上海市育才中学2010学年第一学期高三数学第二次月考试卷(理)附答案
- 格式:doc
- 大小:727.00 KB
- 文档页数:7
2023-2024学年上海市高一上册10月月考数学试题一、填空题1.下面六个关系式:①{}a ∅⊆;②{}a a ⊆;③{}{}a a ⊆;④{}{,}a a b ∈;⑤{,,}a a b c ∈;⑥{,}a b ∅∈,其中正确的是__.【正确答案】①③⑤【分析】根据集合与集合,元素与集合的关系判断即可.【详解】空集是任何集合的子集,故①正确;由元素与集合的关系可知,{},{,,}a a a a b c ∈∈,故②错误,⑤正确;由集合与集合的关系可知,{}{},{}{,},{,}a a a a b a b ⊆⊆∅⊆,故③正确,④⑥错误;故①③⑤2.集合{}22,{M y y x N x y ==-+=∣∣,则M N ⋂=__.【正确答案】1,23⎡⎤⎢⎥⎣⎦【分析】由函数的性质化简集合,再求交集.【详解】{}(]{21|2,2,|,3M y y x N x y ⎡⎫==-+=-∞===+∞⎪⎢⎣⎭,所以1,23M N ⎡⎤=⎢⎥⎣⎦ .故1,23⎡⎤⎢⎥⎣⎦3.满足条件M ∪{1}={1,2,3}的集合M 的个数为________.【正确答案】2【详解】∵M ∪{1}={1,2,3}∴2∈M ,且3∈M∴集合M 可能为{2,3}或{1,2,3}故答案为24.写出2a >的一个必要非充分条件___________.【正确答案】1a >根据必要非充分条件的定义,知:21a a >⇒>,而1a >不一定有2a >,即1a >是2a >的一个必要非充分条件.【详解】∵21a a >⇒>,而2a >⇏1a >,∴1a >是2a >的一个必要非充分条件.故1a >本题考查了必要非充分条件,根据定义法写出一个必要非充分条件,属于简单题.5.设实数集上不等式2103x x+<-的解集为A ,则A =R ð___________.【正确答案】1[,3]2-【分析】本题先求出1(,)(3,)2A =-∞-+∞ ,再求R A ð即可.【详解】解:因为2103x x+<-⇔2103x x +>-⇔(3)(21)0x x -+>⇔12x <-或3x >因为实数集上不等式2103x x +<-的解集为A ,所以1(,)(3,)2A =-∞-+∞ ,所以1[,3]2R A -=ð故1[,3]2-本题考查求解分式不等式、集合的补集运算,是基础题.6.若关于x 的一元二次不等式2(1)40x k x +-+≤的解集为{2},则实数k =________【正确答案】3-由题意利用判别式0∆=求出k 的值,再判断是否满足题意即可.【详解】关于x 的一元二次不等式2(1)40x k x +-+≤的解集为{2},所以()214140k ∆=--⨯⨯=,解得3k =-或5k =;当3k =-时,不等式为2440x x -+≤,解集为{}2;当5k =时,不等式为2440x x ++≤,解集为{}2-,不合题意;综上知,实数3k =-,故答案为.3-7.命题“存在x ∈R ,使得x 2+2x+5=0”的否定是【正确答案】对任何x ∈R ,都有x 2+2x+5≠0.【详解】因为命题“存在x ∈R ,使得x 2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x ∈R ,都有x 2+2x+5≠0.故答案为对任何x ∈R ,都有x 2+2x+5≠0.8.若实数,a b 满足1ab =,则222a b +的最小值为___________.【正确答案】【分析】直接利用均值不等式计算得到答案.【详解】222a b +≥==当222a b =时,即141422a b -⎧=⎪⎨⎪=⎩或141422a b -⎧=-⎪⎨⎪=-⎩时,等号成立.故答案为.本题考查了利用均值不等式求最值,意在考查学生对于均值不等式的灵活运用.9.已知,,a b c ∈R 则下列命题正确的个数是___________.①若22ac bc >,则a b >;②若22a b ->-,则()()2222a b ->-;③若0a b c >>>,则111a b c <<;④若0a >,0b >,4a b +>,4ab >,则2a >,2b >.【正确答案】3【分析】根据不等式的性质判断,错误的命题可举反例说明.【详解】①若22ac bc >,显然20c >,则a b >,正确;②若22a b ->-,显然20b -≥,根据不等式的乘方的性质有,则()()2222a b ->-,正确;③若0a b c >>>,由0a b >>,则a b ab ab >,即11b a >,同理由0b c >>得11b c <,所以111a b c <<,正确;④若0a >,0b >,4a b +>,4ab >,例如10,1a b ==,满足4,4a b ab +>>,但12b =<,错误.正确个数为3.故3.10.若不等式ax 2-bx +c <0的解集是{|23}x x -<<,则不等式bx 2+ax +c <0的解集是______【正确答案】(-3,2)【分析】由题分析得b >0,且a b =1,c b=-6,再解一元二次不等式得解.【详解】∵不等式ax 2-bx +c <0的解集是(-2,3),∴a >0,且对应方程ax 2-bx +c =0的实数根是-2和3,由根与系数的关系,得2323c a b a⎧=-⨯⎪⎪⎨⎪=-+⎪⎩,即c a =-6,b a=1,∴b >0,且a b =1,c b =-6,∴不等式bx 2+ax +c <0可化为x 2+x -6<0,解得-3<x <2;∴该不等式的解集为(-3,2).故答案为(-3,2).本题主要考查一元二次不等式的解的求法和应用,意在考查学生对这些知识的理解掌握水平.11.已知一元二次方程20x px p ++=的两个实根分别为α,β,且223αβ+=,则实数p =_________【正确答案】1-【分析】利用根的判定式求出参数的取值范围,再利用韦达定理计算可得;【详解】解:因为一元二次方程20x px p ++=的两个实根分别为α,β,所以240p p ∆=-≥,解得4p ≥或0p ≤所以p pαβαβ+=-⎧⎨=⎩又因为223αβ+=,所以()22223αβαβαβ+=+-=,即()223p p --=,解得1p =-或3p =(舍去)故1-本题考查根与系数的关系的应用,属于基础题.12.若关于x 的不等式224ax ax -≥的解集为∅,则实数a 的取值范围是__.【正确答案】(]4,0-【分析】讨论0a =,0a ≠两种情况,由一元二次不等式的解法得出实数a 的取值范围.【详解】由题意得2240ax ax --≥的解集为∅,当0a =时,40-≥的解集为∅,当0a ≠时,20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<,综上,实数a 的取值范围是(]4,0-.故(]4,0-二、单选题13.设U 为全集,A 、B 为非空集合,下面四个命题:(1)A B A = ;(2)A B B ⋃=;(3)A B ⋂=∅;(4)A B U ⋃=.其中与命题A B ⊆等价的命题个数有()个A .1B .2C .3D .4【正确答案】D【分析】利用集合的运算性质、集合之间的关系即可判断出结论.【详解】解:U 为全集,A 、B 为非空集合,下面四个命题:(1)A B A A B ⋂=⇔⊆;(2)A B B A B ⋃=⇔⊆;(3),A B x A =∅∀∈ ,则,,x B x B A B A B ∉∴∈∴=∅⇔⊆ ;(4),A B U x A =∀∈ ,则,,x A x B A B U A B ∉∴∈∴=⇔⊆ .其中与命题A B ⊆等价的命题个数有4.故选:D .14.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是()A .()M P SB .()M P SC .()⋂⋂M P SD .()⋂⋃M P S【正确答案】C 【分析】由Venn 图可得,集合表示,M P 的交集与S 的补集的交集,从而得到答案.【详解】由Venn 图可得,集合表示,M P 的交集与S 的补集的交集,即()⋂⋂M P S .故选:C15.直角坐标平面中除去两点(1,1)A 、(2,2)B -可用集合表示为()A .{(,)|1,1,2,2}x y x y x y ≠≠≠≠-B .1{(,)|1x x y y ≠⎧⎨≠⎩或2}2x y ≠⎧⎨≠-⎩C .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠D .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠【正确答案】C直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,逐一排除法.【详解】直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,A 选项中除去的是四条线1,1,2,2x y x y ====-;B 选项中除去的是(1,1)A 或除去(2,2)B -或者同时除去两个点,共有三种情况,不符合题意;C 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠,则22(1)(1)0x y -+-≠且22(2)(2)0x y -++≠,即除去两点(1,1)A 、(2,2)B -,符合题意;D 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠,则任意点(),x y 都不能2222[(1)(1)][(2)(2)]0x y x y -+-+-++=,即不能同时排除A ,B 两点.故选:C本题考查了集合的基本概念,考查学生对集合的识别,属于中档题.16.一元二次方程20ax bx c ++=有解是一元二次不等式20ax bx c ++>有解的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【正确答案】D【分析】根据充要条件、必要条件的定义判断即可;【详解】解:对于方程20ax bx c ++=,当2400b ac a ⎧∆=-=⎨<⎩,方程有解,此时20ax bx c ++>的解集为空集,故充分性不成立;若对于20ax bx c ++>当2400b ac a ⎧∆=-<⎨>⎩时不等式的解集为R ,此时方程20ax bx c ++=无解,故必要性也不成立,故一元二次方程20ax bx c ++=有解是一元二次不等式20ax bx c ++>有解的既非充分又非必要条件故选:D本题考查充分条件、必要条件的判断,属于基础题.三、解答题17.已知集合{}31,A x x x x =-≤∈R ,集合1,12x B x x x ⎧⎫=≥∈⎨⎬-⎩⎭R .(1)用区间表示集合A 与集合B ;(2)若定义集合A 为全集,求集合B 在集合A 中的补集B .【正确答案】(1)11,42A ⎡⎤=⎢⎥⎣⎦,11,32B ⎡⎫=⎪⎢⎣⎭;(2)111,432B ⎡⎫⎧⎫=⋃⎨⎬⎪⎢⎣⎭⎩⎭.【分析】(1)根据绝对值不等式、分式不等式的解法分别求出集合A 和B ,再用区间表示即可;(2)直接利用补集的定义即可求解集合B 在集合A 中的补集B .【详解】(1)由不等式|31|x x -,可得0x ≥,平方可得28610x x -+,解得1142x ,∴集合{||31|A x x x =-,11}{|}42x R x x ∈=,用区间表示为1[4A =,12.解不等式112x x -,即31012x x --,即31021x x --,解得1132x <,∴集合{|112x B x x =-,11}{|}32x R x x ∈=<.用区间表示为1[3B =,12.(2)集合1[4A =,1]2为全集,则集合1[3B =,1)2在集合A 中的补集1[4B =,11)32⎧⎫⋃⎨⎩⎭.本题主要考查绝对值不等式、分式不等式的解法,考查集合的表示法和补集及其运算,属于中档题.18.已知命题:p 关于x 的不等式10mx -≥的解集为A ,且2A ∈;命题:q 关于x 的方程220x x m -+=有两个不相等的正实数根.(1)若命题p 为真命题,求实数m 的范围;(2)若命题p 和命题q 中至少有一个是假命题,求实数m 的范围.【正确答案】(1)12m ≥(2)12m <或m 1≥【分析】(1)根据不等式的解集且2A ∈,代入即可根据命题p 为真命题求得数m 的范围.(2)先求得命题p 和命题q 都为真命题时m 的范围,根据补集思想即可求得命题p 和命题q 中至少有一个是假命题时m 的范围.【详解】(1)命题:p 关于x 的不等式10mx -≥的解集为A ,且2A∈因为命题p 为真命题所以210m -≥解得12m ≥(2)命题:q 关于x 的方程220x x m -+=有两个不相等的正实数根当命题q 为真命题时,1212440020m x x m x x ∆=->⎧⎪+=>⎨⎪⋅=>⎩解得01m <<当命题p 和命题q 都为真命题1201m m ⎧≥⎪⎨⎪<<⎩所以112m ≤<所以若命题p 和命题q 中至少有一个是假命题则12m <或m 1≥所以实数m 的范围为12m <或m 1≥本题考查了不等式的解法,一元二次方程根的分布特征,复合命题真假的关系,属于中档题.19.为提高销量,某厂家拟投入适当的费用,对网上所售产品进行促销.经调查测算,该促销产品的销售量p 万件与促销费用x (0x a ≤≤,a 为正常数)万元满足231p x =-+.已知生产该批产品p 万件需投入成本()102p +万元(不含促销费用),产品的销售价格定为20(4)p +元/件,假定厂家的生产能力完全能满足市场的销售需求.(1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)投入促销费用多少万元时,厂家获得的利润最大?【正确答案】(1)4161y x x =--+(0x a ≤≤);(2)答案见解析.【分析】(1)根据利润等于销售量与产品单价之积减去生产产品的成本和促销费用,利用已知条件表示出利润y 即可;(2)由(1)中结论,利用导数求最大值并讨论参数a 的范围即可求解.【详解】(1)由题意知,()204102210y p x p p x p ⎛⎫ ⎪=+--+=-+⎝⎭,将231p x =-+代入化简,得4161y x x =--+(0x a ≤≤);(2)由(1)中知,4161y x x =--+(0x a ≤≤),所以()()()()()()()222222143142311111x x x x x y x x x x -+++--+-'=--==-=-++++,若1a >,当[0,1]x ∈时,0y '≥;当[1,]x a ∈时,0y '≤,所以函数4161y x x =--+在[0,1]上单调递增,在[1,]a 上单调递减.所以当1x =时,y 取极大值,也是最大值,所以投入促销费用1万元时,厂家获得的利润最大.若01a <≤,因为函数4161y x x =--+在[0,1]上单调递增,所以函数4161y x x =--+在[]0,a 上单调递增,所以当x a =时,函数有最大值,即投入促销费用a 万元时,厂家获得的利润最大,综上,当1a >时,投入促销费用1万元时,厂家获得的利润最大;当01a <≤时,投入促销费用a 万元时,厂家获得的利润最大.20.(1)已知a b >,用比较法证明:33a b >;(2)已知,,0a b c >,用基本不等式证明:6b c c a a b a b c+++++≥,并注明等号成立条件;(3)已知332p q +=,用反证法证明:2p q +≤.【正确答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)计算23233()()204a b a b b b a ⎡⎤-=-++⎥⎣⎦>⎢,得到证明;(2)b c c a a b b a c a c b a b c a b a c b c +++⎛⎫⎛⎫⎛⎫++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用均值不等式计算得到证明.(3)假设2p q +>,则2p q >-,得33(2)p q >-,计算得到2(1)0q -<,不成立,得到证明.【详解】(1)a b >,2322323()()()(240b a b a ab b a b a b a b ⎡⎤-=-++=-++⎢⎥⎦>⎣,故33a b >;(2)b c c a a b b a c a c b a b c a b a c b c +++⎛⎫⎛⎫⎛⎫++=+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6=,当且仅当a b c ==时取等号;(3)假设2p q +>,则2p q >-,得33(2)p q >-,3328126p q q q +>-+,又332p q +=,所以228126q q >-+,即2210q q +<-,2(1)0q -<,矛盾,故2p q +≤.。
2.答答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。
3.答2.答题前,务必在答题纸上填写准考证号和姓名,并将核对后的条形码贴在指定位置上。
4.考试时间150分3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。
笔 墨 的 超 越
阅读下文,完成第1—6题。
(16分)
一 阅读80分
间150分钟。
试卷满分150分。
①毛笔、墨是中国书法和绘画的主要工具,原本并无奇特之处,不过分别是由兽毛与熏烧的越
熏烧的烟灰制作而成的。
但是,在中国的书画艺术史上,它们始终扮演着不可或缺的角色。
1华二附中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数12iz i+=,则z 的实部为________. 2.若函数()133x xf x a =⋅+为偶函数,则实a =________. 3.若事件A 、B 发生的概率分别为1()2P A =,2()3P B =,且相互独立,则()P A B =________.4.已知集合(){}2|log 1A y y x ==−,{}3|27B x x =≤,则A B =________.5.设{}n a 是等比数列,且13a =,2318a a +=,则n a =________.6.现有一球形气球,在吹气球时,气球的体积V 与直径d 的关系式为36d V π=,当2d =时,气球体积的瞬时变化率为________. 7.已知随机变量X 的分布为123111236⎛⎫⎪ ⎪ ⎪⎝⎭,且3Y aX =+,若[]2E Y =−,则实数a =________. 8.记函数()()()cos 0,0f x x =ω+ϕω><ϕ<π的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为________.9.若6(0)b ⎛> ⎝的展开式中含x 项的系数为60,则2a b +的最小值为________.10.顶点为S 的圆锥的母线长为60cm ,底面半径为25cm ,A ,B 是底面圆周上的两点,O 为底面中心,且35AOB π∠=,则在圆锥侧面上由点A 到点B 的最短路线长为____cm .(精确到0.1cm )11.已知△ABC 中,22AB BC ==,AB 边上的高与AC 边上的中线相等,则tan B =2________.12.给定公差为d 的无穷等差数列{}n a ,若存在无穷数列{}n b 满足: ①对任意正整数n ,都有1n n b a −≤②在21b b −,32b b −,…,20252024b b −中至少有1012个为正数,则d 的取值范围是________. 二、单选题(本大题共4小题,共18.0分.在每小题列出的选项中,选出符合题目的一项) 13.“1a b +>”是“33a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件14.如果两种证券在一段时间内收益数据的相关系数为正数,那么表明( ) A .两种证券的收益之间存在完全同向的联动关系,即同时涨或同时跌 B .两种证券的收益之间存在完全反向的联动关系,即涨或跌是相反的 C .两种证券的收益有同向变动的倾向 D .两种证券的收益有反向变动的倾向15.设0k >,若向量a 、b 、c 满足::1::3a b c k =,且2()b a c b −=−,则满足条件的k 的取值可以是( )A .1B .2C .3D .416.设1A ,1B ,1C ,1D 分别是四棱锥P ABCD −侧棱PA ,PB ,PC ,PD 上的点.给出以下两个命题,①若ABCD 是平行四边形,但不是菱形,则1111A B C D 可能是菱形;②若ABCD 不是平行四边形,则1111A B C D 可能是平行四边形.( ) A .①真②真 B .①真②假 C .①假②真 D .①假②假三、解答题(本大题共5小题,共78.0分.)17.(本小题14.0分)如图,在圆柱中,底面直径AB等于母线AD,点E在底面的圆周⊥,F是垂足.(1)求证:AF DB⊥;(2)若圆柱与三棱锥D ABE−的体积的比等于3π,求直线DE与平面ABD所成角的大小.3418.(本小题14.0分)李先生是一名上班旋,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中们数M ,并完成下列22⨯列联表:(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由. 附:()()()()()22n ad bc a b c d a c b d −χ=++++,()2 3.8410.05P χ≥≈.519.(本小题14.0分)如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放,已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE ∠=θ,总造价为W 元。
