的值为()A.16B.﹣16C.8D.42.下列计算:①a2n•a n=a3n;②22•33=65;③32÷32=1;④a3÷a2=5a;⑤(﹣a)2•(﹣a)3=a5.其中正确的式子有()A.4个B.3个C.2个D.1个3.10m=2,10n=3,则103m+2n﹣1的值为()A.7B.7.1C.7.2D.7.44.已知5a=4,5b=6,5c=9,则a,b,c之间满足的等量关系是()A.a+b=c+1B.b2=a•c C.b=c﹣a D.2b=a+c二.填空题(共2小题)5.我们知道下面的结论:若a m=a n(a>0,且a≠1),则m=n.利用这个结论解决下列问题:设2m=3,2n=6,2p=12.现给出m,n,p三者之间的三个关系式:①m+p=2n,②m+n=2p﹣3,③n2﹣mp=1.其中正确的是.(填编号)6.已知10m=2,10n=3,则103m+2n﹣2=.三.解答题(共7小题)7.已知3x=2,3y=5,求:(1)27x的值;(2)求32x﹣y的值.8.已知:x3n﹣2÷x n+1=x3﹣n•x n+2,求n的值.9.若33×9m+4÷272m﹣1的值为729,求m的值.10.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2.11.计算:(1)(a﹣b)3•(b﹣a)4÷[(b﹣a)8÷(a﹣b)3];(2)(x﹣y)5•(x﹣y)2÷(y﹣x)6+(x﹣y)4÷[(x﹣y)4÷(y﹣x)] .12.已知:(a x÷a2y)4÷a3x﹣y与4a5是同类项,且x+3y=15,求x、y的值.13.(1)已a m=2,a n=3,求a m+n的值;a3m﹣2n的值.(2)已3×9m×27m=321,(﹣m2)3÷(m3•m2)的值.参考答案一.1.A 2.C 3.C 4.D二.5.①②③6.0.72三.7.解:(1)∵3x=2,∴27x=(3x)3=23=8;(2))∵3x=2,3y=5,∴32x﹣y=32x÷3y=(3x)2÷3y=22÷5=.8.解:x3n﹣2÷x n+1=x3n﹣2﹣n﹣1=x2n﹣3,x3﹣n•x n+2=x3﹣n+n+2=x5,∵x2n﹣3=x5,∴2n﹣3=5,解得n=4.9.解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得m=2.10.解:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2,=3x6•x3﹣x9+x2•x9÷x2,=3x9﹣x9+x9,=3x9.11.解:(1)(a﹣b)3•(b﹣a)4÷[(b﹣a)8÷(a﹣b)3];=(a﹣b)7÷(a﹣b)5=(a﹣b)2(2)(x﹣y)5•(x﹣y)2÷(y﹣x)6+(x﹣y)4÷[(x﹣y)4÷(y﹣x)]=(x﹣y)7÷(x﹣y)6+(x﹣y)4÷(y﹣x)3=x﹣y+y﹣x=012.解:∵(a x÷a2y)4÷a3x﹣y与4a5是同类项,∴(a x﹣2y)4÷a3x﹣y与4a5是同类项,∴a x﹣7y与4a5是同类项,又x+3y=15,∴,解得.13.解:(1)a m+n=a m×a n=2×3=6;a3m=(a m)3=23=8,a2n=(a n)2=32=9,a3m﹣2n=a3m÷a2n=8÷9=;(2)3×9m×27m=3×32m×33m=31+2m+3m=321,1+2m+3m=21.解得m=4.(﹣m2)3÷(m3•m2)=﹣m6÷m5=﹣m,当m=4时,﹣m=﹣4.3.7 整式的除法一.选择题(共8小题)1.如果(3x2y﹣2xy2)÷m=﹣3x+2y,则单项式m为()A.xy B.﹣xy C.x D.﹣y 2.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+13.下列计算正确的是()A.2x+x=2x2B.2x2﹣x2=2C.2x2•3x2=6x4D.2x6÷x2=2x34.某商品涨价30%后欲恢复原价,则必须下降的百分数约为()A.20%B.21%C.22%D.23%5.一个长方形的面积为(6ab2﹣4a2b),一边长为2ab,则它的另一边长为()A.3b2﹣2a B.3b﹣2a C.3b2﹣4a2D.3b﹣2a26.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()(第6题图)A.S1>S2B.S1<S2C.S1=S2D.无法确定7.下列各数:①﹣22;②﹣(﹣2)2;③﹣2﹣2;④﹣(﹣2)﹣2中是负数的是()A.①②③B.①②④C.②③④D.①②③④8.下列计算正确的是()A.(﹣0.01)﹣2=10000B.C.