人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)
- 格式:docx
- 大小:28.32 KB
- 文档页数:6
分类加法计数原理与分步乘法计数原理-人教A版选修2-3教案教学目标1.了解分类加法计数原理与分步乘法计数原理的定义和特点。
2.学习应用分类加法计数原理与分步乘法计数原理,解决相关的计数问题。
教学内容一、分类加法计数原理1.定义:分类加法计数原理是把一个问题分成若干部分,先分别计数,然后将这些计数结果相加得到总数的方法。
2.应用实例:•在一个班级里,要选出3名男生和2名女生组成一支代表队。
共有8名男生和7名女生,问有多少种选法?•用4种不同的颜色涂一张旗子,每个小三角必须涂一种颜色,要求三角上的颜色不相同。
问涂法有多少种?二、分步乘法计数原理1.定义:分步乘法计数原理是将一个问题分成若干个部分,然后将不同部分的计数相乘得到总数的方法。
2.应用实例:•一个花坛里有4个种类的花,若每个种类的花至少有3朵且所有花的朵数总共是12朵,问每种花分别几朵?•用6个不同的字母组成一个含有4个字母的词,每个词不含重复的字母,问能组成多少个这样的词?如果这些词都要写出来,又该怎么做?教学重点与难点1.掌握分类加法计数原理和分步乘法计数原理的定义和应用。
2.通过应用实例,理解计数方法和思维过程。
教学方法与过程1.引入新知识,讲解分类加法计数原理和分步乘法计数原理的定义和特点。
2.通过应用实例,指导学生掌握计数方法和思维过程。
3.利用习题课或者课后作业,加强学生练习和巩固。
教学评估1.观察学生的课堂听讲情况和课后作业完成情况。
2.开展小组讨论或者个人练习,检查学生对分类加法计数原理和分步乘法计数原理的理解和应用。
3.开展试卷测试,评估学生计数能力的掌握程度。
教学参考文献1.人教A版高中数学选修2-3教材。
2.《高中数学学案集》。
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
《分类加法计数原理与分步乘法计数原理》教学设计三维目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“主动思考”与“合作学习”等良好的学习方式教学重点:初步理解分类加法计数原理与分步乘法计数原理,并能根据具体的问题特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题.教学难点:根据具体的问题特征,正确选择分类加法原理或分步乘法原理解决一些简单的实际问题.教学方法:启发引导式教学方法教学手段:多媒体辅助教学教学过程:(一)课题导入数一数1.甲、乙、丙三人站成一排,共有多少种不同的排法?请你列出各种排法.2.三只口袋装有大小相同的小球,一只装有5个白色小球,一只装有6个黑色小球,另一只装有7个红色小球,若从三只口袋中取两个不同颜色的小球,则共有多少种不同的取法?你能快速地算出答案来吗?【设计意图】通过第1题让学生复习必修3所用的列举法求方法数;第2题用列举法来解是不现实的,设置悬念,学习了本节课就能很快解决,从而导出课题:§1 分类加法计数原理和分步乘法计数原理(二)探究新知龚泽惠,吉安人,2013年以684的高分夺得江西省高考理科状元,顺利考取清华大学.(课件图片展示:该同学的照片及清华大学校园有关图片)问题1:开学了,龚泽惠要从吉安到北京,一天当中直达火车有3班,直达飞机有2班,那么她一天中乘坐这些交通工具从吉安到北京会有多少种不同走法? 问题2:去上北京途中,龚泽惠想先乘火车到南昌拜访一位亲戚,第二天再从南昌乘飞机去北京,假设乘火车从吉安到南昌,每天有火车3班,一天后乘飞机从南昌到北京,每天飞机有2班,那么她从吉安到北京有多少种不同的走法?【设计意图】通过全省理科状元的形象激发学生的学习热情,也为本课的问题设计提供了一条主线索。
问题1分类加法计数原理的例子,问题2分步乘法计数原理的例子,这两例通俗易懂,便于学生对比分析理解两个计数原理.求同存异★ 完成一件事有两类不同办法,第一类办法有m 种不同的方法,第二类办法有n 种不同的方法,那么完成这件事共有n m N +=种不同的方法。
第一章计数原理§1.1 分类加法计数原理与分步乘法计数原理班级:高二()班学号:姓名:学习目标:1.理解分类加法计数原理与分步乘法计数原理;2.能根据具体问题的特征选择分类加法计数原理或分步乘法计数原理解决一些简单问题。
学习重点:分类加法计数原理与分步乘法计数原理学习难点:准确区分加法原理与乘法原理,并准确应用加法原理和乘法原理.学习过程:预习﹒交流﹒评价1、分类加法计数原理:做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的办法。
那么完成这件事共有种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的办法。
那么完成这件事共有种不同的方法。
新知﹒巩固﹒展示问题1.一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书:(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?问题2. 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?问题3. 记壹元硬币有国徽的一面叫做正面,有币值的一面叫做反面。
现依次抛出5枚一元硬币,按照抛出的顺序得到一个由5个“正”或“反”组成的序列,如“正,反,反,反,正”。
问:一共可以得到多少个不同的这样的序列?巩固练习:1、(1)一件工作可以用两种方法完成。
有5个人会用第一种方法完成,另有4个人会用第二种方法完成。
从这9个人中选出一个人来完成这件工作,不同的选法共有种;(2)一个科技小组中有3名女同学,5名男同学。
从中任选一名同学参加学科竞赛,共有不同的选派方法种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法种。
XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
教学设计1.1分类加法计数原理和分步乘法计数原理整体设计教材分析两个原理的主要内容都是计算在完成一件事情中所有不同方法种数的问题,其区别在于:运用加法原理的前提条件是做一件事有n类方案,选择任何一类方案中的任何一种方法都可以独立完成此事,也就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是做一件事有n个步骤,只有依次完成所有的步骤后才能完成这件事,也就是说,完成这件事的各个步骤是相互依存的.两个原理本身是容易理解的,但学生又缺乏一定的认知基础,而这两个原理是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,故学生对两个原理的掌握程度决定后面两个单元的学习效果.所以在教学中要通过实例导入,引导学生利用实例分析两个原理的区别,明确使用的前提条件.课时分配4课时第一课时教学目标知识与技能1.归纳得出分类加法计数原理与分步乘法计数原理.2.初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题.过程与方法通过对简单实例的分析概括,总结出分类加法计数原理和分步乘法计数原理.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力.重点难点教学重点:分类加法计数原理与分步乘法计数原理.教学难点:分类加法计数原理与分步乘法计数原理的准确理解.教学过程引入新课提出问题1:某家庭欲在五一期间从甲地去乙地进行自助旅游,一天中有火车3班,有汽车2班,那么这个家庭一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?提出问题2:后来听说丙地也是旅游胜地,于是改变行程,先从甲地到乙地,再从乙地到丙地,已知乙地到丙地一天中有飞机2班,轮船2班,问一天中乘坐这些交通工具从甲地到丙地共有多少种不同的走法?活动设计:请学生举手回答.活动成果:问题1如图1,从甲地到乙地共有两类不同的走法,其中坐火车有3种走法,坐汽车有2种走法,所以从甲地到乙地共有5种不同的走法.图1问题2如图2,先从甲地到乙地,再从乙地到丙地,有5类不同的方案.图2若从甲地到乙地乘火车1,从乙地到丙地有飞机2班,轮船2班共4种不同的走法;同样,若从甲地到乙地乘火车2、3和汽车1、2,从乙地到丙地均有飞机2班,轮船2班共4种不同的走法,所以从甲地经乙地到丙地共有4+4+4+4+4=4×5=20种不同的走法.设计意图:从两个具体的例子入手,引出这一章要研究的问题:计数问题.为引出分类加法计数原理和分步乘法计数原理做准备.1.分类加法计数原理探索新知提出问题1:由上述问题1,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分类加法计数原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.设计意图:培养学生的抽象概括能力,得到分类加法计数原理.理解新知提出问题1:在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?活动设计:请学生举手回答.活动成果:由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A、B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于两所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4=9.设计意图:强调解决计数问题时,应特别注意使用计数原理的条件.提出问题2:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?活动设计:学生举手发言.活动成果:解:这名同学可以选择A、B、C三所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,在C大学中有3种专业选择方法.又由于三所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4+3=12.设计意图:加深对分类加法计数原理的理解,明确使用的条件.提出问题3:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?活动设计:学生举手发言.活动成果:共有m1+m2+m3种不同的方法.设计意图:将分类加法计数原理推广到三类的情况,为进一步推广奠定基础.提出问题4:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.设计意图:推广分类加法计数原理,加深对分类加法计数原理的理解.2.分步乘法计数原理探索新知提出问题1:用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?活动设计:请学生举手回答.活动成果:用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.设计意图:进一步应用分类加法计数原理,为引出分步乘法计数原理做准备.提出问题2:由上述问题,你能归纳猜想出一般结论吗?活动成果:分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.设计意图:培养学生的抽象概括能力,得到分步乘法计数原理.理解新知提出问题1:设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选择?活动设计:学生分析思路.活动成果:思路分析:选出一组参赛代表,可以分两个步骤:第1步是选男生,第2步是选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.设计意图:在用原理做题时,要从完成一件事的角度去分析,完成这件事是分成几个不同的步骤还是几个不同的类别.提出问题2:学校要为同学们订做新校服,有三个服装厂,每个服装厂均提供了五种款式,每种款式均有六种颜色可供选择,那么学校有多少种不同的订做校服的选择?活动设计:学生举手回答.活动成果:可以把订做校服这件事分成三个步骤来完成.第一步,选择服装厂,有3种选择;第二步,选择款式,有5种选择;第三步,选择颜色,有6种选择.根据分步乘法计数原理,共有3×5×6=90种不同的选择.设计意图:将分步乘法计数原理推广到分三步的情况,为进一步推广奠定基础.提出问题3:由上述问题,你能得到更一般的结论吗?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.设计意图:推广分步乘法计数原理,加深学生对分步乘法计数原理的理解.提出问题4:比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?活动成果:1.相同点:都是回答有关完成一件事的不同方法种数的问题.2.不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:引导学生对两个计数原理作比较,加深对原理使用条件的理解.运用新知例书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?思路分析:(1)要完成的事是“取一本书”,由于不论取书架的哪一层的哪一本书都可以完成这件事,因此是分类问题,应用分类计数原理.(2)要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有在第1、2、3层中都取一本书后,才能完成这件事,因此是分步问题,应用分步计数原理.(3)要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=m1+m2+m3=4+3+2=9.(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=m1×m2×m3=4×3×2=24.(3)N=4×3+4×2+3×2=26.【巩固练习】要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.6种挂法可以表示如下:【变练演编】为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个.