上海市松江区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.函数 lg 2y x 的定义域是.2.在复平面内,复数z 对应点的坐标是 1,2,则i z .3.4.已知点5.已知7x 6.7.8.9.已知1F 10.11.已知0 的取值范围是.12.某校高一数学兴趣小组一共有30名学生,学号分别为1,2,3,,30 ,老师要随机挑选三名学生参加某项活动,要求任意两人的学号之差绝对值大于等于5,则有种不同的选择方法.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知集合04A x x ,2,B x x n n Z ,则A B ().A 1,2;.B 2,4;.C 0,1,2;.D 0,2,4.14.某小区为了倡导居民对生活垃圾进行分类,对垃圾分类后处理垃圾x (千克)所需的费用y (角)的情况作了调研,并统计得到右表中几组对应数据,同时用最小二乘法得到y 关于x 的线性回归方程为0.70.4y x ,则下列说法错误的是().A 变量x 、y 之间呈正相关关系;.B 可以预测当8x 时,y 的值为6;.C 3.9m ;.D 由表格中数据知样本中心点为 3.5,2.85.15.已知某个三角形的三边长为a 、b 及c ,其中a b .若a 、b 是函数2y ax bx c 的两个零点,则a 的取值范围是().A 12.16.设n S ,2k N k ,则12S S ,2k N k ,则12S S .A .C 三、17.设 f x 为 .(1)(2), 32f A,求角C .18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在四棱锥P ABCD 中,底面ABCD 为菱形,PD 平面ABCD ,E 为PD 的中点.(1)设平面ABE 与直线PC 相交于点F ,求证://EF CD ;(2)若2AB ,60DAB ,PD ,求直线BE 与平面PAD 所成角的大小.19.现有甲、乙、,且每人能否闯(1)(2) E X ;(3)丙第20题图如图,椭圆22:12y x 的上、下焦点分别为1F 、2F ,过上焦点1F 与y 轴垂直的直线交椭圆于M 、N两点,动点P 、Q 分别在直线MN 与椭圆 上.(1)求线段MN 的长;(2)若线段PQ 的中点在x 轴上,求2F PQ 的面积;(3)是否存在以2F Q 、2F P 为邻边的矩形2F QEP ,使得点E 在椭圆 上?若存在,求出所有满足条件的点Q 的纵坐标;若不存在,请说明理由.已知函数 ln f x x x a (a 为常数),记 y f x x g x .(1)若函数 y g x 在1x 处的切线过原点,求实数a 的值.(2)对于正实数t ,求证: ln 2f x f t x f t t a ;(3)当1a 时,求证: e cos xg x x x.上海市松江区2024届高三二模数学试卷-简答1参考答案一、填空题1.(2,)2.2i3.0.24.1225.216.37.58.4910.(1,2)11.10,1212.1540二、选择题13.D14.C15.B16.C三、解答题17.解:(1)2()sin sin222f x x x x1cos 1=sin()2262x x x .……3分因为函数()y f x 图像的相邻两条对称轴之间的距离为 ,所以2 T ,即22,1T.所以1()sin(62f x x .……6分(2)由3()2f A,得13sin(),sin()16226A A .2(0,)3A A.……9分,由sin sin a b A B ,sin B,化简得sin 2 B 所以角4 B .……12分所以角23412C .……14分218.解:(1)因为底面ABCD 为菱形,所以//CD AB ,解法2:如图建系,由题可得:2AC BD ,则A, 0,1,0B , 0,1,0D , 0,1,P , 0,1,E ,……8分所以 0,2,BE , DA, 0,0,DP,设平面PAD 的法向量为 ,,z n x y,由00n DA n DP,得00y ,解得0y z,取1x ,可得平面PAD 的一个法向量为n.……12分设直线BE 与平面PAD 所成角的大小为090,x yzO3则1sin cos 22n BE n BE,解得30 ,所以,直线BE 与平面PAD 所成角的大小为30 .……14分19.解:(1)设“计划依次派出甲乙丙进行闯关,该小组比赛胜利”为事件A , 甲乙丙各自闯关成功的概率分别为134p ,223p ,312p ,每人能否闯关成功相互独立,解法1: 3323212311144343224P A解法2: P A 123111231(1)(1)(1)143224p p p .……4分(2)按甲在先,乙次之,丙最后的顺序派人,所需派出的人员数目X 的可能取值是1、2、3,11P X p , 1221P X p p , 12311P X p p ,所以X 的分布是: 11212123111p p p p p,……7分所以 1121212122(1)3(1)(1)23E X p p p p p p p p p .……10分(3)若先派丙,再派乙,最后派甲,所需派出的人员数目Y 的分布是: 33232123111p p p p p,则 323223E Y p p p p ,所以 121232322323E X E Y p p p p p p p p ,21313213220p p p p p p p p ……13分所以先派甲,再派乙,最后派丙时,派出的人员数目的数学期望较小.……14分4521.(1)因为 ln +g x x x ,所以 22'g x x x x ,所以 '11g a .……2分又因为 1ln11a g a ,所以 g x 在1x 处的切线方程为: 11y a x a .点 0,0O 代入切线方程可得12a .……4分(2)设函数 0h x f x f t x t ,ln ln +2h x x x t x t x a ,0x t .ln 1ln 1ln x h x x t x t x.……6分令 0h x ,得:2102x x t t x t t x t x . h x 在,2t t 上严格递增;在0,2t 上严格递减; h x 的最小值为2t h,即总有: 2t h x h .……8分而 ln +2ln 22222t t t t h f f t t a f t t a∴ ln 2f x f t x f t t a .……10分6(3)当1a 时,即证1e ln cos xx x x x,(0x )由于 cos 1,1x ,故e e cos 1x x x x x,只需证1e ln 1xx x x ,……12分令 1e ln 10xk x x x x x,只需证明 0k x .而 22211e e 111x x x x k x x x x x’,……14分因为0x ,所以1e 0x ,令 '0k x 得:01x ,令 '0k x 得:1x ,所以 k x 在1x 处取得极大值,也是最大值,……16分所以 max 12e<0k x k ,故 0k x 在 0,x 上恒成立,结论得证.……18分。
1上海中学2024学年第一学期高三年级数学周测一2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{}|02A x x =≤≤,{}|10B x x =−<,则AB =________.2.若62a x x ⎛⎫+ ⎪⎝⎭的展开式的常数项为45,则a 的值为________.3.已知函数()221f x x =+,则()()22Δx f Δx f limΔx→−−=________.4.已知()()3993log log log log x x =,则x 的值为________. 5.已知()35P A =,()15P A B =,()1|2P A B =,则()P B =________.6.已知1tan 3x =,则sin sin cos 3cos 2cos 2cos x x x x x x +=________.7.已知等差数列{}n a 的公差为3π,且集合{}|,*n M x x sina n N ==∈中有且只有4个元素,则M 中的所有元素之积为________. 8.已知向量a ,b 为单位向量,且12a b ⋅=−,向量c 与3a b +平行,则b c +的最小值 为________.9.已知实数x ,y 满足491x y +=,则1123x y +++的取值范围是________.10.向量集合(){}|,,,S a a x y x y R ⊂=∈,对于任意a ,b S ∈以及任意[]0,1t ∈,都有()1ta t b S +−∈,则称集合S 是“凸集”.现有4个命题:①集合(){}2|,,M a a x y y x ==≥是“凸集”;②若S 是“凸集”,则集合{}2|T a a S =∈也是“凸集”; ③若1A ,2A 都是“凸集”,则12A A 也是“凸集”;④若1A ,2A 都是“凸集”,且交集非空,则12A A 也是“凸集”其中所有正确命题的序号是________.211.已知双曲线22:145x y C −=的左右焦点分别是1F ,2F ,直线l 与C 的左、右支分别交于P Q 、(P ,Q 均在x 轴上方).若直线1PF ,2QF 的斜率均为k ,且四边形21PQF F的面积为k 的值为________.12.设函数()11xf x e =+图像上任意—点处的切线为1l ,总存在函数()sin g x a x =+(0)x a >图像上一点处的切线2l ,使得12∥l l ,则实数a 的最小值是________. 二、选择题(本大题共有4题,满分20分,每题5分)13.一枚质地均匀的正方形骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M 为“第一次朝上的数字是奇数”,则下列事件中与M 相互独立的事件是( ).A .第一次朝上的数字是偶数B .第一次朝上的数字是1C .两次朝上的数字之和是8D .两次朝上的数字之和是714.如图所示,曲线C 是由半椭圆221:1(0)43x y C y +=<,半圆()222:(1)10C x y y −+=≥和半圆()223:(1)10C x y y ++=≥组成,过1C 的左焦点1F 作直线1l 与曲线C 仅交于A ,B 两点,过1C 的右焦点2F 作直线2l 与曲线C 仅交于M ,N 两点,且12∥l l ,则AB MN +的最小值为( ). A .3B .4C .5D .615.数列{}n a 中,12a =,211n n n a a a +=−+,记12111n nA a a a =+++,12111n nB a a a =⋅⋅⋅,则( ). A .202420241A B +> B .202420241A B +< C .2024202412A B −>D.2024202412A B −<316.在直角坐标平面xOy 中,已知两定点()12,0F −与()22,0F ,1F ,2F 到直线l 的距离之差的绝对值等于l 上的点组成的图形面积是( ). A .4π B .8 C .2π D .4π+ 三、解答题(共5道大题,共76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.) ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,且)cos a bC C =+.(1)求角B 的大小;(2)已知BC =,D 为边AB 上一点,若1BD =,2πACD ∠=,求AC 的长.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 如图,直三棱柱111ABC A B C −的体积为1,AB BC ⊥,2AB =,1BC =. (1)求证:11BC A C ⊥;(2)求二面角11B A C B −−的余弦值.19.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.)五月初某中学举行了“庆祝劳动光荣,共绘五一华章”主题征文活动,旨在通过文字的力量展现劳动者的风采,传递劳动之美,弘扬劳动精神.征文篮选由A、B、C三名老师负责.首先由A、B两位老师对征文进行初审,若两位老师均审核通过则征文通过筛选;若均审核不通过则征文落选;若只有一名老师审核通过,则由老师C进行复审,复审合格才能通过筛选.已知每篇征文通过A、B、C三位老师审核的概率分别为34,45,37,且各老师的审核互不影响.(1)已知某篇征文通过筛选,求它经过了复审的概率;(2)从投稿的征文中抽出4篇,设其中通过筛选的篇数为X,求X的分布和期望.4520.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)设直线()0y kx b k =+≠与抛物线2:4C y x =交于两点()11,A x y ,()22,B x y ,且12(0)y y a a −=>.M 是弦AB 的中点,过M 作平行于x 轴的直线交抛物线C 于点D ,导到ABD ;再分别过弦AD 、BD 的中点作平行于x 轴的直线依次交抛物线C 于点E 、F ,得到ADE 和BDF ;按此方法继续下去. (1)用k ,b 表示a ;(2)用a 表示三角形ABD 的面积ABDS;(3)根据以上结果,求抛物线C 与线段AB 所围成封闭图形的面积S .621.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知函数()3(1)2xf x lnax b x x=++−−. (1)若0b =,且()0f x '≥,求a 的最小值; (2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >−当且仅当12x <<,求b 的取值范围.参考答案一、填空题1.(],2−∞;2.;3.-8;4.81;5.45; 6.109; 7.14;8.;9.(; 10.①②④;11.12.5411.已知双曲线22:145x yC−=的左右焦点分别是1F,2F,直线l与C的左、右支分别交于P Q、(P,Q均在x轴上方).若直线1PF,2QF的斜率均为k,且四边形21PQF F的面积为k的值为________.【答案】【解析】由题意绘制示意图如图所示:由双曲线方程可得:2,3a c==,因为直线1PF、2QF的斜率均为k,所以直线12//PF QF, 在三角形12QF F中, 设2QF x=,则124QF a x x=+=+,设2QF的倾斜角为θ, 则由余弦定理得2236426x xcosx+−+π−θ=⨯解得2523QF xcos==−θ,同理可得:1523PFcos=+θ所以四边形21PQF F的面积:12121152223S PF QF F F sincos=+⨯⨯θ=⨯++θ5623sincos⨯⨯θ=−θ解得sinθ=sinθ=(舍去),故k tan=θ=故答案为:.12.设函数()11xf xe=+图像上任意—点处的切线为1l,总存在函数()sing x a x=+ (0)x a>图像上一点处的切线2l,使得12∥l l,则实数a的最小值是________.【答案】54【解析】()1,1xf xe=+()()21',112xx xxef xe ee∴=−=−+++78[)()112,'0.4x x e ,f x ,e ⎡⎫+∈+∞∴∈−⎪⎢⎣⎭而()(),'1[1g x asinx x g x acosx a =+=+∈−,1]a +,要使题意成立,则有114a −≤−且10…a +,解得54a ≥,∴实数 a 的最小值为54 故答案为:54二、选择题13.D 14.C 15.C 16.D15.数列{}n a 中,12a =,211n n n a a a +=−+,记12111n nA a a a =+++,12111n nB a a a =⋅⋅⋅,则( ). A .202420241A B +> B .202420241A B +< C .2024202412A B −>D .2024202412A B −<【答案】C【解析】由2112,1n n n a a a a +==−+, 可得24213,a =−+=由()111n n n a a a +−=−, 可得111111n n na a a +=−−−即有111111n n n a a a +=−−−,则122311111111n A a a a a =−+−+⋯+−−−−111111111111n n n a a a a ++−=−=−−−−−111n a +− 由1111n n n a a a +−=−, 可得121231111111111111n n n n n a a a a B a a a a a +++−−−−=⋅⋅⋯⋅==−−−−−可得1n n A B +=, 故AB 错误;121,1n n n A B a +−=−−由()2110n n n a a a +−=−>, 即1n n a a +>, 可得数列{}n a 为递增数列,又320259317,,5,a a =−+=⋯>由202521111122a −>−=−, 可得2024202412A B −>,故选:C .16.在直角坐标平面xOy 中,已知两定点()12,0F −与()22,0F ,1F ,2F 到直线l 的距离之差的绝对值等于l 上的点组成的图形面积是( ). A .4π B .8 C .2π D .4π+ 【答案】D【解析】设直线l的方程为0Ax By C++=,=所以22A C A C−+−+=当()()220…A C A C−++,即224…C A时,4A=化简可得22A B=,所以|,2CA B≥=如图,则正方形12AF BF上及外部的点均在直线l上;当()()220A C A C−++<,即224C A<时,2C=22222C A B=+设直线l的方程为0Ax By C++=上任意一点(0x,0y), 则000Ax By C++=,由()()()2222220000A B x y Ax By C++≥+=可知22002x y+≥,又2222224C A B A=+<,则221AB>,所以,与圆222x y+=相切的直线所扫过的点均在直线l上;综上, 平面上不在任何一条直线I上的点组成的图形面积是21244⎤⨯π=+π⎥⎦,故选:D.三.解答题17.(1)6π(218.(1)证明略(219.(1)15P=(2)PQ=20.(1)2216(1)kba=k−(2)332ABDSa=(3)324Sa=91021.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)已知函数()3(1)2xf x lnax b x x=++−−. (1)若0b =,且()0f x '≥,求a 的最小值; (2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >−当且仅当12x <<,求b 的取值范围. 【答案】(1)-2(2)见解析(3)23,⎡⎫−+∞⎪⎢⎣⎭【解析】(1)由0220xx x ⎧⎪⎨⎪>−≠⎩−, 解得02x <<,所以函数()f x 的定义域为()02,,当0b =时,()2xf x lnax x=+−,所以()11'02f x a x x =++≥−, 对02x ∀<<恒成立, 又()112222a a a x x x x ++=+≥+−−, 当且仅当1x =时取"'"=, 所以只需20…a +, 即2…a −,所以a 的最小值为-2 . (2)证明:()02x ,∈, ()()()222(1x f x f x lna xb x x−−+=+−+−()33)122x lnax b x a x +++−=− 所以()f x 关于点()1,a 中心对称.(3) 因为()2f x >−当且仅当12x <<,所以1x =为()2f x =−的一个解, 所以()12f =−, 即2a =−,先分析12x <<时,()2f x >−恒成立,此时()2f x >−, 即为()321(1)02xlnx b x x+−+−>−在()12,上恒成立, 设()1,01t x t ,=−∈, 则31201t lnt bt t+−+>−在()01,上恒成立, 设()()312,011t g t ln t bt t ,t +=−+∈−,则()()222223232'2311t bt b g t bt t t −++=−+=−− 当0…b 时,232332220bt b b b −++>−++=>,所以()'0g t >恒成立,11 所以()g t 在()01,上为增函数,所以()()00g t g >=, 即()2f x >−在()12,上恒成立, 当203…b −<时,2323230…bt b b −++>+所以()'0g t >恒成立,故()g t 在()01,上为增函数, 故()()00g t g >=,即()2f x >−在()12,上恒成立, 当23b <−,即当01t <<时,()'0g t <,所以在0⎛ ⎝上()g t 为减函数, 所以()()00g t g <=, 不合题意, 舍去,综上所述,()2f x >−在()12,上恒成立时,23…b −, 而23…b −时, 由上述过程可得()g t 在()01,单调递增,所以()0g t >的解为()01,,即()2f x >−的解为()12,,综上所述,23…b −,所以b 的取值范围为23,⎡⎫−+∞⎪⎢⎣⎭.。