=﹣49D.二.填空题(共5小题)9.若(n+3)2n的值为1,则n的值为.10.计算:(a﹣1b2)3=.11.计算:(π﹣2)0+(﹣1)2017+()﹣3=.12.现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.(第12题图)13.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,把图②中未被小正方形覆盖部分折成一个无盖的长方体盒子,则此长方体盒子的体积是(用a,b的代数式表示)(第13题图)三.解答题(共3小题)14.计算:(1)(﹣3ab)•(﹣2a)•(﹣a2b3);(2)(25m2+15m3n﹣20m4)÷(﹣5m2).15.计算:(1)2(a﹣8)(a+5)﹣a(2a﹣3)(2)(y+2x)(2x﹣y)﹣(x﹣2y)2.16.一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.(第16题图)参考答案一.1.B 2.B 3.C 4.D 5.B 6.C 7.D 8.A二.9.﹣2,﹣4,0 10.a﹣3b611.8 12.5 13.三.14.解:(1)原式=6a2b•(﹣a2b3)=﹣6a4b4;(2)原式=25m2÷(﹣5m2)+15m3n÷(﹣5m2)﹣20m4÷(﹣5m2)=﹣5﹣3mn+4m2.15.解:(1)原式=2(a2﹣3a﹣40)﹣2a2+3a=2a2﹣6a﹣80﹣2a2+3a=﹣3a﹣80;(2)原式=4x2﹣y2﹣(x2﹣4xy+4y2)=3x2+4xy﹣5y2.16.解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意,得=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,则a=35,n=2或a=7,n=6或a=5,n=8或a=1,n=36所以存在铁盒的全面积是底面积的正整数倍,这时a=35或7或5或1.。
浙教版七年级数学下册第3章 测试卷一、选择题(每题3分,共30分)1.下列实数中,是无理数的是( )A .πB .0.1·5·C .-4 D.117 2.下列说法中,正确的是( )A.16=±4 B .-32的算术平方根是3C .1的立方根是±1D .-7是7的一个平方根3.如图,数轴上的点P 表示的数可能是( )A. 5 B .- 5 C .-3.8 D .-104.若-b 是a 的立方根,则下列结论正确的是( )A .-b 是-a 的立方根B .b 是a 的立方根C .b 是-a 的立方根D .以上都不对5.下列运算正确的是( )A .(-3)2=±3 B.27=3C .-9=-3D .-32=96.已知||a -1+7+b =0,则a +b 等于( )A .-8B .-6C .6D .87.若a =2,则(2a -5)2-1的立方根是( )A .4B .2C .±4D .±28.设边长为a 的正方形的面积为2.下列关于a 的四种结论:①a 是2的算术平方根;②a 是无理数;③a 可以用数轴上的一个点来表示;④0<a <1.其中正确的是( )A .①②B .①③C .①②③D .②③④9.如图,长方形被分成两个完全相同的正方形,且阴影部分的面积为16 cm 2,则长方形的周长为( )A .30 cmB .28 cmC.24 cm D.25 cm10.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为( )A.2 3-1 B.1+ 3 C.2+ 3 D.2 3+1二、填空题(每题3分,共24分)11.16的算术平方根是________.12.计算:-0.04=________;±214=________;3-343=________.13.若两个不相等的无理数的积为有理数,则这两个无理数可能为________.14.绝对值小于13的整数有________个.15.已知某数的一个平方根是11,那么这个数是________,它的另一个平方根是________.16.在数轴上,点A和数1对应的点相距5个单位长度,则点A表示的数为______________.17.若5-x与||y+6互为相反数,则x=________,y=________.18.已知5+11的小数部分为a,5-11的小数部分为b,则a+b=________.三、解答题(19,20,21题每题6分,22,23题每题8分,24题12分,共46分)19.把下列各数填入相应集合的括号内.-(-2),-12,-3,3.14,-π,-|-6|,13,-105,2.131 331 333 13…(相邻两个1之间的3的个数逐次加1).