这样的密码共有多少个?解:(1)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有10种不同的方法;第二步,确定第二位密码,有10种不同的方法;第三步,确定第三位密码,有10种不同的方法;第四步,确定第四位密码,有10种不同的方法.根据分步乘法计数原理,不同的密码共有10×10×10×10=10 000个.(2)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第二步,确定第二位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第三步,确定第三位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第四步,确定第四位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法.根据分步乘法计数原理,不同的密码共有36×36×36×36=364个.设计意图:进一步加深对分类加法计数原理和分步乘法计数原理的理解,初步接触分类加法计数原理和分步乘法计数原理的综合运用.【达标检测】1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有________条.2.十字路口来往的车辆,如果不允许回头,共有________种行车路线.3.某地的部分电话号码是0543316××××,后面的每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?答案:1.(1)9(2)6 2.12 3.10 000课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理,以及它们的区别与联系.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.2.方法收获:分类讨论、化归思想.3.思维收获:抽象概括问题的能力.补充练习【基础练习】1.(1)在图Ⅰ的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图Ⅱ的电路中,合上两只开关以接通电路,有多少种不同的方法?2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?答案:1.(1)5(2)6 2.(1)12(2)60【拓展练习】已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少?解答:要确定圆的方程可以分成三个步骤:第一步,确定a的值,有3种不同的选择;第二步,确定b的值,有4种不同的选择;第三步,确定半径r的值,有2种不同的选择.根据分步乘法计数原理得,共可表示圆的个数为3×4×2=24.设计说明本节课是计数原理的起始课,是全章内容的理论依据和知识基础.重点介绍分类加法计数原理和分步乘法计数原理,理解两个原理的区别与联系,并会初步应用两个原理解决计数问题.本节课的设计主要是实例分析、问题驱动、归纳总结、类比思考、启发引导、自主探索等教学方式.主要特点是引导学生把两个原理总结出来,并总结出两个原理的区别与联系.实例分析总结、类比分析是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料例1某学校食堂备有5种素菜、3种荤菜、2种汤.现要配成一荤一素一汤的套餐.问可以配制出多少种不同的品种?分析:1.完成的这件事是什么?2.如何完成这件事?(配一个荤菜、配一个素菜、配一个汤)3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,配一个荤菜,有3种选择;第二步,配一个素菜,有5种选择;第三步,配一个汤,有2种选择.共有N=3×5×2=30种不同的品种.例2有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书.(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分类:第一类,从上层取一本书,有5种选择;第二类,从下层取一本书,有4种选择.共有N=5+4=9种.(2)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,从上层取一本书,有5种选择;第二步,从下层取一本书,有4种选择.共有N=5×4=20种.(设计者:徐西文)第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.第1位第2位第3位第8位↑↑↑↑2种2种2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表。
1.1 分类加法计数原理与分步乘法计数原理第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种 4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.2种2种 2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表示多少个字符.前一个字节有256种不同的表示方法,后一个字节也有256种表示方法.根据分步乘法计数原理,2个字节可以表示256×256=65 536个不同的字符,这已经大于汉字国标码包含的汉字个数6 763.所以要表示这些汉字,每个汉字至少要用2个字节表示.理解新知提出问题:分析以上三个例题,总结这三个例题的共同特点.活动设计:先独立思考,后分组讨论,最后学生总结.活动成果:这三个问题的解决都是分步完成的,在计算每一步的方法时都采用了分类加法计数原理.由此可知,在解决计数问题时,往往要两个原理一起使用.重要的是,在解决时,是先分步还是先分类.【巩固练习】1.乘积(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4+c5)展开后共有几项?2.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?答案:1.45 2.30【拓展实例】三个比赛项目,六人报名参加.(1)每人参加一项有多少种不同的方法?(2)每项1人,每人参加的项数不限,有多少种不同的方法?(3)每项1人,且每人至多参加一项,有多少种不同的方法?思路分析:(1)可以分成六个不同的步骤完成,每个人选择一个项目为一个步骤;(2)可以分成三个不同的步骤,每项选择一个人报为一个步骤;(3)可以分成三个不同的步骤,每项选择一个人报为一个步骤,但每步所选之人不同.解:(1)完成这件事可以分成六个不同的步骤:第一步,第一个人报一个项目,有3种不同的选择;第二步,第二个人报一个项目,有3种不同的选择;第三步,第三个人报一个项目,有3种不同的选择;第四步,第四个人报一个项目,有3种不同的选择;第五步,第五个人报一个项目,有3种不同的选择;第六步,第六个人报一个项目,有3种不同的选择.根据分步乘法计数原理共有3×3×3×3×3×3=36种不同的方法.(2)完成这件事可以分成三个不同的步骤:第一步,第一个项目选择一个人报,有6种不同的选择;第二步,第二个项目选择一个人报,有6种不同的选择;第三步,第三个项目选择一个人报,有6种不同的选择.根据分步乘法计数原理,共有6×6×6=63种不同的方法.(3)完成这件事可以分成三个不同的步骤:第一步,第一个项目选择一个人报,有6种不同的选择;第二步,第二个项目从剩下的5个人中选择一个人报,有5种不同的选择;第三步,第三个项目从剩下的4个人中选择一个人报,有4种不同的选择.根据分步乘法计数原理,共有6×5×4=120种不同的方法.点评:在使用两个原理解决计数问题时,一定要从完成这件事的角度考虑,以此作为分类和分步的依据.【变练演编】将3种作物种植在如图所示的4块试验田里,每块种植一种作物且相邻的试验田不能种解法一:可以分4个步骤完成这件事:每一步种一块地.种第一块,有3种作物可供选择;种第二块地,有2种作物可供选择;种第三块地,有2种作物可供选择;种第四块地,有2种作物可供选择;根据分步乘法计数原理,可得共有3×2×2×2=24种不同的种法.但是在所有的种法中,包含了只种两种作物的情况,应该去掉.若只种两种作物,可以分4个步骤完成这件事:每一步种一块地.种第一块,有3种作物可供选择;种第二块地,有2种作物可供选择;种第三块地,有1种作物可供选择;种第四块地,有1种作物可供选择;根据分步乘法计数原理,可得共有3×2×1×1=6种不同的种法.综上,满足条件的种法共有24-6=18种.解法二:分两大类完成这件事:第一类,第三块地和第一块地种植作物一样,分成四个步骤:第一步,种第一块地,有3种作物可供选择;第二步,种第二块地,有两种选择;第三步,种第三块地,有一种选择;第四步,种第四块地,只能种剩下的一种作物,有一种选择.根据分步乘法计数原理,这一类共有3×2×1×1=6种不同的种法.第二类,第三块地和第一块地种植作物不一样,分成四个步骤:第一步,种第一块地,有3种作物可供选择;第二步,种第二块地,有两种选择;第三步,种第三块地,有一种选择;第四步,种第四块地,有2种作物可供选择.根据分步乘法计数原理,这一类共有3×2×1×2=12种不同的种法.然后将这两类相加,共有6+12=18种不同的种法.点评:完成这件事的计数,必须两个原理结合使用,可以先分类再分步,也可以先分步再分类.无论采用哪种方法,都要做到:“考虑全面,不重不漏.”【达标检测】1.将5封信投入3个邮筒,不同的投法共有( )A.53种 B.35种C.3种D.15种2.由数字2,3,4,5可组成______个三位数,______个四位数,______个五位数.3.某中学的一幢5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法?答案:1.B 2.434445 3.34课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理的初步应用.2.方法收获:解决计数问题时先分步后分类的方法.3.思维收获:化归思想.补充练习【基础练习】1.若在登陆某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位为0到9中的数字,第二位和第四位为a到z这26个英文字母中的一个,则这样的验证码最多有________个.2.某巡洋舰上有一排四根信号旗杆,每根旗杆上可以挂红色、绿色、黄色三种信号旗中的一面(每根旗杆必须挂一面),则这种信号旗杆上共可发出多少种不同的信号?3.四名学生争夺三项比赛的冠军,获得冠军的可能性有多少种?4.8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?答案:1.676 00 2.81 3.64 4.336【拓展练习】5.72的正约数(包括1和72)共有______个.6.将4种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不设计说明本节课给不同层次的学生都提供了一个理解的平台,作为教师,重点要做好的是帮助学生掌握解这一类型题目的分析思路和步骤.若有学生在解题分析时不很清楚,教师要及时地进行归纳小结,能够使学生在应用两个计数原理时思路进一步变得清晰和明确,从而在学生的记忆中逐步建立起一个完整的认知结构.本节课的主要特点是引导学生进行实例分析、自主探究、归纳总结.备课资料例1在所有的两位数中,个位数字比十位数字大的两位数有多少个?分析与解:分析个位数字,可分以下几类.个位是9,则十位可以是1,2,3,…,8中的一个,故有8个;个位是8,则十位可以是1,2,3,…,7中的一个,故有7个;与上相同:个位是7的有6个;个位是6的有5个;……个位是2的只有1个.由分类加法计数原理知,满足条件的两位数有1+2+3+4+5+6+7+8=8×(1+8)2=36个.点评:本题是用分类加法计数原理解答的,结合本题可加深对“做一件事,完成它可以有n类办法”的理解,所谓“做一件事,完成它可以有n类办法”,这里是指对完成这件事情的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求:完成这件事的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法是不同的方法.只有满足这些条件,才可以用分类加法计数原理.例2 75 600有多少个正约数?有多少个奇约数?解:由于75 600=24×33×52×7,(1)75 600的每个约数都可以写成2i·3j·5k·7l(0≤i≤4,0≤j≤3,0≤k≤2,0≤l≤1).于是,要确定75 600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步乘法计数原理得约数的个数为5×4×3×2=120.(2)75 600的每个奇约数都可以写成3j·5k·7l(0≤j≤3,0≤k≤2,0≤l≤1).于是,要确定75 600的一个奇约数,可分三步完成,即j,k,l分别在各自的范围内任取一个值,这样j有4种取法,k有3种取法,l有2种取法,根据分步乘法计数原理得奇约数的个数为4×3×2=24.。
砚山县第三高级中学高二年级集体备课教案
理科数学
【学情分析】
在目前学生如果遇到与计数有关问题,基本采用列举法,即一个一个的数;在初中概率学中也学过树状图,也可解决这种问题。
但当这个数很大时,列举法就很难实施。
在本节课的教学中,学生可能遇到的问题是如何选择对应的原理解决具体问题,产生这一问题的原因是学生无法把具体的问题特征与两个计数的基本思想联系起来。
要解决这一问题,在本节教学时先采取通过典型的、学生熟悉的实例,经过抽象归纳而得出两个计数原理,然后按照从单一至综合的方式,安排比较多的例题,引导学生逐步体会两个计数原理的基本思想及其应用方法。
【教学目标】
1.知识与技能目标:理解计数原理的概念,掌握用基本计数原理解决问题的方法;
2.过程与方法目标:让学生通过对实际问题的探究,总结归纳两个基本原理的概念;
3.情感态度与价值观目标:通过本节的学习,让学生对两个基本原理的概念有清楚的认识,提现生活中数学的广泛性。
【教学重点】理解分类加法计数原理和分步乘法计数原理;
【教学难点】会利用两个原理分析和解决一些简单的应用问题。
【授课类型】新授课