1川沙中学2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集U R =,集合(,1)[2,)A =−∞+∞,则A =________. 2.函数()sin2f x x =的最小正周期是________.3.在等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a =________.4.参考数学竞赛决赛的15人的成绩(单位:分)依次如下:56、70、91、98、79、80、81、83、84、86、88、90、72、94、78,则15人成绩的第80百分位数是________. 5.在△ABC 中,90A ∠=︒,3AB =,4AC =,将△ABC 绕边AC 所在直线旋转一周得到几何体Γ,则Γ的侧面积为________.6.已知3nx x ⎛⎫+ ⎪⎝⎭的二项展开式的各项系数之和为256,则访二项展开式中的常数项为_____. 7.双曲线222:1y C x b−=的渐近线与直线1x =交于A ,B 两点,且4AB =,那么双曲线C 的离心率为________.8.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若6b =,2a c =,πB 3=,则△ABC 的面积为________.9.春天是鼻炎和感冒的高发期,某人在春季里鼻炎发作的概率是45,感冒发作的概率是67,鼻炎发作且感冒发作的概率是35,则此人在鼻炎发作的条件下感冒的概率是________. 10.已知函数1()lg f x x x =−,则不等式111f x ⎛⎫−< ⎪⎝⎭的解集为________. 11.已知函数()(1)x f x x e =−,若关于x 的不等式()1f x ax <−有且仅有一个正整数解,则实数a 的取值范围是________.212.已知数列{}n a 的前n 项和为n S ,满足231(,1)n n S a n N n =−∈≥,函数()f x 定义域为R ,对任意x R ∈都有()()()111f x f x f x ++=−,若()21f =−2025()f a 的值为 .二、选择题(本大题共4题,第13、14题每题4分,第15、16题每题5分,共18分) 13.下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥− C.a b +≥ D.a b +≥−14.已知()f x 是定义在R 上的可导函数,若0(2)(2)1lim22h f h f h →+−=,则(2)f '=( )A .1−B .14− C .1 D .1415.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要16.已知实数1x 、1y 、2x 、2y 、3x 、3y 同时满足:①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③11332220x y x y x y +=>,则下列选项中恒成立的是( )A .2132x x x <+B .2132x x x >+C .2213x x x <D .2213x x x >三、解答题(本大题共5题,共141414181878++++=分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)在直四棱柱1111ABCD A B C D −中,∥AB CD ,1AB AD ==,12D D CD ==,AB AD ⊥. (1)求证:BC ⊥平面1D DB ;(2)求点D 到平面1BCD 的距离.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.)设函数2()f x x x a=+−,a为常数.(1)若()f x为偶函数,求a的值;(2)设0a>,()()f xg xx=,(]0,x a∈为严格减函数,求实数a的取值范围.19.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.)近年来,随着智能手机的普及,网上买菜迅速进入了我们的生活。
1杨浦高中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.不等式211x −>的解集是________.2.已知集合102x P x x ⎧⎫+=≤⎨⎬−⎩⎭,(,)Q a =+∞,若P Q ⊂,则实数a 的取值范围是________.3.若平面向量(3,4)a =,2b =,6a b ⋅=−,则向量a b 、的夹角为________.4.在(2)n x +的展开式中(其中n 是正整数),各项的系数和为729,则4x 项的系数 为________.5.已知函数()y f x =是奇函数,当0x >时,()32x f x e x =+−,当0x <时,()f x =________.6.已知2z i =+(i 是虚数单位)是实系数一元二次方程240x x m −+=的一个根,Im()m z ⋅=________.7.等差数列{}n a 的首项13a =,公差为d ,若34a =,则111n n d a +∞−=⎛⎫= ⎪⎝⎭∑________.8.已知a βγ、、是不同的平面,l m n 、、是不同的直线,下列命题中:(1)若,,,l m l α⊥βαβ=⊥则m ⊥β;(2)若//,,,m n αβ⊂α⊂β则//m n ;(3)若,,//,l m l m ⊥αβγ=则β⊥α且γ⊥α;(4)若,,,l α⊥βγ⊥βαγ=则l ⊥β,所有真命题的序号是________.9.已知(,6)P m 是第二象限角α终边上的一个点,且24tan 27α=−,将OP 绕原点O 顺时针旋转4π至OP ',则点P '的坐标为________.210.如图,沿东西方向相距4海里的两个小岛A 、B ,岛上安装了信号接收塔.舰艇P 沿着某种确定的圆锥曲线轨迹航行,A 、B 是曲线的焦点.当P 在小岛B 正北方向1P 处时,测得距小岛B 3海里.当舰艇航行至小岛B 西偏南60︒的2P 处时,测得距小岛B 1.5海里.在以线段AB 中点为圆心、1海里为半径的圆形海域内布满暗礁(不包含边界),舰艇P 在航行的过程中,会放下巡逻船Q ,巡逻船在以PB 为直径的圆域内全面巡逻,舰长认为不会有触礁的风险,理由是________.11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个.二、选择题(本题共有4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.函数()sin cos 33x xf x =+的最小正周期是( ) A .6πB .3πC .32πD .32π 14.下列函数在区间(0,)+∞上为严格减函数的是( ) A .cos y x =B .2x y =C .2y x −=D .21y x =−15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2B.C .3D.316.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F ,则2PQ QF +的最小值为( ) A .6B.2+C.D.4+三、解答题(本大题满分78分)本大题共5题.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知等差数列{}n a 的公差0d >,前n 项和为n S ,且365a a =−,816S =−. (1)求数列{}n a 的通项公式;(2)若(),21,12,2n n na n kb k N k n k =−⎧=∈≥⎨=⎩,求数列{}n b 的前2n 项和2n T .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 对于函数()y f x =,若其定义域内存在实数x 满足()()f x f x −=−,则称()y f x =为“准奇函数”. (1)已知函数()31x f x x −=+,试问()y f x =是否为“准奇函数”?说明理由; (2)若()3x g x m =+为定义在[]1,1−上的“准奇函数”,试求实数m 的取值范围.419.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,在圆锥PO 中,AC 为圆锥底面的直径,B 为底面圆周上一点,点D 在线段BC 上,26AC AB ==,2CD DB =. (1)证明:AD ⊥平面BOP ;(2)若圆锥PO 的侧面积为18π,求二面角 O BP A −−的余弦值.20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知函数()22x x af x =+,其中a 为实常数. (1)若()07f =,解关于x 的方程()5f x =; (2)讨论函数()y f x =的奇偶性;(3)当1a =时,用定义证明函数()y f x =在[0,)+∞上是严格增函数,并解不等式()(2)1f x f x >+.521.(本题满分18分)本题共有2个小题,第1小题满分4分,第2小题(i )问满分6分,(ii )问满分8分.中国古典园林洞门、洞窗具有增添园林意境,丰富园林文化内涵的作用.门、窗装饰图案成为园林建筑中最有文化价值以及文化内涵的装饰.如图1所示的一种椭圆洞窗,由椭圆1C 和圆2C 组成,1F 、2F 是椭圆的两个焦点,圆2C 以线段12F F 为直径. (1)设计如图所示的洞窗,椭圆1C 的离心率应满足怎样的范围? (2)经测量椭圆的长轴为4分米,焦距为2分米.(i )从1F 射出的任意一束光线1F A 照在左侧距椭圆中心4分米的竖直墙壁上,如图2所示.建模小组的同学用长绳拉出椭圆洞窗的切线AB ,B 为切点,然后用量角器探究猜测1AF B 是定值,请帮他们证明上述猜想;(ii )建模小组的同学想设计一个如图3的四边形装饰,满足:点P 是1C 上的一个动点,P 、Q 关于原点对称,过P 和Q 分别做圆的切线,交于R 、S ,求四边形装饰PRQS 面积S 的取值范围.图1 图2 图36参考答案一.填空题 1.(,0)(1,)−∞+∞ 2.1a <− 3.3arccos 5π− 4.60 5.32x e x −−++ 6.5−7.348.(3)、(4)9.( 10.无论P 在何处,以PB 为直径的圆均与布满暗礁的圆外切 11.2 12.69 11.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +−的最小值为________. 【答案】2【详解】由题意知()211124c c c c +−⎛⎫−≤= ⎪⎝⎭,当12c =时取等号, 故()()2124419119119122228a b a b ab bc c ab b ab b a b a b a b +⎛⎫⎛⎫+≥+=+=+=+=++ ⎪ ⎪−⎝⎭⎝⎭1911010288b a a b ⎛⎛⎫=++≥+= ⎪ ⎝⎭⎝,当33b a ==时取等号, 综上,当11,3,2a b c ===时,()211ab bc c +−的最小值为2. 12.已知数列{}n a 是有无穷项的等差数列,首项10a ≥,公差0d >,且满足:①38是数列{}n a 中的项;②对任意的正整数,m n ()m n ≠,都存在正整数k ,使得m n k a a a =.则这样的不同等差数列共有________个. 【答案】69【详解】设x 是数列{}n a 中的任意一项,则x d +,2x d +均是数列{}n a 中的项, 由已知m n k a a a =,设12(),(2)k k a x x d a x x d =+=+,则由等差数列定义得()2121k k a a xd k k d −==−⋅.因为0d ≠,所以21x k k Z =−∈, 即数列{}n a 的每一项均是整数,所以数列{}n a 的每一项均是自然数,且d 是正整数.7由题意,设38k a =,则138k a d +=+是数列{}n a 中的项, 所以38(38)d ⋅+是数列{}n a 中的项.设38(38)m a d =⋅+,则38(38)38383738()m k a a d d m k d −=⋅+−=⨯+=−⋅, 即(38)3837m k d −−⋅=⨯.因为*38,m k Z d N −−∈∈,故d 是3837⨯的约数. 所以1,2,19,37,219,237,1937,3837d =⨯⨯⨯⨯,.当1d =时,138(1)0a k =−−≥,得1,2,,38,39k =⋯,故138,37,,2,1,0a =⋯,共39种可能;当2d =时,1382(1)0a k =−−≥,得1,2,,18,19,20k =⋯,故138,36,34,,4,2,0a =⋯,共20种可能;当19d =时,13819(1)0a k =−⨯−≥,得1,2,3k =,故138,19,0a =,共3种可能; 当37d =时,13837(1)0a k =−−≥,得1,2k =,故138,1a =,共2种可能; 当38d =时,13838(1)0a k =−⨯−≥,得1,2k =,故138,0a =,共2种可能; 当237d =⨯时,138237(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当1937d =⨯时,1381937(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能; 当3837d =⨯时,1383837(1)0a k =−⨯⨯−≥,得1k =,故138a =,共1种可能. 综上,满足题意的数列{}n a 共有392032211169+++++++=(种). 经检验,这些数列均符合题意. 二、选择题13.A 14.C 15.C 16.C15.在正方体1111ABCD A B C D −中,3AB =,点E 是线段AB 上靠近点A 的三等分点,在8三角形1A BD 内有一动点P (包括边界),则PA PE +的最小值是( ) A .2 B.C .3D.【答案】C【详解】以D 为坐标原点,1,,DA DC DD 为,,x y z 轴,可建立如图所示的空间直角坐标系,则()13,0,3A ,()3,3,0B ,()0,0,0D ,()3,0,0A ,()3,1,0E , ()3,3,0DB ∴=,()13,0,3DA =,()10,0,3AA =,设A 关于平面1A BD 的对称点为(),,A x y z ',则()13,,3A A x y z '=−−−,()3,,AA x y z '=−,设平面1A BD 的法向量(),,n a b c =,则1330330DB n a b DA n a c ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1a =,解得:1b =−,1c =−,()1,1,1n ∴=−−,A ∴与A '到平面1A BD 的距离1133AA n A A n x y d nn'⋅⋅−++====,又AA //n ',3x y z ∴−=−=−,1x ∴=,2y =,2z =,()1,2,2A '∴,3PA PE PA PE A E ''∴+=+≥==(当且仅当,,A P E '三点共线时取等号),即PA PE +的最小值为3.16.已知点,P Q 分别是抛物线2:4C y x =和圆22:10210E x y x +−+=上的动点,若抛物线C 的焦点为F,则2PQ QF +的最小值为( ) A.6 B .2+C .D .4+【答案】C9【详解】由抛物线2:4C y x =,可得焦点坐标为(1,0)F ,又由圆2210210x y x +−+=, 可化为22(5)4x y −+=,可得圆心坐标为(5,0)E ,半径2r =, 设定点(,0)M t ,满足12QF QM =成立,且00(,)Q x y即=2200(5)4x y −+=,代入两边平方可得: 20(4)16t x t −=−,解得4,(4,0)t M =,所以定点M 满足12QF QM =恒成立, 可得22(|)PQ QF PQ QM +=+,如图所示, 当且仅当1,,M P Q 在一条直线上时, 此时PQ QM +取得最小值||PM , 即22(|)2PQ QF PQ QM PM +=+≥,设(,)P x y ,满足24y x =,所以22PQ QF PM +≥=,2PQ QF +≥2x =时,等号成立。
2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。
上海市育才中学2021级高三第一学期10月练习考试时间120分钟,满分140分I.Listening Comprehension25分Section A10分Directions:In Section A,you will hear ten short conversations between two speakers.At the end of each conversation,a question will be asked about what was said.The conversations and the questions will be spoken only once.After you hear a conversation and the question about it,read the four possible answers on your paper,and decide which one is the best answer to the question you have heard.1. A.To a bank. B.To a travel agency.C.To a drugstore.D.To Spain.2. A.He forgot to submit his paper. B.He misremembered the deadline.C.He didn't finish his paper on time.D.He couldn't focus his mind on the paper.3. A.She is a movie enthusiast. B.She prefers thrillers to romances.C.She doesn't like thrillers.D.She is not in the mood for any movie.4. A.Because she is not good at calculating.B.Because she hurried to finish the report.C.Because she is quite a careless person.D.Because she cited unconfirmed figures.5. A.Lily forgot to deliver discs to the man.B.The man failed to renew the address.C.Lily planned to visit the new dormitory.D.The discs might have been mailed to the former place.6. A.The woman doesnt enjoy the leftovers.B.The man is an excellent cook in the army.C.The man has invited many people for lunch.D.The man intentionally prepared much food.7. A.The man should be more diligent.B.Cramming is effective for an exam.C.Biology is indeed difficult to learn.D.The man shouldn’t have stayed up that late.8. A.Arrange to apply for another room.B.Make a complaint about her roommate.C.Ask her roommate to move out of the room.D.Change rooms with someone in the housing office.9. A.Helen’s hard work is rewarding.B.Helen is an accomplished job hunter.C.Helen always complains about her job.D.Helen is viewed as a model by the speakers.10. A.Every student should value Chinese culture.B.Chinese students are humble and reserved.C.He is deeply impressed by Chinese culture.D..Chinese students lack the courage to share ideas.Section B15分Directions:In Section B,you will hear two short passages and one longer conversation,and