正分数集合:{ …};负有理数集合:{ …};无理数集合:{ …}.20.计算:(1)4+3-8+(-2)2;(2)(-4)2-3(-4)3×⎝⎛⎭⎪⎫-122-364.21.已知一个正数的两个不同的平方根分别是2a-7与-a+2,求这个数.22.观察下列式子的变形过程,然后回答问题.12+1=2-1,13+2=3-2,14+3=4-3,15+4=5-4,….(1)请你用含n(n为正整数)的关系式表示上述各式的变形规律;(2)利用上面的结论,求式子12+1+13+2+14+3+…+12 019+ 2 018的值.a+b+23.已知a,b,c在数轴上对应的点的位置如图所示,化简:||a-||b-c.(c-a)2+||24.座钟的钟摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πl.其中T表示周期(单位:秒),l表示摆长(单位:米),g=9.8米/秒2,g假如一台座钟的摆长为0.4米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出多少次滴答声?(用计算器计算,π≈3.14)答案一、1.A 【提示】因为π是无限不循环小数,所以π是无理数.2.D3.B 【提示】因为点P 在表示-2与-3的两点之间,所以只有-5满足条件.4.C 【提示】因为-b 是a 的立方根,所以(-b )3=a ,即b 3=-a ,所以b =3-a ,即b 是-a 的立方根.故选C.5.C6.B 【提示】因为||a -1≥0,7+b ≥0,根据非负数的性质,得a -1=0,7+b =0.解得a =1,b =-7,所以a +b =-6,故选B.7.B 【提示】由a =2,得a =4,所以(2a -5)2-1=(2×4-5)2-1=8,其立方根是2.8.C 【提示】∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.9.C 10.A二、11.2 12.-0.2;±32;-7 13.2与-2(答案不唯一)14.7 【提示】由9<13<16,可得3<13<4,∴绝对值小于13的整数有-3,-2,-1,0,1,2,3,共7个.15.11;-11 【提示】本题考查平方根的定义. 16.5+1或1- 517.5;-6 【提示】因为5-x ≥0,|y +6|≥0,5-x 与|y +6|互为相反数,所以5-x =0,|y +6|=0,所以x =5,y =-6.18.1 【提示】因为3<11<4,所以8<5+11<9,1<5-11<2,所以a =5+11-8=11-3,b =5-11-1=4-11. 所以a +b =11-3+4-11=1.三、19.解:正分数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3.14,13,…;负有理数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-12,-|-6|,-105,…; 无理数集合:{-3,-π,2.131 331 333 13…(相邻两个1之间的3的个数逐次加1),…}.20.解:(1)原式=2+(-2)+2=2.(2)原式=4-(-4)×14-4=1. 21.解:由题意得2a -7+(-a +2)=0,解得a =5.所以2a -7=3,-a +2=-3.因为(±3)2=9,所以这个数为9.22.解:(1)1n +1+n=n +1-n (n 为正整数). (2)原式=2-1+3-2+4-3+…+ 2 019- 2 018= 2 019-1.23.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .【提示】观察数轴得出各数的正负,并由此判定各部分的符号是解答此类题目的关键.24.解:T =2πl g =2π×0.49.8≈1.27(秒), 1分=60秒,60T≈47(次). 答:在1分钟内,该座钟大约发出47次滴答声.。