【内容分析】
本节课要学的内容分类加法计数原理与分步乘法计数原理指的是分类加法计数原理的定义、分步乘法计数原理的定义、两个原理应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法。
学生已经学过加法、乘法,本节课的内容要与之建立相关联系,将其加以推广。
教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同。
【教学过程】。
模块纵览课标要求在本模块中,学生将学习计数原理、随机变量及其分布、统计案例三章内容,在这三章中要求学生认识到:1.计数问题是数学的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它为解决很多实际问题提供了思想和工具.在本章中,学生将学习计数原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题.2.通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型,并能解决简单的实际问题.使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义,了解条件概率和两个事件相互独立的概念.3.在《数学3(必修)》概率统计内容的基础上,通过典型案例进一步介绍回归分析的基本思想、方法及初步应用;通过典型案例介绍独立性检验的基本思想、方法及初步应用,使学生认识统计方法在决策中的作用.内容概述本模块第一章的主要内容是:1.1分类加法计数原理与分步乘法计数原理、1.2排列与组合、1.3二项式定理,在本章中分类加法计数原理和分步乘法计数原理是处理计数问题的两种基本思想方法,一般地,面对一个复杂的计数问题,人们往往通过分类或分步将它分解为若干个简单的计数问题,在解决这些简单问题的基础上,将它们整合起来而得到原问题的答案,这也是日常生活中被经常使用的思想方法.这样可以达到以简驭繁,化难为易的效果;排列、组合是两类特殊而重要的计数问题,而解决它们的基本思想和工具就是两个计数原理;二项式定理的展开式及其特征要明确,也要认识二项式的展开式与两个计数原理之间的内在联系.本模块第二章的内容是:2.1离散型随机变量及其分布列、2.2二项分布及其应用、2.3离散型随机变量的均值与方差、2.4正态分布,随机变量在概率统计研究中有极其重要的作用,它通过实数空间来刻画随机现象,从而使得更多的数学工具有了用武之地.离散型随机变量是最简单的随机变量,本章通过离散型随机变量展示用实数空间刻画随机现象的方法,研究一个随机现象,就要了解它所有可能出现的结果和每一个结果出现的概率,分布列正是描述了离散型随机变量取值的概率规律.二项分布的学习,需要对条件概率和事件独立性进行研究,可以用具体实例理解并掌握条件概率和事件独立性.随机变量的分布列全面刻画了随机变量取值的统计规律,随机变量的均值和方差分别从不同角度刻画了随机变量取值的特征,随机变量的均值是刻画随机变量平均取值的一个指标,而随机变量的方差是刻画随机变量取值的离散程度的指标;正态分布在统计中是很常用的分布,它能刻画很多随机现象,通过分析正态分布密度曲线的解析式,得到正态分布密度曲线的特点及正态分布随机变量分别在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)上的取值概率.本模块第三章的主要内容是:3.1回归分析的基本思想及其初步应用、3.2独立性检验的基本思想及其初步应用.在《数学3(必修)》的基础上,进一步介绍回归模型的基本思想及其初步应用,通过实例说明了线性回归模型与学生熟悉的函数关系的区别,解释了随机误差项产生的原因,并从相关系数的角度研究了两个变量间线性相关关系的强弱.在独立性检验中,独立性检验的思想对学生来说是难以理解的,假设检验的基本思想与反证法类似,它们都是假设结论不成立,但反证法是在推出矛盾后得证结论成立,而假设检验是在结论不成立时推出有利于结论成立的小概率事件发生,我们知道小概率事件在一次试验中通常是不会发生的,因此认为结论在很大程度上是成立的.教学建议本书注意了基本数学思想方法的教学,并努力使内容反映的思想方法显性化,及时提醒学生注意化归、归纳、类比、分类、对称等思想方法的使用.对于两个计数原理,从思想方法的角度看,运用分类加法计数原理解决问题就是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理,则是将一个复杂问题的解决过程分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程.由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解并掌握两个计数原理是学好本章内容的关键.排列与组合是两类特殊的计数问题,是两个计数原理的典型应用,排列与组合在计数中的地位可以与数列中的等差数列、等比数列类比.在多项式的运算中,把二项式展开成单项式之和的形式,即二项式定理有着非常重要的地位,它是带领我们进入微分学领域大门的一把金钥匙,只是在中学阶段已没有显示的机会而已.本模块约需36第一章计数原理本章概览教材分析计数问题是数学的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.在本章中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题.分类加法计数原理与分步乘法计数原理本身是容易理解的,甚至是不言自明的,但由于这部分内容是相对独立的,与前面学过的数学知识几乎没有联系,学生缺乏一定的认知基础.而这两个原理又是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,所以学生对两个原理的掌握程度决定后面两个单元的学习效果.本章的重点主要有:归纳得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题;归纳地、对比地得出排列与组合概念;根据两个计数原理推导出排列数、组合数公式;应用排列与组合知识解决简单的实际问题;用两个计数原理分析(a+b)2的展开式,归纳得出二项式定理,并能用计数原理证明;掌握二项展开式的通项公式;能应用它解决简单问题;学会讨论二项式系数性质的一些方法.本章的难点主要有:正确地理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”;建立组合与排列的联系,结合两个计数原理推导组合数公式;根据实际问题的特征,正确地区分“排列”或“组合”;用两个计数原理分析(a+b)2的展开式;用两个计数原理证明二项式定理.课标要求1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题;3.理解排列、组合的概念,区分它们的异同;4.能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;5.能用计数原理证明二项式定理;6.会用二项式定理解决与二项展开式有关的简单问题.教学建议教学中应多联系实例,由简单例子入手,先理解两个原理,再逐步涉及较复杂的分类和分步问题.在整章的教学中,要始终以两个原理作为工具和理论基础,在应用原理证明排列数、组合数、二项式定理的过程中加深对原理的理解.课时分配本章教学时间大约需14课时,具体分配如下(仅供参考):1.1分类加法计数原理和分步乘法计数原理约4课时1.2排列与组合约6课时1.3二项式定理约3课时本章复习约1课时1.1分类加法计数原理和分步乘法计数原理整体设计教材分析两个原理的主要内容都是计算在完成一件事情中所有不同方法种数的问题,其区别在于:运用加法原理的前提条件是做一件事有n类方案,选择任何一类方案中的任何一种方法都可以独立完成此事,也就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是做一件事有n个步骤,只有依次完成所有的步骤后才能完成这件事,也就是说,完成这件事的各个步骤是相互依存的.两个原理本身是容易理解的,但学生又缺乏一定的认知基础,而这两个原理是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,故学生对两个原理的掌握程度决定后面两个单元的学习效果.所以在教学中要通过实例导入,引导学生利用实例分析两个原理的区别,明确使用的前提条件.课时分配4课时第一课时教学目标知识与技能1.归纳得出分类加法计数原理与分步乘法计数原理.2.初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题.过程与方法通过对简单实例的分析概括,总结出分类加法计数原理和分步乘法计数原理.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力.重点难点教学重点:分类加法计数原理与分步乘法计数原理.教学难点:分类加法计数原理与分步乘法计数原理的准确理解.教学过程引入新课提出问题1:某家庭欲在五一期间从甲地去乙地进行自助旅游,一天中有火车3班,有汽车2班,那么这个家庭一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?提出问题2:后来听说丙地也是旅游胜地,于是改变行程,先从甲地到乙地,再从乙地到丙地,已知乙地到丙地一天中有飞机2班,轮船2班,问一天中乘坐这些交通工具从甲地到丙地共有多少种不同的走法?活动设计:请学生举手回答.活动成果:问题1如图1,从甲地到乙地共有两类不同的走法,其中坐火车有3种走法,坐汽车有2种走法,所以从甲地到乙地共有5种不同的走法.图1问题2如图2,先从甲地到乙地,再从乙地到丙地,有5类不同的方案.图2若从甲地到乙地乘火车1,从乙地到丙地有飞机2班,轮船2班共4种不同的走法;同样,若从甲地到乙地乘火车2、3和汽车1、2,从乙地到丙地均有飞机2班,轮船2班共4种不同的走法,所以从甲地经乙地到丙地共有4+4+4+4+4=4×5=20种不同的走法.设计意图:从两个具体的例子入手,引出这一章要研究的问题:计数问题.为引出分类加法计数原理和分步乘法计数原理做准备.1.分类加法计数原理探索新知提出问题1:由上述问题1,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分类加法计数原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.设计意图:培养学生的抽象概括能力,得到分类加法计数原理.理解新知提出问题1:在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自如果这名同学只能选一个专业,那么他共有多少种选择呢?活动设计:请学生举手回答.活动成果:由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A、B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于两所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4=9.设计意图:强调解决计数问题时,应特别注意使用计数原理的条件.提出问题2:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?活动设计:学生举手发言.活动成果:解:这名同学可以选择A、B、C三所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,在C大学中有3种专业选择方法.又由于三所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4+3=12.设计意图:加深对分类加法计数原理的理解,明确使用的条件.提出问题3:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?活动设计:学生举手发言.活动成果:共有m1+m2+m3种不同的方法.设计意图:将分类加法计数原理推广到三类的情况,为进一步推广奠定基础.提出问题4:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.设计意图:推广分类加法计数原理,加深对分类加法计数原理的理解.2.分步乘法计数原理探索新知提出问题1:用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?活动设计:请学生举手回答.活动成果:用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.设计意图:进一步应用分类加法计数原理,为引出分步乘法计数原理做准备.提出问题2:由上述问题,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.设计意图:培养学生的抽象概括能力,得到分步乘法计数原理.理解新知提出问题1:设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选择?活动设计:学生分析思路.活动成果:思路分析:选出一组参赛代表,可以分两个步骤:第1步是选男生,第2步是选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.设计意图:在用原理做题时,要从完成一件事的角度去分析,完成这件事是分成几个不同的步骤还是几个不同的类别.提出问题2:学校要为同学们订做新校服,有三个服装厂,每个服装厂均提供了五种款式,每种款式均有六种颜色可供选择,那么学校有多少种不同的订做校服的选择?活动设计:学生举手回答.活动成果:可以把订做校服这件事分成三个步骤来完成.第一步,选择服装厂,有3种选择;第二步,选择款式,有5种选择;第三步,选择颜色,有6种选择.根据分步乘法计数原理,共有3×5×6=90种不同的选择.设计意图:将分步乘法计数原理推广到分三步的情况,为进一步推广奠定基础.提出问题3:由上述问题,你能得到更一般的结论吗?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.设计意图:推广分步乘法计数原理,加深学生对分步乘法计数原理的理解.提出问题4:比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?