you will be asked three questions on each of the passages and the conversations.The passages and the conversations will be read twice,but the questions will be spoken only once.When you hear a question,read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions11through13are based on the following passage.11. A.To relocate to safer grounds. B.To migrate with the seasons.C.To seek more hunting grounds.D.To gather more food for survival.12. A.It once belonged to the North sea. B.It was drowned by the melt water.C.It was an island abundant in wildlife.D.It was unveiled by the modern fishermen.13. A.Polar ice caps will continue to melt at a rapid rate.B.The sea floor witnessed the rise and fall of the Europe.C.Doggerland is the birthplace of English civilization.D.Coastal residents are vulnerable to the climate change.Questions14through16are based on the following passage.14. A.Scientists in Britain are going to collect rocks on Mars.B.The discovery of Boron is a milestone in Mars exploration.C.Evidence indicates there exist plants and animals on Mars.D.The microscope is mainly used to identify different rocks.15. A.Basic molecules for life. B.More essential chemicals.C.Holes caused by microbes.D.Ancient material from Mars.16. A.The development of life on Mars. B.The search for signs of life on Mars.C.The importance of research on rocks.D.The discovery of surface water on Mars. Questions17through20are based on the following conversation.17. A.To practise skateboarding. B.To encourage teenagers in trouble.C.To support a non-profit organization.D.To fulfil his dream of touring Europe.18. A.They served as tour guides for Joe. B.They kept a record of Joe’s journey.C.They transported equipment for Joe.D.They took care of Joe’s accommodation.19. A.He covered a rather long distance. B.He tried to follow his friends’van.C.He fell down and broke the trainers.D.He climbed over the rugged mountains.20. A.Prepare for another trip. B.Resign from his current job.C.Write a book about his journey.D.Renew a contract with the organization.II.Grammar and Vocabulary20分Section A GrammarDirections:After reading the passage below,fill in the blanks to make the passage coherent and grammatically correct.For the blanks with a given word,fill in each blank with the proper form of the given word;for the other blanks,use one word that best fits each blank.10分Do you know someone who is exceptionally picky when it comes to the food to eat,the clothes to wear,or the people to date?Choosy people tend to be somewhat overly analytical-they carefully weigh the pros and cons of most decisions.As a result,they tend to take a lot of time (21)________(make)up their minds.Remember Jerry from Seinfeld?He was extremely picky regarding the people he dated.Any physical flaw,(22)________small,was Jerry's reason for rejecting a possible dating partner.I hada friend who was like that.He didn't like the shape of this girl's chin,or another(23)_______ears were“too large for her face.”As a result,he rarely dated anyone.A waitress told me a story of a particular picky woman.The restaurant had a special salad(24)________tons of ingredients.This woman would go down the list of ingredients and say,“I don't like cucumbers,take that out...take out the cilantro,no tomatoes,etc.”The waitress said that by the time she was done,it was(25)________salad of just iceberg lettuce!People who are not picky-the opposite end of the scale-tend to be(26)________(impulsive),flexible,and open to experience.Our research found that some people are only picky in particular areas of their lives-eating, dating,or when(27)________(evaluate)goods for purchase,although most were picky in most things.Picky people tend to analyze,and often overanalyze,the choices that they are about to make.Some of them can drive salespersons crazy as they hesitate,evaluate.and hesitate again.A contractor(承包商),who(28)________(remodel)a couple of houses,told me the story of two extreme clients.The first,who was extremely choosy,took forever to decideon bathroom fixtures,appliances,cabinets,and paint.(29)________________the non-picky one,looked at three similar colors and said,“They're all ok,you choose.”While choosy individuals(30)________spend long time deciding,being analytical and slowing to act,non-choosy people's impulsiveness may lead to quick,and unwise decisions. However,the truth is that non-choosy people may also make their quick decisions,and rationalize them to make them fit,even if it wasn't the best decision in the first place.Section B VocabularyDirections:Complete the following passage by using the words in the box.Each word can only be used once.Note that there is one word more than you need.10分A.claimedB.evacuateC.fabricsD.regularE.significantlyF.sinkG.rainstorms H.similar I.initially J.swallowing K.thought“It was a wave of water,”says Oulimata Sambe.She points out the still-sodden(湿透的) armchairs,muddy wardrobe and the water stain a metre and a half up the wall in her small house in Ngor,a fishing village within Dakar,the capital of Senegal.“I had two grandkids on my bed,I had to(31)______them out of the window,”she adds.Not faraway,underpasses on Dakar's scenic corniche(滨海路)became car-(32)______lakes.Just weeks earlier another downpour had turned quiet streets in Dakar into raging rivers and collapsed a section of motorway.(33)______events regularly occur across the region.Recent flooding and landslides also killed eight people in Freetown,the capital of Sierra Leone.In June flooding killed12people in Abidjan,the commercial capital of Ivory Coast.Floods in Lagos,Nigeria’s commercial capital, (34)______another seven lives.Even when they are not deadly,city floods ruin lives and livelihoods.Storm water recently flooded the biggest textile(纺织业)market in Kano,a city in northern Nigeria,destroying hundreds of thousands of dollars’worth of(35)______.Unusually heavy rains have become(36)______more common over the past30years, leaving huge numbers of people at risk.In places this is partly because of deforestation.A recent study by Christopher Taylor of the UK Centre for Ecology and Hydrology,a research institute, and his coauthors found that afternoon(37)______in deforested parts of coastal west Africa happen twice as often compared with30years ago.Their frequency went up by only about a third in places that kept their forests.Yet(38)______flooding of cities in west Africa is not only caused by heavier rain.Unplanned urbanization is also to blame.As cities have grown,builders have thrown up concrete walls with little(39)______about providing drainage,making it harder for water to find a clear path to the sea.As ever larger areas have been paved over,there has been less exposed soil into which water can gently(40)______away.And as cites get more packed with new arrivals,their few functioning drains get overwhelmed or clogged.III.Reading Comprehension45分Section ADirections:For each blank in the following passage there are four words or phrases marked A,B C and D.Fill in each blank with the word or phrase that best fits the context.15分When Harry told me that he was leaving the company,one of the first things he said to me was that he didn’t like emotional goodbyes.I have decided to take him at his word.Everything you will hear me say tonight is straightforward and___41___,just like the man himself.Harry has been in the finance departent for seven years.In that time,he has not done anything remotely___42___.I asked several people if they had anecdotes(轶事)about him,and the best they could come up with is that he once accidentally changed a formula in the annual budget spreadsheet.Since the___43___was quickly spotted and fixed,it had no impact at all.Will Harry be___44___?Not at all,though for reasons that he may not fully grasp.This is an evening in which the person who is leaving receives presents(as well as a card from people whose names you don't recognize but who just loved working with you).But the___45___goes both ways.The leavers have a parting gift of their own to present:a convenient scapegoat(替罪羊).When someone dies,the convention is not to speak ill of the departed.When an employee ___46___a company,it's the opposite.Things that don't work as well as they should can be laid at the door of someone who won't___47___.Frustrations that have been suppressed can finally be blamed on someone.When we speak of you,we will say things like“Harry had many strengths but...",and we will___48___ourselves that you held us back a bit.This will not be true,but it will be___49___.I'd like to take this opportunity to tell you that we are grateful for this___50___ act of service,which can last for as long as a year after someone has actually left the building. After that,memories tend to fade.I wish I could promise you that you are part of company folklore,or that your role in banning plastic straws from the office will ring through the ages. ___51___,the only guarantee I can give is that no one here will ever read your exit-interview notes.This may all seem a little___52___.You have spent many years at the company,and yet will probably___53___.But in spite of that,you should still feel___54___in your time here.To have done your work well and to leave at a time of your choosing are achievements that are beyond most people.So please raise your glasses to