七年级数学下册《第三章整式的乘除》单元测试卷附答案-浙教版一、选择题1.计算a•a2的结果是( )A.a3 B.a2 C.3a D.2a22.下列运算正确的是( )A.2a+3b=5abB.a2•a3=a5C.(2a)3=6a3D.a6+a3=a93.计算:如果×3ab=3a2b,则内应填的代数式是( )A.abB.3abC.aD.3a4.计算:(﹣x)3•2x的结果是( )A.﹣2x4B.﹣2x3C.2x4D.2x35.计算2x(9x2﹣3ax+a2)+a(6x2﹣2ax+a2)等于( )A.18x3﹣a3B.18x3+a3C.18x3+4ax2D.18x3+3a36.若(x﹣2)(x+a)=x2+bx﹣6,则( )A.a=3,b=﹣5B.a=3,b=1C.a=﹣3,b=﹣1D.a=﹣3,b=﹣57.已知100x2+kx+49是完全平方式,则常数k可以取( )A.±70B.±140C.±14D.±49008.下图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小矩形的两边长(x>y),请观察图案,指出以下关系式中,不正确的是( ).A.x+y=7B.x-y=2C.4xy+4=49D.x2+y2=259.﹣x n与(﹣x)n的正确关系是( )A.相等B.互为相反数C.当n为奇数时它们互为相反数,当n为偶数时相等D.当n为奇数时相等,当n为偶数时互为相反数10.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),(1﹣x)(1+x+x2+x3),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是( )A.1﹣x n+1B.1+x n+1C.1﹣x nD.1+x n二、填空题11.化简:6a6÷3a3= .12.已知10a=5,10b=25,则103a﹣b=_______.13.若4x2+kx+25=(2x-5)2,那么k的值是14.把4x2+1加上一个单项式,使其成为一个完全平方式.请你写出所有符合条件的单项式__________.15.一个大正方形和四个全等的小正方形按图①,②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 (用a,b的代数式表示).16.若a+b=17,ab=60,则a﹣b的值是__________.三、解答题17.化简:(﹣3x3)2﹣[(2x)2]3.18.化简:(6x2﹣8xy)÷2x.19.化简:(a-2b-3c)(a-2b+3c).20.化简:(x+5)(x﹣1)+(x﹣2)2.21.已知3m=243,3n=9,求m+n的值22.先化简,再求值:[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=223.设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.24.如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD,BF,若两个正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?25.问题探究:(1)填空:(a﹣b)(a+b)=(a﹣b)(a2+ab+b2)=(a﹣b)(a3+a2b+ab2+b3)=(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:39﹣38+37﹣…+33﹣32+3.26.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1.A2.B3.C.4.A.5.B6.B7.B;8.D9.D10.A11.答案为:2a3.12.答案为:513.答案为:-20;14.答案为:-1,±4x,-4x2,4x4.15.答案为:ab.16.答案为:±7.17.解:(﹣3x3)2﹣[(2x)2]3=9x6﹣(4x2)3=﹣55x6.18.解:原式=2x(3x﹣4y)÷2x=3x﹣4y19.解:原式=[(a-2b)-3c][(a-2b)+3c]=(a-2b)2-(3c)2=a2-4ab+4b2-9c2.20.解:原式=2x2﹣1.21.解:m=5,n=2,所以m+n=7.22.解:原式=(x2+y2﹣x2﹣2xy﹣y2+2x2﹣2xy)÷4x=(2x2﹣4xy)÷4x=12x﹣y当x﹣2y=2时,原式=12(x﹣2y)=1.23.解:原式=(x+y)(x﹣2y)+3y(x+y)=(x+y)2当y=ax,代入原式得(1+a)2x2=x2,即(1+a)2=1,解得:a=﹣2或0.24.解:S =a 2+b 2﹣12a 2﹣12(a +b)b =a 2+b 2﹣12a 2﹣12ab ﹣12b 2=12(a 2﹣ab +b 2)=12[(a +b)2﹣3ab] 当a +b =10,ab =20时,S =12[102﹣3×20]=20 25.解:(1)(a ﹣b)(a +b)=a 2﹣b 2;(a ﹣b)(a 2+ab +b 2)=a 3﹣b 3;(a ﹣b)(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;(2)猜想:(a ﹣b)(a n ﹣1+a n ﹣2b +…+ab n ﹣2+b n ﹣1)=a n ﹣b n ;(3)原式===. 故答案为:(1)a 2﹣b 2; a 3﹣b 3;a 4﹣b 4;(2)a n ﹣b n26.解:(1)28和2012都是神秘数;(2)这两个连续偶数构造的神秘数是4的倍数;(3)两个连续奇数的平方差不是神秘数.。