活动设计:先独立思考,后小组交流,请同学发言,教师补充.活动成果:1.相同点:都是回答有关完成一件事的不同方法种数的问题.2.不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:引导学生对两个计数原理作比较,加深对原理使用条件的理解.运用新知例书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?思路分析:(1)要完成的事是“取一本书”,由于不论取书架的哪一层的哪一本书都可以完成这件事,因此是分类问题,应用分类计数原理.(2)要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有在第1、2、3层中都取一本书后,才能完成这件事,因此是分步问题,应用分步计数原理.(3)要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=m1+m2+m3=4+3+2=9.(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=m1×m2×m3=4×3×2=24.(3)N=4×3+4×2+3×2=26.【巩固练习】要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.6种挂法可以表示如下:【变练演编】为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个.这样的密码共有多少个?解:(1)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有10种不同的方法;第二步,确定第二位密码,有10种不同的方法;第三步,确定第三位密码,有10种不同的方法;第四步,确定第四位密码,有10种不同的方法.根据分步乘法计数原理,不同的密码共有10×10×10×10=10 000个.(2)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第二步,确定第二位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第三步,确定第三位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第四步,确定第四位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法.根据分步乘法计数原理,不同的密码共有36×36×36×36=364个.设计意图:进一步加深对分类加法计数原理和分步乘法计数原理的理解,初步接触分类加法计数原理和分步乘法计数原理的综合运用.【达标检测】1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有________条.2.十字路口来往的车辆,如果不允许回头,共有________种行车路线.3.某地的部分电话号码是0543316××××,后面的每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?答案:1.(1)9(2)6 2.12 3.10 000课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理,以及它们的区别与联系.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.2.方法收获:分类讨论、化归思想.3.思维收获:抽象概括问题的能力.补充练习【基础练习】1.(1)在图Ⅰ的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图Ⅱ的电路中,合上两只开关以接通电路,有多少种不同的方法?2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?答案:1.(1)5(2)6 2.(1)12(2)60【拓展练习】已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少?解答:要确定圆的方程可以分成三个步骤:第一步,确定a的值,有3种不同的选择;第二步,确定b的值,有4种不同的选择;第三步,确定半径r的值,有2种不同的选择.根据分步乘法计数原理得,共可表示圆的个数为3×4×2=24.设计说明本节课是计数原理的起始课,是全章内容的理论依据和知识基础.重点介绍分类加法计数原理和分步乘法计数原理,理解两个原理的区别与联系,并会初步应用两个原理解决计数问题.本节课的设计主要是实例分析、问题驱动、归纳总结、类比思考、启发引导、自主探索等教学方式.主要特点是引导学生把两个原理总结出来,并总结出两个原理的区别与联系.实例分析总结、类比分析是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料例1某学校食堂备有5种素菜、3种荤菜、2种汤.现要配成一荤一素一汤的套餐.问可以配制出多少种不同的品种?分析:1.完成的这件事是什么?2.如何完成这件事?(配一个荤菜、配一个素菜、配一个汤)3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,配一个荤菜,有3种选择;第二步,配一个素菜,有5种选择;第三步,配一个汤,有2种选择.共有N=3×5×2=30种不同的品种.例2有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书.(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1.完成的这件事是什么?。
分类加法计数原理与分步乘法计数原理第二课时【教学目标】:(1)知识与技能掌握分类计数原理和分步计数原理,并能够运用这两个原理解决简单的应用问题;(2)过程与方法通过实例,理解两个基本原理的运用,从而提高分析问题、解决问题的能力,提高学生综合、归纳的能力.(3)情感、态度与价值观通过了解基本原理在生产,生活实际中的应用,使得学生认识数学知识与现实生活的内在联系,增强在现实生活中面对复杂的事物和现象时作出正确分析和准确判断的能力.【教学重点】两个基本原理的运用【教学难点】正确运用两个原理解决问题【教法、学法设计】启发引导式【教学过程设计】:教学环节教学活动设计意图一、复习师提出问题1:书架上层放4本不同的语文书,中层放5本不同的数学书,下层放6本不同的英语书,(1)如果从中任取一本书,有多少种不同的取法?(2)如果从中任取三本书,其中包括语文书、数学书、英语书各一本,有多少种不同的取法?解:(1)本题要完成取出一本书这一件事,可以分三类不同的取法:第一类:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;上述取法均能独立完成这件事,所以有4+5+6=18种(2)本题要分成三个步骤:第一步:从上层取一本语文书有4种不同的取法;第二类:从中层取一本数学书有5种不同的取法;第三类:从下层取一本英语书有6种不同的取法;只有三个步骤全部完成才能完成从各取一本书这件事,故完成这件事的方法种数有4×5×6=120种学生回答,投影学生答案.通过问题,达到复习两个基本原理的目的二、例题师提出问题:例1.给程序模块命名,需要用3个字符,其中首字符要求用字母A—G或U—Z,后两个要求用数字,问最多可以给多少个程序命名?分析:可以分成三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后字符。
而首字符又包含两类。
师:学生阅读问题,启发学生回答后,作补充说明关键是让学生体会到数字符可以重复,因此第2步与第3步都有9种方法.同时,提示学生可以建立不同的模型,探索不同的解法.对实际问题的可以建立不同的模式,进行解答。
1・1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)・教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解.授课类型:新授课・课时安排:2课时・教具:多媒体、实物投彫仪.教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一•排,共有多少种不同的排法?要解决这些问题,就要运用冇关排列、组合知识.排列组合是一种重要的数学计数方法. 总的來说,就是研究按某一•规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理.这节课, 我们从具体例子出发來学习这两个原理.1 分类加法计数原理(1)提出问题问题1・1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1・2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从卬地到乙地共冇多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有加种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N = m + n种不同的方法.(3)知识应用例1•在填写高考志愿表时,一名高中毕业牛了解到,A,B两所大学各有一些白己感兴趣的强项专业,具体情况如下:A大学B人学生物学数学会计学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共冇多少种选择呢?分析:由于这名同学在A , B两所人学屮只能选择一所,而且只能选择一个专业,乂由于两所大学没冇共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A , B 两所人学屮的--所.在A大学小有5种专业选样方法,在B大学中有4种专业选择方法.又由于没冇一个强项专业是两所大学共有的,因此根据分类加法计数原理, 这名同学可能的专业选择共有5+4=9 (种)・变式:若还冇C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在笫1类方案中有"种不同的方法,在第2 类方案中有®种不同的方法,在笫3类方案中有®种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有〃类不同方案,在每一•类中都有若T-种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在笫1类办法中有"种不同的方法,在笫2类办法中有加2 种不同的方法……在第n类办法中有加”种不同的方法.那么完成这件事共有7V = /% + 加2 + ° …+ m n种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类屮的任何一-种方法都nJ以单独完成这件事. 2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以A2,-, B、,B?,… 的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:字母数字得到的号码/IZ2A?/犷A,A4As比A,\8£我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而它们各不相同,因此共冇6X9 = 54个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有加种不同的方法,在第2类方案中有〃种不同的方法.那么完成这件事共有N = mxn种不同的方法.(3)知识应用例2.设某班冇男生30名,女生24名•现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第1步选男生.第2步选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,冇24种不同选择.根据分步乘法计数原理,共有30X24二720种不同的选法•探究:如果完成一件事需耍三个步骤,做第1步有“种不同的方法,做第2步有®种不同的方法,做第3步有加3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要〃个步骤,做每一•步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n个步骤,做笫1步有"种不同的方法,做笫2步有加2种不同的方法……做第n步有加“种不同的方法•那么完成这件事共冇N = m A x m2x • • • x m n种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存, 完成任何其小的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理界同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事耍分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只冇当各个步骤都完成后, 才算完成这件事,是合作完成.3 综合应用例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2木不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1木书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层小各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有笫1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先耍考虑的是取哪两个学科的帖,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书, 冇4种方法;第2类方法是从第2层取1本文艺书,冇3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N =加]+ + m3 =4+3+2=9;(2 )从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层収1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N -加]x m2 x m3 =4 X 3 X 2=24 .