Harry.He has been an excellent colleague and won't really be___55___.41.A.off the guard B.to the point C.in the swing D.on the horizon42.A.funny B.impressive C.correct D.creative43.A.breakdown B.discovery C.mistake D.crack44.A.hated B.remembered C.adored D.forgotten45.A.impact B.exchange C.ceremony D.end46.A.joins B.founds C.reforms D.exitse up B.answer back C.leave off D.back away48.A.persuade rm C.remind D.caution49.A.pointless B.consequential C.significant D.convenient50.A.selfless B.grand C.final D.accidental51.A.Instead B.Otherwise C.Besides D.Therefore52.A.weird B.amusing C.exciting D.sad53.A.make no difference B.leave little traceC.have some sayD.produce much impact54.A.regret B.guilt C.pride D.pain55.A.missed B.replaced C.erased D.blamedSection BDirections:Read the following three passages.Each passage is followed by several questions or unfinjshed statements.For each of them there are four choices marked A,B,C and D.Choose the one that fits best according to the information given in the passage you have just read.22分AWorth nearly$ltrn,Facebook is the world’s sixth-most-valuable company.Its revenues have grown by56%in the past year,and its share price by more than a quarter.Nearly3bn people use its products every month.Why did such a successful company change its name as Meta?The likely official reason for the rebranding is that the firm has outgrown the social network that Mark Zuckerberg started17years ago in a Harvard dorm.Today it includes other social apps (Instagram,WhatsApp,Messenger)and video hardware(Oculus,Portal).It has launched a digital wallet(Novi)and may yet offer a currency(Diem).Mr Zuckerberg expects people eventually to associate his firm more with the“metaverse”(元字宙),a virtual space for work play and more, than with social media.Facebook wouldn't be the first tech giant to do so.In2015Google set up Alphabet,a holding company for the search engine and its many side projects.Under this model,Facebook would become just another app within a wider family,though by far it has been the biggest earner.There is another possible motive for a makeover.For all its financial success,the Facebook brand has become tarnished.The social network is blamed for fueling everything from teenage anorexia(厌食症)to uprising at the US Capitol.Public trust in it is lower than in most tech giants, and falling.Although two years ago the firm started branding its apps as being“from Facebook”, its new smart glasses,which can record video and take phone calls,feature only the logo of its partner,Ray-Ban.A former employee revealed that Facebook was trying to cover up a drop in young American users.Mr Zuckerberg himself has been a reason for much of the criticism of Facebook,and of bossy tech firms more generally.As the all-powerful founder,he has a higher profile than his opposite numbers at TikTok,YouTube and other social networks.Normally,a brand facing a reputational crisis might dump its unpopular CEO.But Mr Zuckerberg’s position is immovable, which may explain why he would want to dump the brand instead.56.Facebook changed its name because________.A.it wanted people to associate its name with universeB.it was trying to follow the fashion led by GoogleC.it expected to expand its business to a wider rangeD.its former name has brought bad reputation to the company57.What can we know about Facebook?A.It was founded by Zuckerberg in Harvard's dormitory.B.It has a positive influence on teenagers’mind and actions.C.It is as popular among young people in the US as it was.D.It produced smart glasses with two companies’logos on it.58.What does the underlined word“tarnished”mean in the passage?A.distinguishedB.abandonedC.globalizedD.spoiled59.This passage probably appears in________.A.a science reviewB.a business magazineC.a technical reportD.the website of FacebookBThe Pros and Cons of Napping●Daytime resting:helpful or harmful?Getting some sleep,even a short afternoon nap,may seem like a good thing for people with sleep disorders.But for those with insomnia and an already decreased desire to sleep at night, midday shut-eye can actually be counterproductive.So before you curl up on the couch this afternoon,consider whether your quick fix might backfire when you lie down in bed tonight.●Trouble sleeping at nightIf you have insomnia,naps present a problem,even if you feel tired during the day.Napping during the day can perpetuate bad sleep habits for people with temporary sleep issues caused by stress,illness,or jet lag too.“Even just a little bit of a power nap reduces your night time sleep drive,”says Ralph Downey III,PhD,director of the Sleep Disorders Center at Loma Linda University Medical Center in Califoria.“The nap becomes nothing more than another episode of fragmented sleep.”●Getting through the dayIf you don't have a problem getting your z’s at night,a quick nap can work wonders to pull you through a tiresome or sleep-deprived day.In fact,a2008study found that a45-minute daytime nap can improve memory function.And previous studies have found that naps can lower blood pressure.Those who suffer from narcolepsy or shift-work syndrome may also benefit from daytime naps,says James Wyatt,PhD,director of the Sleep Disorders Service and Research Center at Rush University Medical Center in Chicago.●Fatigue could be a warning signIf you're constantly fighting the urge to sleep during the day and falling asleep instantly at night,you might have obstructive sleep apnea,a condition in which you stop breathing while you sleep.In this case,naps won't help.By wearing a continuous positive airway pressure(CPAP) machine that flows oxygen through your nose,however,you'll likely sleep more soundly and wake refreshed whether from a good night's rest or a quick catnap.60.If you suffer from insomnia________.A.midday shut-eye may be helpfulB.a short afternoon nap is probably a good thingC.napping during the day is considered a good habitD.a little bit of a power nap decreases your night time sleep desire61.A quick nap can be beneficial for common people except those________.A.who have a problem falling into sleep at nightB.whose memory is not good enoughC.who suffer from shift-work syndromeD.whose blood pressure is too high62.It can be inferred from the passage that________.A.naps are helpful for those who have obstructive sleep apneaB.more oxygen through your nose might improve sleep qualityC.a45-minute daytime nap can be beneficial for those with insomniaD.a quick nap can pull everyone through a sleep-deprived dayCDelivering life-saving drugs directly to the brain in a safe and effective way is a challenge for medical providers.One key reason:the blood-brain barrier,which protects the brain from tissue-specific drug delivery.Methods such as an injection or a pill aren't as precise or immediate as doctors might prefer,and ensuring delivery right to the brain often requires invasive risky techniques.A team of engineers from Washington University in St.Louis has developed a new nanoparticle generation-delivery method that could someday vastly improve drug delivery to the brain,making it as simple as a sniff.“This would be a nanoparticle nasal spray,and the delivery system could allow medicine to reach the brain within30minutes to one hour,”said Ramesh Raliya,research scientist at the School of Engineering&Applied Science.“The blood-brain barrier protects the brain from foreign substances in the blood that may injure the brain,”Raliya said.“But when we need to deliver something there,getting through that barrier is difficult and invasive.Our non-invasive technique can delivel drugs via nanoparticles so there’s less risk and better response times.”The novel appronch is based on aerosol(气落胶)science and enginecring principles that allow the gencation of monodisperse nanoparticles,which can deposit on upper regions of the nasal cavity via spread.The nanoparticles were tagged with markers,allowing the researchers to track their movement.Next,researchers exposed locusts’antenna(触角)to the aerosol,and observed the nanoparticles travel from the antennas up through the olfactory nerve,which is used to sense the smell.Due to their tiny size,the nanoparticles passed through the brain-blood barrier,reaching the brain and spreading all over it in a matter of minutes.The team tested the concept in locusts because the blood-brain barriers in the insects and humans have similarities.“The shortest and possibly the easiest path to the brain is through your nose,”said Barani Raman,associate professor of biomedical engineering.“Your nose,the olfactory bulb and then olfactory cortex:two steps and you’ve reached the cortex.”To determine whether or not the foreign nanoparticles disrupted normal brain function,Saha examined the physiological response of olfactory neurons in the locusts before and after the nanoparticle delivery and found no noticeable change in the electrophysiological responses was detected.