章节测试题1.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.2.【题文】考古学家从幼发拉底河附近的一座寺庙里,发掘出数千块泥板书,他们从泥板书中发现美索不达米亚的祭祀已经知道平方表的用法,并能够利用平方表算出任意两个自然数的乘积.例如:计算乘以,祭祀们会按下面的流程操作:第一步:加上,将和除以得;第二步:减去,将差除以得;第三步:查平方表,得的平方是;第四步:查平方表,得的平方是;第五步:减去,得到答案.于是他们便得出.请你利用所学的代数知识,设两个自然数分别为、,对泥板书计算两个自然数乘积的合理性做出解释.【答案】见解析【分析】按照题中所给的步骤进行推导即可.【解答】解:.3.【题文】计算:.【答案】【分析】先利用平方差公式进行计算,然后再利用完全平方公式进行计算即可.【解答】解:原式.4.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.5.【题文】计算:(m-n)(m+n)+(m+n)2-2m2.【答案】2mn【分析】原式第一项利用平方差根式化简,第二项利用完全平方公式展开,计算即可得到结果.【解答】解:(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn.6.【题文】用乘法公式计算:99.82.【答案】9960.04.【分析】把99.8写成(100-0.2),然后利用完全平方公式计算即可得解;【解答】解:99.82=(100﹣0.2)2=1002﹣2×100×0.20+22=9960.04.7.【题文】已知(x+y)2=25,xy=,求x﹣y的值.【答案】±4【分析】首先,根据完全平方公式将(x+y)2打开,并根据xy的值求出x2+y2;然后,根据完全平方公式求出(x-y)2的值,开平方即可求解.【解答】解:∵(x+y)2=25,∴x2+2xy+y2=25,又∵xy=94,∴x2+y2=412,∴(x-y)2=x2-2xy+y2=412-2×94=16,∴x-y=±4.8.【题文】现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)尝试解决:(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是______;(2)小聪想用几何图形表示等式(a+b)(2a+b)=2a2+3ab+b2,图2给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取1张Ⅰ号卡片、3张Ⅱ号卡片、4张Ⅲ号卡片拼接成一个长方形,那么拼接的几何图形表示的等式是______;拓展研究:(4)如图3,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有______.(填写序号)①ab=;②a+b=m;③a2+b2=m2;④a2+b2=.【答案】(1)(a+b)2=a2+2ab+b2;(2)答案见解析;(3)(a+b)(a+3b)=a2+4ab+3b2;(4)①③.【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,如图所示;(3)根据题意列出关系式,分解因式后即可得到结果.根据完全平方公式判断即可.【解答】解:(1)这个几何图形表示的等式是(2)如图:(3)拼接的几何图形表示的等式是根据图③得:∴∵∴∴①③正确,故答案为:①③9.【题文】已知,,求下列代数式的值:(1);(2).【答案】(1)10;(2)±8.【分析】(1)把两边平方,利用完全平方公式化简,再将代入计算即可求出值;(2)利用完全平方公式及平方根定义求出的值,原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:(1)把x+y=4两边平方得:将xy=3代入得:(2)∵∴∴x−y=2或x−y=−2,则原式=(x+y)(x−y)=8或−8.10.【题文】利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值吗?【答案】(1)详见解析;(2)3.【分析】(1)已知等式右边利用完全平方公式化简,整理即可作出验证;(2)把a,b,c的值代入已知等式右边,求出值即为所求式子的值.