(3) N = 4x3 + 4x2 + 3x2 = 26o例4.耍从甲、乙、丙3幅不同的画中选出2幅,分別挂在左、右两边墙上的指定位置, 问共有多少种不同的挂法?解:从3幅画屮选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步, 从3幅呦屮选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画屮选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3 X 2=6 ・6种挂法可以表示如下:左边左甲右乙左甲右丙左乙右甲左乙右丙右边得到的挂法左丙右甲左丙右乙分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其屮各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤屮的方法互和依存,只有各个步骤都完成才算做完这件事.练习1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会川第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是—;(2 )从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B 的路线有—条.2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1 ) 从屮任选1人参加接待外宾的活动,有多少种不同的选法?村去C村,不同(2 )从3个年级的学生屮各选1人参加接待外宾的活动,有多少种不同的选法?3.在例1中,如果数学也是A人学的强项专业,则A人学共有6个专业可以选择, B大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择共有6 + 4 = 1()(种).这种算法有什么问题?例5•给程序模块命名,需耍用3个字符,其中首字符要求用字母A〜G或U〜Z,后两个要求用数字1〜9.问最多可以给多少个程序命名?分析:耍给一个程序模块命名,可以分三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符乂可以分为两类.解:先让算首字符的选法.由分类加法计数原理,首字符共有7+ 6= 13种选法.再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13X9X9 = = 1053个不同的名称,即最多可以给1053个程序命名.例6.核糖核酸(RNA)分子是在牛•物细胞屮发现的化学成分一个RNA分子是一个有着数百个甚至数千个位置的长链,长链屮每一个位置上都由一种称为碱基的化学成分所占据. 总共有4种不同的碱基,分别用A, C, G, U表示.在一个RNA分子屮,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子分析:用图1. 1-2来表示由100个碱基组成的长链,这时我们共有100个位置,每个位置都可以从A , C , G , U屮任选一个来占据.解:100个碱基组成的长链共有100个位置,如图1.1-2所示.从左到右依次在每一个位置中,从A , C , G , U中任选一个填人,每个位置冇4种填充方法.根据分步乘法计数原理,长度为100的所有可能的不同RNA分子数目有4-4••…4 = 4】°° (个)例7•电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只冇0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节來表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问: (1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?分析:由于每个字节有8个二进制位,每一位上的值祁有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解木题.解:(1)用图1.1-3來表示一个字节.第1位第2位第3位第8位图1 . 1 一3一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2X2X2X2X2X2X2X2= 28 =256个不同的字符;(2)由(1 )知,用一个字节所能表示的不同字符不够6 763个,我们就考虑用2 个字节能够表示多少个字符.前一个字节冇256种不同的表示方法,后一个字节也冇256 种表示方法.根据分步乘法计数原理,2个字节可以表示256X256 = 65536个不同的字符,这已经大于汉字国标码包含的汉字个数6 763.所以要表示这些汉字,每个汉字至少要用2个字节表示.例&计算机编程人员在编写好程序以后需要对程序进行测试.程序员需要知道到底冇多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多了模块组成.如图1.1-4,它是一个具冇许多执行路径的程序模块.问:这个程序模块有多少条执行路径?另外,为了减少测试时间,程序员需要设法减少测试次数你能帮助程序员设计一个测试方法,以减少测试次数吗?•开始•字模块丄字模块2 字模块3•18条执行略径45条执行酰径2B条执行路径•字模块•38条执行路径•給東图1. 1 一4分析:整个模块的任意-条执行路径都分两步完成:第1步是从开始执行到A点;第2步是从A点执行到结束•而第1步可由子模块1或子模块2或子模块3来完成;第2步可山子模块4或子模块5来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.解:由分类加法计数原理,子模块1或子模块2或子模块3中的子路径共有18 + 45 + 28 = 91 (条);了模块4或了模块5屮的了路径共有38 + 43 = 81 (条).又由分步乘法计数原理,整个模块的执行路径共有91X81 = 7 371 (条).在实际测试屮,程序员总是把每一个了模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块.这样,他可以先分别单独测试5个模块,以考察每个子模块的工作是否正常.总共需耍的测试次数为18 + 45 + 28 + 38 + 43 =172.再测试各个模块Z间的信息交流是否正常,只需要测试程序第1步中的各个子模块和第2步中的各个子模块之间的信息交流是否正常,需要的测试次数为3X2=6 .如果每个子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个程序模块就工作正常.这样,测试整个模块的次数就变为172 + 6=178 (次)・显然,178打7371的差距是非常大的.你看出了程序员是如何实现减少测试次数的吗?例9•随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门岀台了一•种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉们数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.解:将汽车牌照分为2类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第4位,有10种选法;第5步,从剩下的9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的8个字母屮选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26 X25X24X10X9X8=11 232 000 (个).同理,字母纽合在右的牌照也有11232 000个.所以,共能给11232 000 + 11232 000 = 22464 000 (个).辆汽车上牌照.川两个★数原理解决计数问题时,最重耍的是在开始计算之前要进行仔细分析一需耍分类还是需要分步.分类要做到“不重不漏”.分类示再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整”一完成了所有步骤,恰好完成任务,当然步与步Z间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.练习1 •乘积(q +0 + Q3)(也+ b? + $)(q + C2 + C3 + C4 + C5)展开后共有多少项?2.某电话局管辖范围内的电话号码由八位数字纟fl成,其屮前四位的数字是不变的,后四位数字都是。
第一章计数原理§1.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理(1)分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.(2)分类加法计数原理的推广完成一件事有n类方法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法(3)应用分类加法计数原理应注意的问题①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以独立完成这件事,而不需要再用到其他的方法.③不同方案的任意两种方法是不同的方法,也就是分类时必须做到既“不重复”也“不遗漏”.2.分步乘法计数原理(1)分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.(2)分步乘法计数原理的推广:完成一件事,需要分n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.(3)应用分步乘法计数原理要注意的问题①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某种方法是不是能完成这件事,也就是说是否必须要经过几步才能完成这件事.②完成这件事要分若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复,也不能遗漏.3.正确区分和理解两个原理(1)分类加法计数原理和分步乘法计数原理的区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.(2)用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析,确定需要分类还是分步.①分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.②分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.③对于较为复杂的既要用分类加法计数原理,又要用分步乘法计数原理的问题,我们可以根据题意恰当合理地画出示意图或者列出表格,使问题的实质直观地显现出来,从而便于我们解题.一、分类加法计数原理的应用在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个,由分类加法计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个).方法二按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有1+2+3+4+5+6+7+8=36(个).二、分步乘法计数原理的应用已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},求方程(x-a)2+(y-b)2=r2可表示多少个不同的圆.解确定一个圆的方程分三步:第1步确定a的值有3种方法,第2步确定b的值有4种方法,第3步确定r的值有2种方法,根据分步乘法计数原理,不同的圆的个数为N=3×4×2=24(个).三、两个计数原理的综合应用有一项活动需在3名老师,8名男同学和5名女同学中选人参加.(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16(种).(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13(种)方法,共有3×13=39(种)方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120(种)方法.四、计数时容易“漏”、“重”的问题某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解共分三类:第一类当既会英语又会日语的参加英语时,只选会日语的一个既可,有2种选法;第二类既会英语又会日语的参加日语时只选出会英语的一个即可,有6种选法;第三类既会英语又会日语的既不参加英语也不参加日语时,则需从会日语和英语中各选一人,有2×6=12种方法,故共有2+6+2×6=20(种)选法.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、二象限中的不同的点的个数有()A.18个B.16个C.14个D.10个解析此问题可分两类:①以集合M的元素作为横坐标,集合N的元素作为纵坐标,集合M中任取一个元素的方法有3种,要使点在第一、第二象限内,则集合N中只能取5,6两个元素中的一个,有2种方法,根据分步乘法计数原理有3×2=6个;②以集合N中的元素作为横坐标,集合M中的元素为纵坐标,集合N中任取一个元素的方法有4种,要使点在第一、第二象限内,则集合M中只能取1,3两个元素中的一个,有2种方法,根据分步乘法计数原理有4×2=8个.综合以上两类,利用分类加法计数原理,共有6+8=14个.故选C.答案 C五、涂色问题用5种不同的颜色(给如图所示的5个区域涂色),相邻部分不能用同一种颜色,但同一种颜色可以反复使用,所有不同的涂色方法有多少种?解第1步涂A区域有5种不同的涂法,第2步涂B区域有4种不同的涂法,依次第3、4、5步涂C、D、E区域,都有3种不同涂法.