“This is only a beginning of a set of studies that can be performed to make nanoparticle-based drug delivery approaches more principled”Raman said.The next phase of research involves fusing the gold nanoparticles with various medicines,and using ultrasound to taarget a more precise dose to specific areas of the brain,which would be especially beneficial inbrain-tumor cases.63.This passage is mainly about________.A.a novel method of drug deliveryB.a challenge facing medical staffC.a new medicine treating brain diseasesD.a technique to improve doctors’ability64.According to the passage,which of the following statements is TRUE?A.Doctors prefer using methods like an injection to treat diseases.B.Locusts were taggged with markers to track their movement.C.The blood-brain barrier lowers the effectiveness of a pill.D.The medicine could reach the brain within half an hour.65.The researchers focused their study on locusts because________.A.human and locusts have similar structures that protect brain from foreign substances.B.the delivery process consists of the olfactory bulb and the olfactory cortexC.locusts have changeable electrophysiological responses to nanoparticlesD.The shortest and possibly the safest path to the brain is through human’s noses66.________would most be interested in reading this passage.A.A lung cancer patient who needs operation immediatelyB.A college student who majors in medical technologyC.A senior doctor who is about to retireD.A high school teacher who is teaching biologySection CDirections:Read the following passage.Fill in each blank with a proper sentence given in the box.Each sentence can be used only once.Note that there are two more sentences than you need.A woman held tightly her phone to her heart,the way a missionary might hold a Bible.She was anxious to take a picture of a stunning bouquet of flowers,but first she had toget through a crowd of others who were doing the same.(67)___________For the34th year,florists were asked to create bouquets that respond to pieces of art on display,from ancient carvings to contemporary sculptures.A tower of baby’s breath imitates a waterfall in a nearby painting by Gustav Grunewald.Red flamingo flowers and neon blue sticks echo a surreal portrait of a woman by Salvador Dali.It's amazing and also extremely Instagrammable,to the point that it has become a problem.(68)__________Institutions of fine art around the world face similar problems as the desire to take photographs becomes a huge draw for museums as well as something that upsets some of their sponsors.So the de Young responded with a kind of agreement:carving out“photo free”hours during the exhibition’s six-day run.One common complaint in the ongoing debates over the effect of social media on museum culture is that people seem to be missing out on experiences because they are so busy collecting evidence of them.A study published in the journal Psychological Science suggests there is truth to this.It found that people who took photos of an exhibit rather than simply observing it had a harder time remembering what they saw.(69)__________Linda Butler,the de Young’s head of marketing,communications and visitor experience,acknowledges that not everyone wants amuseum to be“a selfie playland”.Yet a lot of other people do,and her take is that the de Young is in no position to claim that one motivation for buying a$28ticket is more valid than another.If we removed social media and photography,she says,“we should risk becoming irrelevant”.(70)__________On this visit to the museum,most people seemed to treat the photo craze as the new normal.Many politely waited their turn and got out of other people's shots even as visitors bumped into each other in crowded galleries.IV.Summary Writing:10分Directions:Read the following passage.Summarize the main idea and the main points)of the passage in no more e your own words as far as possible.71.It is a common sight on campus or in the streets:a young person rides by on an electric scooter,traveling quickly and proudly.But Beijing's traffic authorities have said that starting on Sept.5,people who are caught riding electric scooters on public roads or bicycle lanes will be fined10yuan.They will also be given a warning not to use the vehicles on public roads again.The announcement was made after traffic police in Shanghai started a campaign to get electric scooters off public roads,with police officers stopping riders because the scooters could cause traffic problems.The Beijing Consumer Association said it had tested more than20electric scooters of different brands recently and found that most had substandard brakes.It added that16 of the tested scooters could go faster than the maximum20km per hour set for electric bikes. According to the traffic police,people who ride electric scooters at certain speeds can easily bump into the vehicles in the vehicle lane and hurt people who walk in the bicycle lanes.But seeing the benefits that electric scooters have brought to young people,experts are worried that the ban may take effect slowly.Electric scooters are a great answer to the“last mile problem of getting from a public transport station to one’s home.They're light enough to throw over your shoulder.They're easy to ride just about anywhere and don't need a lot of physical effort.The scooter can travel25km on one charge.It's convenient and easy to control.They are also good for the environment.Unlike cars and buses.electric scooter produce no carbon dioxide,need no fuel and make almost no noise.For many young people,they use them to copy cool celebrities they have seen in videos.第II卷V.Translation:(3+3+4+5=15’)Directions:Translate the following sentence into English,using the words given in the brackets.72.在场的人都觉得他说的话不能证明他是无辜的。
上海松江区2023-2024学年第一学期期末质量监控试卷高三数学一、填空题(本大题满分54分)本大题共有12题,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知全集为R ,集合{}|1P x x =≥,则集合P =________.2.双曲线221 3=x y -的右焦点坐标是________.3.已知复数2i z =+(其中i 是虚数单位),则z =________4.已知向量()1,2a =,()4,3b = ,则()2a a b ⋅-= ________5.已知3sin 5θ=,π(0,2θ∈,则πtan(4θ-的值为________6.已知lg lg 1a b +=,则2+a b 的最小值为________7.二项式()3nx +的展开式中,2x 项的系数是常数项的5倍,则n =___________;8.有5名同学报名参加暑期区科技馆志愿者活动,共服务两天,每天需要两人参加活动,则恰有1人连续参加两天志愿者活动的概率为________.9.在ABC 中,设角,A B 及C 所对边的边长分别为,a b 及c ,若3a =,5c =,2B A =,则边长b =________.10.已知函数2()6f x x x m =-++,π()2sin(2)3g x x =+.对任意0π0,4x ∈⎡⎤⎢⎥⎣⎦,存在12,[1,3]x x ∈-,使得102()()()f x g x f x ≤≤,则实数m 的取值范围是________.11.若函数()y f x =是定义在R 上的不恒为零的偶函数,且对任意实数x 都有(2)(2)()2x f x x f x ⋅+=+⋅+,则(2023)f =________.12.已知正四面体A BCD -的棱长为,空间内任意点P 满足2PB PC += ,则AP AD⋅的取值范围是________.二、选择题(本大题满分18分)本大题共有4题,每题有且只有一个正确答案,第13、14题选对得4分,第15、16题选对得5分,否则一律得零分.13.英国数学家哈利奥特最先使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.对于任意实数a b c d 、、、,下列命题是真命题的是()A.若22a b <,则a b <B.若a b <,则ac bc<C.若a b <,c d <,则ac bd< D.若a b <,c d <,则a c b d+<+14.如图所示的茎叶图记录了甲、乙两支篮球队各6名队员某场比赛的得分数据(单位:分).则下列说法正确的是()A.甲队数据的中位数大于乙队数据的中位数;B.甲队数据的平均值小于乙队数据的平均值;C.甲队数据的标准差大于乙队数据的标准差;D.乙队数据的第75百分位数为27.15.函数()y f x =的图象如图所示,()y f x '=为函数()y f x =的导函数,则不等式()0f x x'<的解集为()A.(3,1)--B.(0,1)C.(3,1)(0,1)--⋃ D.(,3)(1,)-∞-+∞ 16.关于曲线1122:1M x y +=,有下述两个结论:①曲线M 上的点到坐标原点的距离最小值是22;②曲线M 与坐标轴围成的图形的面积不大于12,则下列说法正确的是()A.①、②都正确B.①正确②错误C.①错误②正确D.①、②都错误三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且//CE AB .(1)求证:CE ⊥平面PAD ;(2)若四棱锥P ABCD -的体积为56,1AB =,3AD =,2CD =,45CDA ∠= ,求二面角P CE A --的大小.18.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)若集合{}1|,150k m M k b a a m ==+≤≤,求集合M 中的元素个数.19.为了鼓励居民节约用气,某市对燃气收费实行阶梯计价,普通居民燃气收费标准如下:第一档:年用气量在0310-(含)立方米,价格为a 元/立方米;第二档:年用气量在310520-(含)立方米,价格为b 元/立方米;第三档:年用气量在520立方米以上,价格为c 元/立方米.(1)请写出普通居民的年度燃气费用(单位:元)关于年度的燃气用量(单位:立方米)的函数解析式(用含,,a b c 的式子表示);(2)已知某户居民2023年部分月份用气量与缴费情况如下表,求,,a b c 的值.月份1234591012当月燃气用量(立方米)5680665860535563当月燃气费(元)168240198174183174.9186264.620.已知椭圆2222:1y x a b Γ+=(0a b >>)的离心率为2,其上焦点F 与抛物线2:4K x y =的焦点重合.(1)求椭圆Γ的方程;(2)若过点F 的直线交椭圆Γ于点,A B ,同时交抛物线K 于点,C D (如图1所示,点C 在椭圆与抛物线第一象限交点上方),试比较线段AC 与BD 长度的大小,并说明理由;(3)若过点F 的直线交椭圆Γ于点,A B ,过点F 与直线AB 垂直的直线EG 交抛物线K 于点,E G (如图2所示),试求四边形AEBG 面积的最小值.21.已知函数()y f x =,记()sin f x x x =+,x D ∈.(1)若[]0,2πD =,判断函数的单调性;(2)若π0,2D ⎛⎤= ⎥⎝⎦,不等式()f x kx >对任意x D ∈恒成立,求实数k 的取值范围;(3)若R D =,则曲线()y f x =上是否存在三个不同的点,,A B C ,使得曲线()y f x =在,,A B C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.参考答案:一.填空题:1、{}|1x x <;2、(2,0);3;4、0;5、17-;6、7、10;8、35;9、;10、[]7,8-;11、1-;12、44⎡-+⎣;二.选择题:13、D ;14、D ;15、C ;16、C ;三.解答题:17、(1)由PA ⊥底面ABCD ,CE ⊂平面ABCD ,得PA CE ⊥,由,//AB AD CE AB ⊥,得CE AD ⊥,而,,PA AD A PA AD ⋂=⊂平面PAD ,所以CE ⊥平面PAD .(2)由(1)知,CE ⊥平面PAD ,而PE ⊂平面PAD ,则CE PE ⊥,又CE AE ⊥,因此PEA ∠是二面角P CE A --的平面角,在Rt ECD △中,cos451,sin 451DE CD CE CD ==== ,显然1,//CE AB AB CE ==,四边形ABCE 为矩形,于是2BC AE ==,而四棱锥P ABCD -的体积1115(23)13326P ABCD ABCD V S PA PA -=⋅=⨯+⨯⋅=,解得1PA =,在Rt PAE 中,1tan 2PA PEA AE ∠==,因此1arctan 2PEA ∠=,所以二面角P CE A --的大小为1arctan2.18、(1)证明:设数列{}n a 的公差为d ,则()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即1112250d b a d b =⎧⎨+-=⎩,解得112db a ==,所以原命题得证.(2)由(1)知112d b a ==,所以111112(1)k k m b a a a a m d a -=+⇔⨯=+-+,因为10a ≠,所以[]221,50k m -=∈,解得222log 5023log 25k ≤≤+=+,由4215=,5232=,故24log 255<<,即273log 258<+<,所以满足等式的解2,3,4,5,6,7k =.故集合M 中的元素个数为6.19、(1)依题意,函数解析式为:,0310310(310),310520310210(520),520ax x y a b x x a b c x x <≤⎧⎪=+-<≤⎨⎪++->⎩(2)解法一:由一月份数据可得:168356a ==,通过计算前5个月用量:5680665860320++++=,前5个月燃气总费用:168240198174183963++++=,由(1)中函数解析式,计算可得:9633103(320310)b =⨯+-,所以 3.3b =,又9月份,10月份,12月份的燃气费均价分别为:3.3,3.38,4.2均不同,所以12月份为第三档,264.64.263c ==.解法二:1月份,5月份,9月份,10月份,12月份的燃气费均价分别为:3,3.05,3.3,3.38,4.2均不同.所以1月份为第一档,5月份为第一档和第二档,10月份与12月份不同,则12月份为第三档,10月份与9月份不同,10月份为第二档与第三档,9月份为第二档.从而得到,3, 3.3, 4.2a b c ===.20、(1)由题意得(0,1)F ,即:1c =,又22c a =,所以a =由222a cb -=,得21b =,所以椭圆的方程为2212y x +=.