解:(1)等式右边= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)= (2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac=等式左边,所以等式是成立的.(2)原式= [(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.11.【题文】计算:(2x﹣1)2﹣2(x+3)(x﹣3).【答案】2x2﹣4x+19.【分析】用完全平方公式和平方差公式展开后,再合并同类项.【解答】解:(2x﹣1)2﹣2(x+3)(x﹣3)=4x2﹣4x+1﹣2x2+18=2x2﹣4x+19.12.【题文】已知,,求下列代数式的值.(1);(2).【答案】(1)30;(2)8.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.13.【题文】已知a-b=5,ab=,求a2+b2和(a+b)2的值.【答案】a2+b2=28,(a+b)2=31【分析】用完全平方公式变形解答即可.【解答】解:,∴=25+3=28,=28+3=31.14.【题文】阅读材料:若,求,的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(),则__________,__________.()已知,求的值.()已知的三边长、、都是正整数,且满足,求的周长.(提示:三角形任意两边之和大于第三边,任意两边之差小于第三边)【答案】(1)a=3,b=1;(2)16(3)9【分析】(1) (2)(3) 将已知化为完全平方形式,利用非负性求值.【解答】解:()∵,,,∵,,∴,,,.(),,,∵,,∴,,,,∴,∴.(),,,∵,,∴,,,,∵,∴,,∴,∵、、为正整数,∴,∴周长.15.【题文】(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【答案】(1)原式=x2﹣3x+10;(2)a2+b2+ab=13﹣6=7.【分析】(1)x(4x﹣1)按照单项式乘多项式的法则计算,(2x﹣3)(2x+3)根据平方差公式计算,(x﹣1)2根据完全平方公式计算;(2)把(a+b)2=1,(a ﹣b)2=25的左边按照完全平方公式乘开,然后把两个式子相加可得a2+b2=13,把两个式子相减可得ab=﹣6.【解答】解:(1)原式=4x2﹣x﹣(4x2﹣9)+(x2﹣2x+1)=4x2﹣x﹣4x2+9+x2﹣2x+1=x2﹣3x+10;(2)∵(a+b)2=1,∴a2+2ab+b2=1①,∵(a﹣b)2=25,∴a2﹣2ab+b2=25②,由 ①+‚②得:a2+b2=13,由①•﹣②‚得:ab=﹣6,∴a2+b2+ab=13﹣6=7.16.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得17.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.18.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为19.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式. 【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.20.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。
第3章 单元测试一、选择题(每题2分,共20分)1.计算32a (-2)的结果是 ( ) A .58a - B .68a - C .64a D .664a2.下列计算正确的是 ( )A .x 2+x 3=x 5B .x 2·x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 23.用科学记数方法表示0000907.0,得 ( )A . 41007.9-⨯B . 51007.9-⨯C . 6107.90-⨯D . 7107.90-⨯4.下列运算中正确的是 ( )A .x 3·y 3=x 6B .(m 2)3=m 5C .2x -2=12x 2 D .(-a )6÷(-a )3=-a 35.计算20132012)2()2(-+-所得结果 ( )A. 20122B. 20122-C. 1D. 26. 已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-7.