依据分步乘法原理,所有不同的涂色方法有5×4×3×3×3=540(种).用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3和区域4可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选;若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260(种)涂色方法.1.(全国Ⅰ高考)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种解析由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.如图中的△,当△全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定);当△全为2或3时,分别有2种,共有6种;当△分别为1,2,3时,也共有6种.所以共12种.答案 B2.(广州模拟)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析共有4×3×2×2=48(种).答案 D3.(北京高考)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为() A.324 B.328C.360 D.648解析分两类:第一类末位为0,第二类末位不为0.在第一类中可分三步完成,第一步确定末位数字有一种方法,第二步确定百位数字有9种方法,第三步确定十位数字有8种方法,共有9×8×1=72(个)偶数;在第二类中也要分三步完成,第一步确定末位数字,只能从2,4,6,8四个数字中选一,有4种选法,第二步确定首位数字,有8种方法,第三步确定十位数字,也有8种方法,共有4×8×8=256(个)偶数,因此共有72+256=328(个)偶数,故选B.答案B1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种答案 D解析因为每人均有两种选择方法,所以不同的报名方法有25=32(种).2.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”的个数为()A.2 000 B.4 096C.5 904 D.8 320答案 C解析从反面考虑:后4位中不带数字“4”和“7”的一共有8×8×8×8=4 096(个),∴带“4”或“7”的有10 000-4 096=5 904(个).3.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有()A.180种B.120种C.96种D.60种答案 A解析按区域分四步:第一步A区域有5种颜色可选;第二步B区域有4种颜色可选;第三步C区域有3种颜色可选;第四步由于D区域可以重复使用区域A中已有过的颜色,故也有3种颜色可选用.由分步乘法计数原理,共有5×4×3×3=180(种)涂色方法.4.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种答案 B解析能去巴黎的有4个人,依次能去伦敦、悉尼、莫斯科的有5个、4个、3个.∴不同的选择方案有4×5×4×3=240(种).∴选B.5.如图所示,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落可能性共有()A.6种B.36种C.63种D.64种答案 C解析每个焊点都有正常与脱落两种情况,共有26种情况,但其中有一种情况是各焊点都正常的情况,所以共有26-1=63(种)电路不通的情况.6.从集合{0,1,2,3,5,7,11}中任取三个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得直线经过坐标原点的有________条.答案30解析因为直线过原点,所以C=0,从1,2,3,5,7,11这六个数中任取2个作为A、B,分为两步:第一步取一个数作为A有6种;第二步从剩下的5个数中取一个数作为B有5种,所以直线的条数为6×5=30.7.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有________个.答案192解由数字0,1,2,3,4,5组成没有重复数字的四位数共有5×5×4×3=300(个),其中能被5整除的共分两类:末位为5,有4×4×3=48(个);末位为0,有5×4×3=60(个),故答案为300-108=192(个).8.某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位、个位上的数字(如2 816)的方法设计密码,积为一位数时,十位上数字选0,千位、百位上都能取0.这样设计出来的密码共有________个.答案100解析由于千位、百位确定下来后十位、个位就随之确定,则只考虑千位、百位即可,千位、百位各有10种选择,所以有10×10=100(种).9.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得,不在直线y=x上的点共有36-6=30(个).10.现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).学科网()-精品系列资料上学科网,下精品资料!。
§1.1分类加法计数原理与分步乘法计数原理(二)一、两个计数原理的综合应用在3 000到8 000之间有多少个无重复数字的奇数?解分两类:一类是以3,5,7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数有8×7种方法,所以共有3×4×8×7=672(个).另一类是首位是4或6的四位奇数,也可分三步完成,共有2×5×8×7=560(个).由分类加法计数原理得,共有672+560=1 232(个).【反思感悟】对于较复杂的问题,有时分类以后,每类方法并不都是一步能完成的,必须在分类后又分步,综合利用两个原理解决问题.本题3,5,7这三个数既可以排在首位,也可以排在个位,因此,首位是用3,5,7去填,还是用4,6去填,影响到第二步,即填个位的方法数.遇到此类情形,则要分类处理.从1~20共20个整数中任取两个相加,使其和为偶数的不同取法共有多少种?解第一类:两个偶数相加,由分步计数原理,共有10×9=45(种)不同的取法;2第二类:两个奇数相加,由分步计数原理,=45(种)不同的取法.共有10×92由分类计数原理得,共有45+45=90(种)不同取法.二、利用模型法解决计数问题3个人要坐在一排8个空座位上,若每个人左右都有空座位,不同坐法有多少种?解3个人在一排8个空座位上坐下后,只剩下5个空座位,我们可以构造这样的解题过程,依次将3个人连同他的座位逐个地插入5个空座位形成的空座位当中.如图所示:(1)○○○○○(2)○○□○○○(3)○○□○○□○(4)○□○□○○□○○表示没有坐人的空位□表示已经坐人的位置由于每人左右都要有空位子,因此将第一个人连同他的座位插入时,不能插在两边,所以有4种插法(如图中的(1)到(2));然后将第二个人连同他的座位插入时,只有3种插法了(如图中的(2)到(3));最后将第三个人连同他的座位插入时,只有2种插入的方法了(如图中的(3)到(4)).这时,我们再根据分步乘法计数原理,可以得到插入的不同的方法共有4×3×2=24(种).【反思感悟】本题用“○”表示没有坐人的空位,用“□”表示已经坐人的位置,画图分析为我们构建分步乘法计数原理的模型铺平了道路.模型法就是通过构建相关图形,利用形象直观的图形来构建两个原理的模型.模型法不仅可以帮助我们准确理解题意,而且还可以帮助我们有效地分析问题,从而建立两个原理的模型,使问题顺利地解决.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB 码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?解 (1)用下图来表示一个字节:第1位 第2位 第3位 第8位2种 2种 2种 2种一个字节共有8位,每位上有2种选择,根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的不同字符不够6 763个,我们就考虑用2个字节能够表示多少个字符.前一个字节有256种不同的表示方法,后一个字节也有256种表示方法.根据分步乘法计数原理,2个字节可以表示256×256=65 536个不同的字符, 已经大于汉字国标码包含的汉字个数6 763.所以要表示这些汉字,每个汉字至少要用2个字节表示.三、利用转化法解决计数问题把20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒子内的球数不小于它的编号数,则不同的放法共有________种.答案 120解析 不妨设编号为1,2,3的三个盒子中分别放入了x 1,x 2,x 3个小球,依题意有 ⎩⎪⎨⎪⎧ x 1+x 2+x 3=201≤x 1≤15,2≤x 2≤16,3≤x 3≤17 ①②问题转化为在条件②下求不定方程①的解的个数,可考虑用分类计数的方法.当x 1=1时,x 2=2,3,…,16,这时x 3随之而定,从而共有15种放法.当x 1=2时,x 2=2,3,…,15,这时x 3随之而定,从而共有14种放法.……当x 1=15时,只有x 2=2,x 3=3,仅有一种放法.根据分类原理,符合要求的放法共有N =15+14+…+2+1=120(种).【反思感悟】 将问题转化为不定方程的整数解组数问题,利用计数原理计数.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分.一球队打完15场,积33分.若不考虑顺序,该队胜、负、平的情况有( )A .3种B .4种C .5种D .6种答案 A解析 设该队胜x 场,平y 场,则负(15-x -y )场,由题意,得3x +y =33.∵y =33-3x ≥0,∴x ≤11且x +y ≤15,因此,有以下三种情况⎩⎪⎨⎪⎧ x =11y =0, ⎩⎪⎨⎪⎧ x =10y =3, ⎩⎪⎨⎪⎧x =9y =6, ∴应有3种情况.课堂小结:1.对于有些计数问题的解决,对它们既需要进行“分类”,又需要进行“分步”,那么此时就要注意综合运用两个原理解决问题.首先要明确是先“分类”后“分步”,还是先“分步”后“分类”;其次,在“分类”和“分步”的过程中,均要确定明确的分类标准和分步程序.2.一些非常规计数问题的解决方法(1)枚举法将各种情况一一列举出来,它适用于计数种数较少时,分类计数时将问题分类实际也是将分类种数一一列举出来.(2)间接法若计数时分类较多,或无法直接计数时,可用间接法先求出总数,再减去不可能的种数,即正难则反.(3)转换法转换问题的角度或转换成其他已知的问题.在实际应用中,应根据具体问题,灵活处理.(4)模型法模型法就是通过构造图形,利用形象直观的图形帮助我们分析、解决问题的方法.模型法是解决计数问题的重要方法.一、选择题1.集合A={a,b,c},B={1,2},则A到B的不同映射f共有()A.6个B.8个C.9个D.4个答案 B解析“一件事”是指在集合B中找出与a,b,c对应的一种对应关系.分三步完成,因此不同映射共有N=2×2×2=8(个).2.如图所示,用不同的五种颜色分别为A、B、C、D、E五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,则符合这种要求的不同着色的方法数是()A.120 B.240 C.480 D.540答案 D解析分五步完成,第一步对A部分着色,有5种方法.第二步对B部分着色,有4种方法.第三步对C部分着色,有3种方法.第四步对D部分着色,也有3种方法.第五步对E部分着色,由图可知也有3种方法.共有5×4×3×3×3=540.3.如图所示,某段电路是由五个电阻组成,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,该段电路就会不通.现在电路MN间没有电流通过,那么焊接点脱落的可能性共有()A.14种B.49种C.16种D.64种答案 B解析每个焊接点都有正常与脱落两种情况,所以支路ABC有8种情况,去掉通路的一种情况,有7种情况;对于支路DEF的情况也是一样,有7种情况,所以共有49种情况.4.如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有()A.12对B.24对C.36对D.48对答案 B解析把六棱锥所有的棱分成三类:第一类:底面上的六条棱所在的直线共面,则每两条之间不能构成异面直线.第二类:六条侧棱所在的直线共点,每两条之间也不能构成异面直线.第三类:结合图形可知,只有底面棱中1条棱所在的直线和它不相交的4条侧棱所在的4条直线中的1条才能构成异面直线,再由分步乘法计数原理得,可构成异面直线6×4=24对.5.书架上原来并排着5本不同的书,现要再插入3本不同的书,那么不同的插法共有()A.336种B.120种C.24种D.18种答案 A解析我们可以一本一本的插入,先插入一本可以在原来5本书形成的6个空档中插入,共有6种插入方法;同理然后再插入第二本共7种插入方法,插入第三本共有8种插入方法,所以共有6×7×8=336(种)不同的插法.6.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有()A.6种B.8种C.36种D.48种答案 D解析如图所示,在A点可先参观3个区域中的任一个,然后参观剩余的2个区域的任一个,最后参观最后一个区域,共有6种不同的选法,每种选法中又有2×2×2=8(种)不同的路线.∴共有6×8=48(种)不同的参观路线.7.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种答案 B解析当A={1}时,B为{2,3,4,5}的非空子集即可,有15个;当A={2}或A={1,2}即A中最大数为2时,则B有7个;当A中最大数为3(A有4个),则B有3个;当A中最大数为4(A有8个),则B有1个,故共有15+2×7+4×3+8=49(种)不同的选择方法.此题主要考查加法原理,按照A中元素的最大数为标准进行分类.二、填空题8.从集合{1,2,3,…,10}中,选出5个不同的数组成子集,且使得这5个数中任两个数的和都不等于11,则这样的子集共有________个.