(2)由题意得过点F 的直线AB 的斜率存在,设直线AB 方程为1y kx =+,设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,联立22112y kx y x =+⎧⎪⎨+=⎪⎩,消去y 得:()222210k x kx ++-=,则12222k x x k +=-+,12212x x k =-+,所以()()2222222211221422k k k k A k k B +⎡⎤⎛⎫⎛⎫=+-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣-+⎦-++.抛物线K 的方程为:24x y =,联立214y kx x y=+⎧⎨=⎩,消去y 得:2440x kx --=,则34344,4x x k x x +==-,所以()()()2221161641CD k kk =++=+,所以()()AC BD AC AD BD AD CD AB-=+-+=-()()()()2222222212422221410k k k k k k++-=+-++=+>,即AC BD>.(3)设()11,A x y ,()22,B x y ,()55,E x y ,()66,G x y ,当直线AB 的斜率存在且不为零时,设直线AB 方程为()10y kx k =+≠,则直线EG 方程为11y x k=-+,由(2)的过程可知:)2212kk AB ++=,由()241CD k=+,以1k -替换k ,可得2141EG k ⎛⎫=+ ⎪⎝⎭,所以))()222222211111412222AEBGk k k S AB EG k k k ++⎡⎤⎛⎫=⋅=⨯⨯+= ⎪⎢⎥⎭⎣⎦+⎝+)()()22222214211111kk k +==--++,因为211k +>,所以()()2210,11k ∈+,()()22110,11k -∈+,()2242111AEBG S k =>-+当直线AB的斜率不存在时,AB =,4EG =,所以11422AEBG S AB EG =⋅=⨯=;综上所述:AEBG S ≥AEBG面积的最小值为21、(1)因为()1cos 0f x x '=+≥,当且仅当在πx =时,()0f x '=,所以函数()y f x =在[0,2π]上是增函数.(2)由题意得,(1)sin k x x -<,于是sin 1xk x-<.令sin ()xh x x =,则2cos sin ()-'=x x x h x x ,令()cos sin u x x x x =-,则π()sin 0,(0,2u x x x x '=-<∈,所以()u x 在(0,2π上是严格减函数,于是π()(0)0,(0,]2u x u x <=∈由于2cos sin π()0,(0,]2x x x h x x x -'=<∈,于是()h x 在(0,]2π上是严格减函数,所以min π2()(2πh x h ==,因此21πk -<,即21πk <+.(3)解法一:设11(,)A x y 、22(,)B x y 、33(,)C x y ,则曲线在,,A B C 三点处的切线分别为直线,11111:(1cos )cos sin l y x x x x x =+-+,22222:(1cos )cos sin l y x x x x x =+-+,33333:(1cos )cos sin l y x x x x x =+-+.因为直线123,,l l l 互相重合,所以123cos cos cos x x x ==,且111cos sin x x x -+222cos sin x x x =-+333cos sin x x x =-+.因为123cos cos cos x x x ==,所以12sin sin x x =±,23sin sin x x =±,31sin sin x x =±.①若12sin sin x x =-,23sin sin x x =-,31sin sin x x =-.则1sin 0x =,2sin 0x =,3sin 0x =,于是112233cos cos cos x x x x x x -=-=-,因为123cos cos cos 10x x x ===±≠,所以123x x x ==,与,,A B C 三点互不重合矛盾.②若12sin sin x x =,23sin sin x x =,31sin sin x x =中至少一个成立,不妨设12sin sin x x =成立,则1122cos cos x x x x =,若12cos cos 0x x =≠,则12x x =,矛盾,舍去,于是12cos cos 0x x ==,12sin sin 1x x ==±,所以满足要求的切线方程为1y x =+或1y x =-解法2:假设存在三个不同点112233(,),(,),(,)A x y B x y C x y 在曲线()y f x =上满足条件,则111222333sin ,sin ,sin y x x y x x y x x =+=+=+,且123,,x x x 互不相同.曲线()y f x =在,,A B C 三点处的切线方程分别为:11111:(1cos )sin cos l y x x x x x =++-,22222:(1cos )sin cos l y x x x x x =++-,33333:(1cos )sin cos l y x x x x x =++-,依题意,有123111222333cos cos cos sin cos sin cos sin cos x x x x x x x x x x x x ==⎧⎨-=-=-⎩①②由①得,21312π,2π,,Z x k x x n x k n =±=±∈.情形1:若21312π,2π,,0,x k x x n x k n k n =+=+≠≠,代入②得,111111111sin cos sin (2π)cos sin (2π)cos x x x x k x x x n x x -=-+=-+.即11(2π)cos 0(2π)cos 0k x n x =⎧⎨=⎩,而,0k n ≠,故1cos 0x =,1sin 1x =±,此时满足条件的切线方程为1y x =±.情形2:若21312π,2π,x k x x n x k n =-=-≠,代入②得,111111111sin cos sin (2π)cos sin (2π)cos x x x x k x x x n x x -=---=---.即111111sin (π)cos 0sin (π)cos 0x k x x x n x x +-=⎧⎨+-=⎩,两式相减,得1()πcos 0k n x -⋅=,由于k n ≠,故1cos 0x =,此时1sin 0x =,与2211sin cos 1x x +=矛盾,舍去.情形3:若21312π,2π,0x k x x n x k =+=-≠,代入②得,111111111sin cos sin (2π)cos sin (2π)cos x x x x k x x x n x x -=-+=---.即1111(2π)cos 0sin (π)cos 0k x x n x x =⎧⎨+-=⎩,故1cos 0x =,高中11则1sin 0x =,与2211sin cos 1x x +=矛盾,舍去.情形4:若21312π,2π,0x k x x n x n =-=+≠,与情形3完全类似,舍去.综上,满足条件的切线方程为1y x =±.解法3:假设存在三个不同点112233(,),(,),(,)A x y B x y C x y 在曲线()y f x =上满足条件,则111222333sin ,sin ,sin y x x y x x y x x =+=+=+,且123,,x x x 互不相同.曲线()y f x =在,,A B C 三点处的切线方程分别为:11111:(1cos )sin cos l y x x x x x =++-,22222:(1cos )sin cos l y x x x x x =++-,33333:(1cos )sin cos l y x x x x x =++-,依题意,有123111222333cos cos cos sin cos sin cos sin cos x x x x x x x x x x x x ==⎧⎨-=-=-⎩①②由①得,123|sin ||sin ||sin |x x x ==,由②,令111222333sin cos sin cos sin cos x x x x x x x x x t -=-=-=,则111222333sin cos ,sin cos ,sin cos x t x x x t x x x t x x =+=+=+,即有112233|cos ||cos |cos |t x x t x x t x x +=+=+,平方,得2222222221111222233332cos cos 2cos cos 2cos cos t tx x x x t tx x x x t tx x x x ++=++=++,即222121121222131131()cos 2()cos 0()cos 2()cos 0x x x t x x x x x x t x x x ⎧-+-=⎨-+-=⎩由于123,,x x x 互不相同,即2121121311()cos 2cos 0()cos 2cos 0x x x t xx x x t x ⎧-+=⎨-+=⎩,相减,得2231()cos 0x x x -=,于是1cos 0x =,则1sin 1x =±,此时满足条件的切线方程为1y x =±.。
高一年级上学期第二次月考数学试题卷时间:120分 总分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,52. 函数()ln(1)f x x =+的定义域为( )A .(-1,2)B .[1,0)(0,2)- C.(1,0)(0,2]- D .(1,2]-3. 函数3()2f x ax bx a b =++-是奇函数,且其定义域为[34,]a a -,则()f a =( )A .4B .3C .2D .14.已知直线20x -=,则该直线的倾斜角为( )A .30°B .60°C .120°D .150° 5. 已知两直线 1:80l mx y n ++=和 2:210l x my +-=,若12l l ⊥且1l 在y 轴上的截距 为-1,则,m n 的值分别为( )A .2,7B .0,8C .-1,2D .0,-86.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为 ( ) A .322π B .324πC . π24D .π)(424+ 7. 设αβ,为平面,,a b 为两条不同的直线,则下列叙述正确的是( )A .//,//,//a b a b αα若则B .//,,a a b b αα⊥⊥若则C .//,,,//a b a b αβαβ⊂⊂若则D .,//,a a b b αα⊥⊥若则 8.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90° 9.若函数()()()2221f x m x mx m =-+++的两个零点分别在区间()1,0-和()1,2上,则m 的取值范围是( )A.11,24⎛⎫- ⎪⎝⎭B. 11,42⎛⎫- ⎪⎝⎭C. 11,42⎛⎫ ⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦ 10. 一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为2的正方形,俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .34π+B .38π+C.π384+ D .π388+11. 如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE旋转过程中的一个图形,下列命题中错误的是( )A .恒有DE ⊥A ′FB .异面直线A ′E 与BD 不可能垂直C .恒有平面A ′GF ⊥平面BCEDD .动点A ′在平面ABC 上的射影在线段AF 上 12. 设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[],a b D ⊆,使得()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称()f x 为“倍缩函数”.若函数()()2log 2xf x t =+为“倍缩函数”,则t 的取值范围是( ) A. 10,4⎛⎫ ⎪⎝⎭ B. 1,4⎛⎫+∞ ⎪⎝⎭ C. ()0,1 D.10,2⎛⎤⎥⎝⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 设⎩⎨⎧≥-<=-2),1(log ,2,2)(231x x x e x f x ,则))2((f f 的值为 . 14. 用一个平行于正棱锥底面的平面截这个正棱锥,截得的正棱台上、下底面面积之比为1:9,截去的棱锥的高是2cm,则正棱台的高是 cm.15.如图,正方体1111D C B A ABCD -中,AC 交BD 于O ,E 为线段11D B 上的一个动点,则下列结论中正确的有_______. ①AC ⊥平面OBE ②三棱锥E -ABC 的体积为定值③B 1E ∥平面ABD④B 1E ⊥BC 116. 已知函数32log ,03,()1108,3,33x x f x x x x ⎧<<⎪=⎨-+≥⎪⎩若存在实数,,,a b c d ,满足()()()()f a f b f c f d ===,其中0d c b a >>>>,则abcd 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分) 已知全集U R = ,1242x A x⎧⎫=<<⎨⎬⎩⎭,{}3log 2B x x =≤. (1)求AB ;(2)求()U C AB .O18. (本小题满分12分)(1)已知直线l 过点(1,2)A ,且与两坐标轴的正半轴围成的三角形的面积是4,求直线l 的方程.(2)求经过直线1:2350l x y +-=与2:71510l x y ++=的交点.且平行于直线230x y +-=的直线方程.19.(本小题满分12分)已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=. (1)当l 1//l 2,求实数a 的值;(2)直线l 2恒过定点M ,若M 到直线1l 的距离为2,求实数a 的值.20. (本小题满分12分) 如图,△ABC 中,2AC BC AB ==,四边形ABED 是边长为a 的正方形,平面ABED ⊥平面ABC ,若G F 、分别是EC BD 、的中点.(1)求证://GF ABC 平面;(2) BD EBC 求与平面所成角的大小21. (本小题满分12分) 如图,在四棱锥ABCD P -中,⊥PD 平面ABCD ,底面ABCD 是平行四边形,BD AD PD AB BAD ====∠,,,3260,O 为AC 与BD 的交点,E为棱PB 上一点.(1)证明:平面⊥EAC 平面PBD ;(2)若EB PE 2=,求二面角B AC E --的大小.22. (本小题满分12分) 对于函数()f x 与()g x ,记集合{}()()f g D x f x g x >=>. (1)设()2,()3f x x g x x ==+,求集合f g D >;(2)设121()1,()()31,()03xx f x x f x a h x =-=+⋅+=,若12f h f h D D R >>⋃=,求实数a 的取值范围.答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)C C B A B CD C C A B A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 2 14. 4 15. ①②③ 16.(21,24)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)解:{}12A x x =-<< , B {}09B x x =<≤ ·······················4分 (1){}02A B x x =<< ····································································6分 (2){}19AB x x =-<≤ ,(){1UC A B x x =≤-或9}x > .·····10分18. (本小题满分12分)(1)解析:解法一 设l :y -2=k (x -1)(k <0), 令x =0,y =2-k .令y =0,x =1-2k ,S =12(2-k )⎝ ⎛⎭⎪⎫1-2k =4, 即k 2+4k +4=0. ∴k =-2,∴l :y -2=-2(x -1),即l :2x +y -4=0.···················6分解法二 设l :x a +yb =1(a >0,b >0),则⎩⎪⎨⎪⎧12ab =4,1a +2b =1.a 2-4a +4=0?a =2,∴b =4.直线l :x 2+y4=1. ∴l :2x +y -4=0.(2)联立,解得.设平行于直线 x +2y ﹣3=0的直线方程为 x +2y +n=0.把代入上述方程可得:n=﹣.∴要求的直线方程为:9x +18y ﹣4=0.···········12分 19.(本小题满分12分)(1)a=3,或a=-1(舍)··························4分 (2)M(-2,-1)···································8分2=得a=4··················12分20. (本小题满分12分)(1)证明: 连接EA 交BD 于F , ∵F 是正方形ABED 对角线BD 的中点, ∴F 是EA 的中点, ∴FG ∥AC .又FG ?平面ABC ,AC ?平面ABC ,∴FG ∥平面ABC .··················6分 (2)∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC .又∵AC =BC =22AB , ∴BC ⊥AC , 又∵BE ∩BC =B , ∴AC ⊥平面EBC . 由(1)知,FG ∥AC , ∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角.又BF =12BD =2a 2,FG =12AC =2a 4,sin ∠FBG =FG BF =12.∴∠FBG =30°. ························12分 21. (本小题满分12分)解:(1)∵⊥PD 平面ABCD ,⊂AC 平面ABCD ,∴PD AC ⊥. ∵60,=∠=BAD BD AD ,∴ABD ∆为正三角形,四边形ABCD 是菱形, ∴BD AC ⊥,又D BD PD = ,∴⊥AC 平面PBD ,而⊂AC 平面EAC ,∴平面⊥EAC 平面PBD .·········································6分 (2)如图,连接OE ,又(1)可知AC EO ⊥,又BD ⊥AC ,∴EOB ∠即为二面角B AC E --的平面角, 过E 作PD EH ∥,交BD 于点H ,则BD EH ⊥, 又31,33,3,2,2=====OH EH PD AB EB PE ,在EHO RT ∆中,3tan ==∠OHEHEOH ,∴ 60=∠EOH , 即二面角B AC E --的大小为60.·································································12分 22. (本小题满分12分)解:(1) 当0≥x 得3,32>∴+>x x x ; ······················2分当1320-<∴+>-<x x x x ,时,得 ················4分()()∞+⋃-∞-=∴>,31,g f D ··············5分(2) ()⎭⎬⎫⎩⎨⎧>+⋅+=∞+=>>013)31(,121xxh f h f a x D D , ·······7分 R D D h f h f =⋃>>21 , ∴ (]1,2∞-⊇>h f D即不等式01331>+⋅+xx a )(在1≤x 恒成立 (9)分∴ 1≤x 时,⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛->x x a )31(91恒成立, ⎥⎦⎤⎢⎣⎡+-=x x y )31()91( 在1≤x 时最大值为94-, ··················11分故 94->a ·············12分。
上海市育才中学2024届高三上学期第一次调研检测数学
试题
学校:___________姓名:___________班级:___________考号:___________ 10.在数列{}
a中,
n
(3)若[0,π]x Î时,()f x ax ³,
则(π)πf a ³,
又()π0f =,所以0a £,
由(2)知,()y f x ¢=在区间()0,π上只有一个零点,设为0x ,
当00x x <<时,()0f x ¢>,当0πx x <<时,()0f x ¢<,
所以函数()f x 在()00,x 上单调递增,在()0
,πx 上单调递减,又()()00,π0f f ==,
所以当[0,π]x Î时,()0f x ³,
又当0a £,[0,π]x Î时,0ax £,故()f x ax ³,
所以a 的取值范围为(],0-¥.