一个正方形的边长增加了2cm ,面积相应增加了322c m ,则原正方形的边长为 ( )A 、5cmB 、6cmC 、7cmD 、8cm8.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( )A 、 –3B 、3C 、0D 、19. 若x y 3=4,9=7 ,则x 2y 3-的值为 ( )A .47B .74C .3-D .2710.如果整式29x mx ++ 恰好是一个整式的平方,那么 m 的值是 ( ) A 、±3 B 、±4.5 C 、±6 D 、9 二、填空题(每题3分,共30分) 11.化简:6a 6÷3a 3= .12.已知x n =4,则x 3n =__ __. 13.若8a 3b 2÷M =2ab 2,则M =__ __. 14. (__ __)2=9a 2-__ __+16b 2. 15.若622=-n m ,且3=-n m ,则=+n m . 16. 若2a +2a=1,则22a +4a 1=- . 17.若(1)1m m -= ,则m = . 18.若5320x y --= ,则528x y ÷= .19.若代数式232x x ++ 可以表示为2(x 1)(x 1)b a -+-+ 的形式,则a b += ________.20.定义新运算“⊗”规定:2143a b a ab ⊗=-- 则3(1)⊗-= ___________.三、解答题(共50分) 21.计算:(本题9分)(1)()()02201314.3211π--⎪⎭⎫⎝⎛-+-- (2)()()222223366m m n m n m -÷--(3)()()()()233232222x y x xy y x ÷-+-⋅22.(本题10分)(1)先化简,再求值:()()()222b +a+b a b a b ---,其中a=﹣3,b=12.(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .23.(本题6分)已知A =2x +y ,B =2x -y ,计算A 2-B 2.24.(本题8分)说明代数式2(x y)(x y)(x y)(2)y y ⎡⎤--+-÷-+⎣⎦ 的值与y 的值无关。
姓名:__________ 班级:__________考号:__________
一、单选题(共12题;共36分)
1.1010可以写成()
A. 102·105
B. 102+105
C. (102)
5 D. (105)5
2.计算(ab)2的结果是()
A. 2ab
B. a2b
C. a2b2
D. ab2
3.下列计算错误的是()
A. x2•x3=x6
B. 3﹣1=
C. ﹣2+|﹣2|=0
D. 3+=4
4.(x2-px+3)(x-q)的乘积中不含x2项,则p、q的关系为()
A. 相等
B. 互为倒数
C. 互为相反数
D. 无法确定
5.将
6.18×10﹣3化为小数的是()
A. 0.618
B. 0.0618
C. 0.00618
D. 0.000618
6.计算(﹣xy2)3,结果正确的是()
A. x3y5
B. ﹣x3y6
C. x3y6
D. ﹣x3y5
7.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()
A. 0
B. 1
C. 2
D. 3
8.在等式a3•a2•()=a11中,括号里面的代数式是()
A. a7
B. a8
C. a6
D. a3
9.下列运算结果为a6的是()
A. a2+a3
B. a2•a3
C. (-a2)3
D. a8÷a2
10.(π﹣3.14)0的相反数是().
A. 3.14﹣π
B. 0
C. 1
D. ﹣1
11.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()
A. a>b>c
B. a>c>b
C. a<b<c
D. b>c>a
12.已知,则下列三个等式:① ,② ,③ 中,正确的个数有()
A. 个
B. 个
C. 个
D. 个
二、填空题(共7题;共16分)
13.人体内某种细胞的直径为0.00000156m,0.00000156用科学记数法表示为________.
14.肥皂泡的泡壁厚度大约是0.0007mm,将0.0007用科学记数法表示为________.
15.要使(3x+k)(x+2)的运算结果中不含x的一次方的项,则k的值应为________.
16.计算:[(﹣x)3]2=________.
17.如果(x+a)(x﹣4)的乘积中不含x的一次项,则a=________
18.已知整数a,b满足()a•()b=8,则a﹣b=________.