答案32解析∵1+10=11,2+9=11,3+8=11,4+7=11,5+6=11,∴从这5组数中各取一个组成一个集合符合题意,根据分步乘法计数原理,共有25=32(个).9.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植1垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种.答案12解析选垄方法分为3类:(1)A、B间隔6垄可选1和8垄、2和9垄、3和10垄,每种选法有2种种植方法(例如,1垄种A,8垄种B或1垄种B,8垄种A),因此共有3×2=6(种)方法;(2)A、B间隔7垄,可选1垄和9垄,2和10垄,因此,共有2×2=4(种)方法;(3)A、B间隔8垄,只能选1垄和10垄,因此有2种方法.三类方法相加得6+4+2=12(种)方法.10.三边长是整数,且最大边长为11的三角形个数为________________________________________________________________________.答案36解析另两边长用x、y表示且不妨设1≤x≤y≤11,要构成三角形必须x+y≥12.当y=11时,有11个;当y=10时,有9个;当y=9时,有7个;当y=8时,有5个;当y=7时,有3个;当y=6时,x只能取6;故有11+9+7+5+3+1=36个.∴有36(个).三、解答题11.甲、乙、丙、丁四人传球,第一次甲传给乙、丙、丁三人中任一人,第二次由拿球者再传给其他三人中任一人,这样共传了4次,求第4次仍传回到甲的方法共有多少种?解第一步甲传给其余三人共有3种方法;第二步由持球者再传给其他三人可分两类:第一类由持球者传给甲,此时第三步由甲传给其他三人,有3种方法;第四步由持球者再传给甲;第二类由持球者传给甲以外的另两人有两种方法,此时第三步由持球者传给甲以外的另两人(因为第三步不能传给甲,否则第四步不能传给甲),有两种方法;第四步由持球者传给甲,故共有传球方法3×(1×3×1+2×2×1)=21(种).12.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色.(1)共有多少种不同的涂色方法?(2)若要求相邻(有公共边)的区域不同色,那么有多少种不同的涂色方法?解(1)每一个区域都有5种不同的涂色方法,所以涂完4个区域共有5×5×5×5=625(种)不同的涂色方法.(2)方法一若2号、4号区域同色,有5×4×3=60(种)涂法;若2号、4号区域异色,有5×4×3×2=120(种)涂法.所以共有60+120=180(种)涂法.方法二先涂1号区域,有5种涂法;再涂3号区域,有4种涂法;2号、4号区域各有3种涂法,故共有5×4×3×3=180(种)涂法。
§1.1 分类加法计数原理与分步乘法计数原理(一)一、分类加法计数原理的应用某学生去书店,发现三本好书,决定至少买其中一本,则该生的购书方案有________种.答案7解析在三本好书中至少买一本,可分为三类:恰买一本,有3种方案;恰买2本,有3种方案;恰买3本,有1种方案,从而共有3+3+1=7(种)方案.【反思感悟】分类加法计数原理的实质是“整体”等于“部分”之和,就是“整体”(即完成一件事的方法)分成若干个互不相交的类,使得每一类中的元素的个数易于计算.王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里任取一张英语单词卡片,有多少种不同的取法?解从口袋中任取一张英语单词卡片的方法分两类:第一类:从左边口袋取一张英语单词卡片,有30种不同的取法;第二类:从右边口袋取一张英语单词卡片,有20种不同的取法.上述的其中任何一种取法都能独立完成取一张英语单词卡片这件事,应用分类加法计数原理,所以从两个口袋里任取一张英语单词卡片的方法为30+20=50(种).二、分步乘法计数原理的应用(1)有5本书全部借给3名学生,有多少种不同的借法?(2)有3名学生分配到某工厂的5个车间去参加社会实践,求有多少种不同分配方案?解(1)中要完成的事件是把5本书全部借给3名学生,可分5个步骤完成.每一步把一本书借出去,有3种不同的方法,根据分步乘法计数原理,共有N=3×3×3×3×3=35=243(种)不同的借法.(2)中要完成的事件是把3个学生分配到5个车间中,可分3个步骤完成,每一步分配一名学生,有5种不同的方法,根据分步乘法计数原理,共有N=5×5×5=53=125(种)不同的分配方案.【反思感悟】解决这类问题,切忌死记公式“m n”或“n m”,而应弄清楚哪类元素必须用完,就以它为主进行分析,并以该元素为分步的依据进行分步,再用分步乘法计数原理来求解.集合A={a,b,c,d,e}有5个元素,集合B={m,n,f,h}有4个元素,则:(1)从集合A到集合B可以建立________个不同的映射.(2)从集合B到集合A可以建立________个不同的映射.答案(1)45(2)54解析要想建立一个从A到B的映射,必须使集合A中的每一个元素能在B中有唯一确定的元素与之对应,因此,要使A中5个元素均找到象,必须分5步完成.首先看A中元素a在B中的象的可能有4种,其他同样,用分步乘法原理求解.故根据映射定义,以及分步计数原理可得.(1)可建立起4×4×4×4×4=45(个)不同的映射;(2)可建立起5×5×5×5=54(个)不同的映射.三、两个计数原理的简单综合应用集合A={1,2,-3},B={-1,-2,3,4}.现从A,B中各取一个元素作为点P(x,y)的坐标.(1)可以得到多少个不同的点?(2)在这些点中,位于第一象限的有几个点?解(1)第一类:选A中的元素为x,B中的元素为y,有3×4=12(个)不同的点;第二类:选A中的元素为y,B中的元素为x,有4×3=12(个)不同的点.∴可以得到24个不同的点.(2)第一象限内的点,即x,y必须为正数,从而只能取A,B中的正数,同样分两类.N =2×2+2×2=8(个).即这些点中,位于第一象限的有8个点.【反思感悟】此题既要用到分类计数原理,又要用到分步计数原理,解题的关键是恰当分类,合理分步.王华同学有一些课外参考书.其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他的同学想从中借2本不同学科的参考书,问有多少种不同的选法?解选1本外语书和选1本数学书,有5×4=20(种)选法;选1本外语书和选1本物理书,有5×3=15(种)选法;选1本数学书和选1本物理书,有4×3=12(种)选法.故共有20+15+12=47(种)不同的选法.课堂小结:1.应用分类加法计数原理要注意的问题(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.(2)完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.(3)确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既“不重复”也“不遗漏”.2.应用分步乘法计数原理要注意的问题(1)明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某种方法是不是不能完成这件事,也就是说必须要经过几步才能完成这件事.(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成.(3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏.3.两个原理的区别两个基本原理的区别在于:分类加法计数原理每次得到的是最后结果,分步乘法计数原保不遗漏,“独立”确保不重复一、选择题1.一个包内有5本不同的小说,另一个包内有4本不同的教科书,从两个包内任取一本书的取法有( )A .5种B .4种C .9种D .20种答案 C解析 取一本书有两类不同的方案:第一类方案从有5本不同的书的包中取,共有5种不同的方法;第二类方案是从有4本不同的书的包中取,有4种不同的方法,所以共有N =5+4=9种取法.2.某公共汽车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有( )A .510种B .105种C .50种D .以上都不对答案 A解析 本题的“一件事”是指10个乘客的一种下车方式,完成一件事即为10名乘客下完车.分10步完成,第一步安排第一个乘客下车,有5种方法…,第10步是安排最后一名乘客下车,有5种方法.所以乘客下车的方式共有510种方法.3.某体育彩票规定:从01至36共36个号中抽出7个号(号码由小到大排列)为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号码买全,至少要花( )A .3 360元B .6 720元C .4 320元D .8 640元答案 D解析 抽一注号码分四步完成,共有N =8×9×10×6=4 320个不同的注.共需花 4 320×2=8 640元.4.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数( )A .7B .64C .12D .81答案 C解析 由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以,有4×3=12种选法,故选C.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8答案 D解析 当公比为2时,等比数列可为1、2、4,2、4、8.当公比为3时,等比数列可为1、3、9.当公比为32时,等比数列可为4、6、9. 同时,4、2、1和8、4、2,9、3、1,9、6、4也是等比数列,共8个.6.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有( )A .34种B .43种C .18种D .36种答案 D解析 4个不同的小球放入3个不同的盒子,其中每个盒子都不空,则必有一个盒子放入2个球.设4个球的编号分别为1,2,3,4,则其中2个球放在一个盒子里的情况有:1、2,1、3,1、4,2、3,2、4,3、4,共6种情况.把2个球放在一个盒子里的情况当作1个球和另外2个球分别放入3个盒子里,共有3×2×1种放法.于是所求放法为6×3×2×1=36(种).二、填空题7.若x,y∈N*,且x+y≤6,则有序数对(x,y)共有______个.答案15解析x=1时,y=5,4,3,2,1;x=2时,y=4,3,2,1;x=3时,y=3,2,1;x=4时,y=2,1;x=5时,y=1.由分类加法计数原理得:N=5+4+3+2+1=15(个).8.某城市的电话号码,由六位数改为七位数.若首位数字均不为0,则该城市可能增加电话门数是__________.答案8 100 000解析首位不为零的六位数有9×105,首位不为零的七位数有9×106,所以可能增加电话门数是9×106-9×105=8 100 000.三、解答题9.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点;∴共有2+2+3+3+5+5=20(个)点.10.从黄瓜,白菜,油菜,扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,有多少种不同的种植方法?解分黄瓜种在第一,二,三块土地上讨论,黄瓜种在第一块土地上,第二步第二块土地有3种种法,第三块土地有2种种法,有1×3×2=6(种)种法.同理黄瓜种在二,三两块土地上都有6种法,故总的种植方法是6×3=18(种).11.已知集合A={a,b,c},集合B={-1,0,1}.(1)从集合A到B能构造多少个不同的映射?(2)满足f(a)+f(b)+f(c)=0的映射有多少个?解(1)每个元素a,b,c都可以有3个象和它对应,故从A到B能构造3×3×3=27个不同的映射.(2)12.某城市提供甲,乙,丙,丁四个企业给我市一个高中三年级三个班的学生进行社会实践活动,其中企业甲是市明星企业,必须有班进行社会实践,每个班去哪个企业,可由各班自己在四个企业中任意选择一个,所有不同的安排社会实践的方案有多少种?解无限制条件三个班去四个企业,每个班都有4种去法,由乘法原理共有43种去法,再排除甲企业没有班级去的方法33种,故共有43-33=37(种)不同方案.学科网()-精品系列资料上学科网,下精品资料!。
§1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时第一课时引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有N+=mn种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 解:从总体上看,如,蚂蚁从顶点A 爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类, m1 = 1×2 = 2 条第二类, m2 = 1×2 = 2 条第三类, m3 = 1×2 = 2 条所以, 根据加法原理, 从顶点A到顶点C1最近路线共有N = 2 + 2 + 2 = 6 条练习1.填空:( 1 )一件工作可以用2 种方法完成,有5 人只会用第1 种方法完成,另有4 人只会用第2 种方法完成,从中选出l 人来完成这件工作,不同选法的种数是_;( 2 )从A 村去B 村的道路有3 条,从B 村去C 村的道路有2 条,从A 村经B 的路线有_条.第二课时2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯= 种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A 、B 、C 、D 四个区域依次分四步完成,第一步, m1 = 3 种,第二步, m2 = 2 种,第三步, m3 = 1 种,第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 ×2 ×1×1 = 6变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去C 村,不同( 2 )从3 个年级的学生中各选1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
分类加法计数原理与分步乘法计数原理____________________________________________________________________________________________________________________________________________________________________1.掌握分类计数原理,分布计数原理的概念.2.掌握分类计数原理与分布计数原理的区别.3.能解决分类计数原理与分步计数原理的综合题.1.分类计数原理与分步计数原理(1)分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2 +…+m n种不同的方法注意:○1分类计数原理又称为加法原理;○2弄清楚完成“一件事”的含义,即知道做“一件事”或完成一个“事件”在题目中具体所指的内容;○3解决“分类”问题,用分类计数原理,即完成事件通过途径A,就不必再通过途径B,可以单独完成;○4每个题中,标准不同,分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重).(2)分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.注意:○1分步计数原理又称为乘法原理;○2弄清楚完成“一件事”的含义,即知道完成一个“事件”在每个题中需要经过哪几个步骤;○3解决“分步”问题,用分步计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一个事件,注意各步骤间的连续性;○4每个题中,标准不同,分步也不同,分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤之间的方法是无关的,不能相互替代.2.分类计数原理和分步计数原理的区别辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事。
类型一分类计数原理例1:王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从口袋里任取一张英语单词卡片,有多少种不同的取法?[解析]从口袋中任取一张英语单词卡片的方法分两类,第一英:从左边口袋取一张英语单词卡片,有30种不同的取法;第二类:从右边口袋取一张英语单词卡片,有20种不同的取法,上述任何一种取法都能独立完成取一张英语单词卡片的事件,应用分类计数原理,所以从口袋里任取一张英语单词卡片有30+20=50种不同取法.练习1:用10元、5元和1元来支付20元钱的书款,不同的支付方法有()种A.3B.5C.9D.12[答案] C[解析]只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类计数原理得,共有3+5+1=9种.练习2:把10个苹果分成三堆,要求每堆至少有1个,至多有5个,则不同的分法共有( )A .4种B .5种C .6种D .7种[答案]A[解析]按每堆苹果的数目可分为4类,即1,4,5;2,3,5;3,3,4;2,4,4,且每类中只有一种分法.类型二分步计数原理例2:要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?[解析]从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班这两个步骤完成.先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法,根据分步计数原理,所求的不同的选法数是:N =3×2=6.练习1:有四名同学同时参加了学校的100 m , 800 m , 1 500 m 三项跑步比赛,则获得冠军(无并列名次)的可能性有()A .43种B .34种C .12种D .24种[答案] A[解析]第一步,100 m 冠军有4种可能;第二步,800 m 冠军也有4种可能;第三步,1 500 m 冠军有4种可能,根据分步计数原理,共有4×4×4=43种可能.练习2:将5封信投入3个邮筒中,不同的投法有()种A .53B .35C .15D .5[答案] B[解析]第1封信有3种投法,第2封信也有3种投法……第5封信同样有3种投法,完成5封信投入3个邮筒这件事,按分步计数原理共有3×3×3×3×3=35种方法.类型三分类计数原理与分步计数原理的区别例3:设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画,问:(1)从中取一幅画布直房间,有多少种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有多少种不同的选法?[解析](1)分三类:第一类从国画中选一幅,共5种;第二类从油画中选一幅,共有2种;第三类从水彩画中,选一幅,共有7种,由分类加法计数原理,共有5+2+7=14种不同的选法.(2)分三步:第一步从国画中选一幅共5种;第二步从油面中选一幅共有2种;第三步从水彩画中选一幅共:7种,由分步乘法计数原理,共有5×2×7=70种不同的选法.练习1:已知集合{1,2,3},{4,5,6,7}.M N =-=--若从两个集合中各取一个元素作为点的坐标,则在直角坐标系的第一、第二象限不同点的个数为()A .18B .16C .14D .10[答案] C[解析]取法可分为两类.(1)以集合M 中的元素为横坐标,N 中的元素为纵坐标,从集合M 中取一个元素的方法有3种,要使点在第一、第二象限内,则从N 集合中只能取5,6两个元素中的一个,共有2种取法,根据分步计数原理有3×2=6个点.(2)以集合N 中的元素为横坐标,M 中的元素为纵坐标,从集合N 中任取一个元素的方法有4种,要使点在第一、第二象限内,则从M 中只能取1,3两个元素中的一个,共有2种取法,根据分步计数原理有4×2=8个点,综上,利用分类计数原理,共有6+8=14个点.类型四两个原理的综合应用例4:有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同英的书,共有________种不同的取法.[答案]242[解析]任取两本不同类的书,有三类:一、取数学、语文各一本,二、取语文、英语各一本,三、取数学、英语各一本.然后求出每类取法,利用分类加法计数原理即可得解.取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90种不同取法;取两本书中,一本语文、一本英语,有9×8 = 72种不同取法;取两本书中,一本数学、一本英语,有10×8=80种不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242种不同取法.练习1:有不同的中文书9本,不同的英文书6本,不同的法文书5本,从其中取出不是同一国文字的书2本,则不同的取法有()种.A.40B.56C.124D.129[答案]D[解析]取出的书为中文、英文的有9×6=54种;取出的书为中文、法文的有9×5=45种;取出的书为英文、法文的有6×5=30种.共有54+45+30=129种.1.从A地到B地每天有直达班车4班,从A地到C地,每天有5个班车,从C地到B地,每天有3个班车,则从A地到B地,每天共有()种不同乘车方法.A.12B.60C.19D.17[答案]C[解析]从A地到B地共分两类方法,第一类:直达班车4班;第二类,转车从A到C再到B,共有5×3=15种乘车方法,根据分类加法计数原理,共有4+15=19种不同的乘车方法.2.将6个苹果投入4个袋子里,不同的投法共有()A.64种B.46种C.4种D.24种[答案]B[解析]每个苹果有4种不同的投法,所以共有46种不同的投法3.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100个B.90个C.81个D.72个[答案]C[解析]要使得点不在x轴上,则纵坐标不能为0,故纵坐标上的数字只能有9种选择,纵坐标选好后,横坐标不能与之相同,故也有9种情况,故共可确定9×9=81个符合题意的点.4.书架上原来并排放者5本不同的书,现在要插入3本不同的书,那么不同的插法有()A.336种B.120种C.24种D.18种[答案]A[解析]我们可以一本一本的插入,先插第一本,可在原来的5本书形成的6个空中插入,共有6种插入的方法;然后再插第二本,这时书架上有6本书形成7个空,有7种插入方法;再插最后一本,有8种插法,所以共有6×7×8=336种不同的插法.5.某校会议室有四个进入门,若从一个门进,另一个门出,不同的走法有________种.[答案]12[解析]根据分步计数原理,共有4×3=12种不同的走法.6.由三个数码组成的号码锁,每个号码可取0,1,2……9中任意一个数字,不同的开锁号码设计共有________个.[答案]1000[解析]由每个号码可取0到9中任意一个数字,有10种取法,根据分步计数原理,共有10×10×10=1000个不同的开锁号码._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.把10个苹果分成三堆,要求每堆至少有1个,至多有5个,则不同的分法共有)A .4种B .5种C .6种D .7种[答案] A2.一个包内有7本不同的故事书,另一个包内有5本不同的教科书,从两个包内任取一本的取法有()A .7种B .5种C .12种D .35种[答案] C[解析](1)从有7本不同故事书的包内任取一本书的取法有7种;(2)从有5本不同教科书的包内任取一本书的取法有5种.综上,共有12种取法.3.从甲地到乙地每天有火车10班,汽车15班,飞机3班,轮船2班,一天内乘不同班次的运输工具由甲地到乙地,不同的走法有()A .10种B .20种C .30种D .40种[答案]C[解析]由于每班火车、汽车、飞机、轮船都能完成从甲地到乙地这件事,因此这是一个分类问题,应采用分类计数原理,有10+15+3+2=30种,即一天内乘不同班次的运输工具由甲地到乙地共有30种不同的走法.4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法数为()A .42B .30C .20D .12[答案]A[解析]原定的5个节目共有6个空位,将其中1个新节目插入有6种插法,然后6个节目形成7个空位,将另一新节目插入,由分步计数原理共有7×6=42种方法.5.4名学生报名参加地理探宝、人与自然、航模课外兴趣小组,每人选报一种,则不同报名种数有()A .34B .43C .12D .4[答案]A6.已知集合{1,2,3},{4,5,6,7}.M N =-=--若从两个集合中各取一个元素作为点的坐标,则在直角坐标系的第一、第二象限不同点的个数为()A .18B .16C .14D .10[答案] C[解析] 取法可分为两类.(1)以集合M 中的元素为横坐标,N 中的元素为纵坐标,从集合M 中取一个元素的方法有3种,要使点在第一、第二象限内,则从N 集合中只能取5,6两个元素中的一个,共有2种取法,根据分步计数原理有3×2=6个点.(2)以集合N中的元素为横坐标,M中的元素为纵坐标,从集合N中任取一个元素的方法有4种,要使点在第一、第二象限内,则从M中只能取1,3两个元素中的一个,共有2种取法,根据分步计数原理有4×2=8个点,综上,利用分类计数原理,共有6+8=14个点.7.有不同的中文书9本,不同的英文书6本,不同的法文书5本,从其中取出不是同一国文字的书2本,则不同的取法有()种.A.40B.56C.124D.129[答案]D[解析]取出的书为中文、英文的有9×6=54种;取出的书为中文、法文的有9×5=45种;取出的书为英文、法文的有6×5=30种.共有54+45+30=129种.8.用1,2,…,9九个数字,可组成的四位数共有______个,可组成的七位数共有______个.[答案]组成四位数:个位数有9种选法,十位数有9种选法,百位数也有9种选法,千位数同样有9种选法,根据分步计数原理,四位数共有9×9×9×9=94个.同理,七位数共有97个.故第一个空填94,第二个空填97.能力提升1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种[答案]C2.卷航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰,如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( ) A.12种B.16种C.24种D.36种[答案]D3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.9[答案]B4.用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)[答案]A5.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是()A .9B .14C .15D .21【答案】B6.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要()A .3360元B .6720元C .4320元D .8640元[答案] D7.集合A 、B 的并集A U B ={a ,b ,c },当A ≠B 时(A ,B )与(B ,A )视为不同的对,则这样的(A 、B )对的个数有多少?[答案]因为A U B ={a ,b ,c },所以对于元素a 而言,有a A ∈但,a B a B ∉∈但a ∉,A a A B ∈I 三种情况,同样b 和c 也有三种情况,由分步乘法计数原理可知,这样的集合对的个数共有3×3×3=27个.8.已知在区间(400,800]上,问:(1)有多少个能被5整除且数字允许重复的整数?(2)有多少个能被5整除且数字不重复的整数?[答案](1)分三步:第一步,排个位有2种方法;第二步,排百位有4种方法;第三步,排十位有10种方法,又考虑到800符合题意,故共有2×4×10+1=81个能被5整除,且数字允许重复的整数.(2)分两类:第一类,当个位数字为0时,百位数字是4,5,6,7中的一个,十位是其余8个数字中的一个,此类共有4×8=32个;第二类,当个位数字是5时,百位是4,6,7中的一个,十位是其余8个中的一个,此类共有3×8=24个.故共有32+24=56个能被5整除且数字不允许重复的整数.。