19.你能化简(x﹣1)(x99+x98+…+x+1)吗?遇到这样的复杂问题时,我们可以先从简单的情形入手,然后归纳出一些方法,分别化简下列各式并填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1根据上述规律,可得(x﹣1)(x99+x98+…+x+1)=________请你利用上面的结论,完成下面问题:
计算:299+298+297+…+2+1,并判断末位数字是________
三、解答题(共3题;共14分)
20.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1.
试根据以上材料探索使等式(2x+3)x+2015=1成立的x的值.
21.已知x a=2,x b=4,求x3a+b以及x a﹣3b的值.
22.已知a ,b是有理数,试说明a+b-2a-4b+8的值是正数.
四、综合题(共4题;共34分)
23.计算:(1)(10a8﹣6a5+2a)÷(﹣2a)(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)
24.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,
且m>n.
(1)用含m、n的代数式表示切痕的总长为________ cm;
(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求
该矩形大铁皮的周长.
25.如图,有足够多的边长为a的小正方形(A类)、宽为a长为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料若干可以拼出一些长方形来解释某些等式.
尝试解决:
(1)取图①中的若干个(三类图形都要取到)拼成一个长方形,使其面积为(a+b)(a+b),在下面虚线框中画出图形,并根据图形回答(a+b)(a+b)=________.
(2)图②是由图①中的三种材料拼出的一个长方形,根据②可以得到并解释等式:________
(3)若取其中的若干个(三类图形都要取到)拼成一个长方形,使其面积为3a2+4ab+b2.你画的图中需要B类卡片________张;(4)分解因式:3a2+4ab+b2.
拓展研究:如图③,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有________.(填写正确选项的序号)
(1)ab= (2)a+b=m (3)a2+b2= (4)a2+b2=m2
26.先阅读下列材料,再解答后面的问题.
材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为log
(即=3)
一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.
问题:
(1)计算以下各对数的值:=________ ;=________ ;=________ .
(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?
+=________ (a>0,且a≠1,M>0,N>0)
(4)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.
答案
一、单选题
1. C
2.C
3.A
4. C
5.C
6.B
7. D
8. C
9. D 10. C 11. A 12.C
二、填空题
13. 1.56×10-614.7×10﹣415.﹣6 16.x617.4 18.1 19.x100﹣1;5
三、解答题
20.解:①当2x+3=1时,x=﹣1;
②当2x+3=﹣1时,x=﹣2,但是指数x+2015=2013为奇数,所以舍去;
③当x+2015=0时,x=﹣2015,且2×(﹣2015)+3≠0,所以符合题意;
综上所述:x的值为﹣1或﹣2015.
21.解:∵x a=2,x b=4,
∴x3a+b=(x a)3×x b=23×4=32;
x a﹣3b=x a÷(x b)3=2÷64=.
22. 解答:证明:原式= a +b -2a-4b+8
= a +b -2a-4b+1+4+3
=(a-1) +(b-2) +3
∵(a-1) ≥0;(b-2) ≥0;
∴(a-1) +(b-2) +3≥3.∴a +b -2a-4b+8的值是正数.
四、综合题
23. (1)解:原式=﹣5a7+3a4﹣1
(2)解:原式=6a3﹣27a2+9a﹣8a2+4a
=6a3﹣35a2+13a
24.(1)6m+6n
(2)解:由题意得:mn=48,2m2+2n2=200,∴m2+n2=100,∴(m+n)2=m2+n2+2mn=196,∵m+n>0,
∴m+n=14,∴周长=2(m+2n+2m+n)=6m+6n=6(m+n)=84
25.(1)a2+2ab+b2(2)a2+3ab+2b2(3)4(4)(1),(4)
26. (1)2;4;6
(2)解:4×16=64,+=;
(3)log a MN(4)证明:设log a M=m,log a N=n,
则M=a m,N=a n,
∴MN=a m•a n=a m+n,
∴log a MN=log a a m+n=m+n,
故log a N+log a M=log a MN./。