【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:
(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;
(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.
(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
上海市育才中学2023-2024学年高三下学期5月质量调研考试数学试题一、填空题1.若复数(1)(2)z m m i =++-(m ∈R )是纯虚数,则m =2.若2cos()23πα+=,则sin α的值是3.已知函数()2log ,02,12,2,2x x f x x x ⎧<≤⎪=⎨-+>⎪⎩则()()3f f =.4.已知数列{}n a 满足12a =,()110n n a a n *+-+=∈N ,则此数列的通项公式n a =.5.已知直线l 与直线1:230l x y -+=和2:210l x y --=平行且距离相等,则直线l 的方程为. 6.已知集合()(){}250A x x x =+-<,{}3,2,1,0,1,2,3B =---,任取k A B ∈I ,则k y x =为偶函数的概率为.7.将抛物线C :24y x =关于直线y x =对称,得到抛物线Q ,则抛物线Q 的焦点到其准线的距离为.8.设随机变量X 服从二项分布19,3B ⎛⎫⎪⎝⎭,则[]2D X =.9.设()()()12120112433x a a x a x +=+++++L ,则01212a a a a ++++=L .10.已知偶函数()y f x =在区间[)0,∞+上是严格减函数.若()()ln 1f x f >,则x 的取值范围是.11.若曲线C 的图象上任意不同的两点()11,M x y ,()22,N x y,坐标都满足关系1221x y x y -则在①2y x =;②sin y x =;③1y x x =+;④2214xy -=中,不可能是曲线C 的方程的序号为(填上所有正确答案的序号).12.平面内互不重合的点1A 、2A 、3A 、1B 、2B 、3B 、4B ,若123i i i AB A B A B i ++=u u u u r u u u u r u u u u r,1i =,2,3,4,则122334B B B B B B ++的取值范围是.二、单选题13.已知函数()22421x f x x =+,则对任意实数x ,函数()f x 的值域是( )A .()0,2B .(]0,2C .[)0,2D .[]0,214.已知,a b rr 为不共线的两个单位向量,,λμ为非零实数,设c a b λμ=+r r r ,则“λμ=”是“,,a c b c =r r rr ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件15.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分图像如图所示,且()f x 的图像关于点π,212⎛⎫⎪⎝⎭中心对称,则()f ϕ=( ).A .4B .3C .2D .016.已知函数33,()2,x x x af x x a x a ⎧-+≥=⎨-<⎩,①若函数()y f x =有最大值,并将其记为()F a ,则a()F a ②若函数()y f x =有零点,并将零点个数记为()G a ,则函数()y G a =为偶函数( )A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立三、解答题17.在ABC V 中,a ,b ,c 分别是角A ,B ,C 所对的边,b =2c =,π3B =.(1)求a 的值; (2)求()cos B A -的值.18.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,E 为棱1AA 的中点,12,3AB AA ==.(1)求三棱锥A BDE -的体积.(2)在1DD 上是否存在一点P ,使得平面1//PAC 平面EBD .如果存在,请说明P 点位置并证明.如果不存在,请说明理由.19.为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动.活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a ()1a ≥表示.(1)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a 的所有可能取值;(2)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”.设3a =,从20名学生中随机抽取一人,已知该生为阅读达人,求该生为甲组学生的概率;(3)记甲组阅读量的方差为20s .在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)20.已知曲线C :()()2223244m x my m --=∈R .(1)若曲线C为双曲线,且渐近线方程为y x =,求曲线C 的离心率; (2)若曲线C为椭圆,且P ⎛ ⎝⎭在曲线C 上.过原点且斜率存在的直线1l 和直线2l (1l 与2l 不重合)与椭圆C 分别交于G ,H 两点和D ,E 两点,且点P 满足到直线1l 和2l的距离都等于,求直线1l 和2l 的斜率之积; (3)若1m =-,过点()0,1A -的直线与直线=2y -交于点M ,与椭圆交于B ,点B 关于原点的对称点为C ,直线AC 交直线=2y -交于点N ,求MN 的最小值.21.已知*k ∈N ,集合{0101222,0,k i i ik k X x x i i i ==++⋅⋅⋅+≤<<<L 其中}01,,,k i i i ⋅⋅⋅∈N .(1)求2X 中最小的元素;(2)设13122a X =+∈,1b X ∈,且1a b X +∈,求b 的值; (3)记(12,2k n k nk k Y X +-+⎤=⋂⎦,*n ∈N ,若集合k Y 中的元素个数为n b ,求1112k mm m b +-=∑.。
1南洋中学2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合{}|02A x x =<<,301x B x x ⎧⎫−=<⎨⎬−⎩⎭,则集合AB =________.2.复数21z i=+(i 为虚数单位),则z =________. 3.函数()()2ln 2f x x x =+−的定义域为________.4.61x x ⎛⎫+ ⎪⎝⎭的二项展开式中41x 的系数为________. 5.双曲线22149x y −=的焦点到渐近线的距离等于________.6.不等式3lg 3x x +≤的解是________.7.某餐厅为志愿者供应客饭,每位志愿者可以在餐厅提供的菜肴中任选2荤2素,共4种不同品种.现在餐厅准备了5种不同的荤菜,若要保证每位志愿者有200种以上不同选择,则餐厅至少还需要准备________种不同的素菜. 8.已知函数()y f x =,若(1)1f '=,则()()121limh f h f h→+−=________.9.已知函数()()2sin 106πf x x ⎛⎫=ω+−ω> ⎪⎝⎭在(0,)π上恰有两个零点,则实数ω的取值范围为________.10.已知函数()ln2xf x x=−,则2()()0f x f x +<的解是________. 11.已知函数()3112f x x ⎛⎫=−+ ⎪⎝⎭,则122023202420242024f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为________.12.在锐角△ABC 中,22a b bc −=,则112sin tan tan A B A−+的取值范围为________.2二、选择题(本大题每题5分,满分20分) 13.已知函数224()21x f x x =+,则对任意实数x ,函数()y f x =的值域是( ). A .(0,2)B .(]0,2C .[)0,2D .[]0,214.若在用二分法寻找函数()21211x x y x x +=−>−零点的过程中,依次确定了零点所在区间为[]41,,,,234a b a b b a b +⎡⎤⎡⎤−⎢⎥⎢⎥⎣⎦⎣⎦、、则实数,a b 分别等于( ). A .32、52 B .2、3 C .32、2 D .65、5215.对于函数21()cos sin 2f x x x x =+−,给出下列结论: (1)函数()y f x =的图像关于点5,012π⎛⎫⎪⎝⎭对称;(2)函数()y f x =在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤−⎢⎥⎣⎦;(3)将函数()y f x =的图像向左平移3π个单位长度得到函数cos2y x =−的图像; (4)曲线()y f x =在4x π=处的切线的斜率为1.则所有正确的结论是( ). A .(1)(2) B .(2)(3) C .(2)(4) D .(1)(3) 16.已知()y f x =是定义在R 上的偶函数,若任意1x 、[)20,x ∈+∞且12x x ≠时,121212()()2()f x f x x x x x −>+−恒成立,且(2)8f =,则满足222()2()f m m m m +≤+的实数m 的取值范围为( ). A .[]2,1−B .[]0,1C .[]0,2D .[]2,2−三、解答题(本大题满分76分)17.(本题满分14分,其中第(1)小题7分,第(2)小题7分)已知函数()cos sin 26f x x x ππ⎛⎫⎛⎫=−⋅+− ⎪ ⎪⎝⎭⎝⎭.(1)求()y f x =的最小正周期与单调增区间;(2)若,44x ππ⎡⎤∈−⎢⎥⎣⎦,求函数()y f x =的最值.318.(本题满分14分,其中第(1)小题6分,第(2)小题8分)如图,在三棱锥P ABC −中,平面PAB ⊥平面ABC ,AC BC =,PA PB =且点C 在以点O 为圆心,AB 为直径的半圆AB 上.(1)求证:AB PC ⊥;(2)若2AC =且PC 与平面ABC 所成的角为4π,求点B 到平面PAC 的距离.19.(本题满分14分,其中第(1)小题6分,第(2)小题8分). 已知函数()21f x ax x=+,其中a 为常数. (1)根据a 的不同取值,判断函数()y f x =的奇偶性,并证明你的结论; (2)若(1,3)a ∈,判断函数()y f x =在[]1,2上的单调性,并证明你的结论.420.(本题满分16分,其中第(1)小题8分,第(2)小题8分)中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分,传承视觉形象和造型格式,蕴涵了丰富的文化历史信息,表达了广大民众的社会认知、道德观念、实践经验、生活理想和审美情趣.现有一张矩形卡片ABCD ,对角线长为t (t 为常数),从△ABD 中裁出一个内接正方形纸片EFGH ,使得点E ,H 分别AB ,AD 上,设02DBA π⎛⎫∠=α<α< ⎪⎝⎭,矩形纸片ABCD的面积为1S ,正方形纸片EFGH 的面积为2S .(1)当512πα=,1t =时,求正方形纸片EFGH 的边长; (2)当α变化时,求21SS 的最大值及对应的α值.521.(本题满分18分,其中第(1)小题4分,第(2)小题6分,第(3)小题8分) 设0t >,函数()y f x =的定义域为R .若对满足21x x t −>的任意1x 、2x ,均有21()()f x f x t −>,则称函数()y f x =具有“()P t 性质”. (1)在下述条件下,分别判断函数()y f x =是否具有(2)P 性质,并说明理由; ①3()2f x x =;②()10sin2f x x =; (2)已知3()f x ax =,且函数()y f x =具有(1)P 性质,求实数a 的取值范围;(3)证明:“函数()y f x x =−为增函数”是“对任意0t >,函数()y f x =均具有()P t 性质”的充要条件.6参考答案一、填空题1.()0,3;2. 3.()1,2−; 4.6; 5.3; 6.(]0,1; 7.7; 8.2;9.82,3⎛⎤⎥⎝⎦; 10.()0,1; 11.202312.⎫⎪⎪⎝⎭11.已知函数()3112f x x ⎛⎫=−+ ⎪⎝⎭,则122023202420242024f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为_______. 【答案】2023【解析】根据题意,函数()3112f x x ⎛⎫=−+ ⎪⎝⎭,则()3311111122f x x x ⎛⎫⎛⎫−=−−+=−−+ ⎪ ⎪⎝⎭⎝⎭故()()1101212,122024f x f x f f ⎛⎫⎛⎫+−=== ⎪ ⎪⎝⎭⎝⎭122023(202420242024f f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12023220222024202420242024f f f ⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭⎝⎭+101220232024f ⎛⎫= ⎪⎝⎭,故答案为:2023.12.在锐角△ABC中,22a b bc −=,则112sin tan tan A B A−+的取值范围为________. 【答案】⎫⎪⎪⎝⎭【解析】22a b bc −=,利用余弦定理可得:2222b c bccosA b bc +−−=,即22,2c bccosA bc c bcosA b −=∴−=,由正弦定理可得:2sinC sinBcosA sinB −=(),2sin A B sinBcosA sinB ∴+−= 即sinAcosB sinBcosA sinB −=,即()sin A B sinB −= 又ABC ∆为锐角三角形,A B B ∴−=,即2A B =,7022,,6432032B B A B π<<ππππ⎩∴π⎧⎪⎪⎨⎪<<⎪<<π<−<()()21112222sin sin A Bsin B B sinA sinA sinA A tanB tanA sinBsinA sinBsinA sinA−−−+=+=+=+ 又,1,32A sinA ππ<<<<令1)t sinA t =<<,则()121)f t t t t =+<<, 由对勾函数性质知,()12f t tt =+在1t ⎫∈⎪⎪⎝⎭上单调递增,又2f =+=⎝⎭()112131f =+⨯=123sinA sinA ⎫∴+∈⎪⎪⎝⎭ 二、选择题13.C14.A 15.C 16.A 15.对于函数21()cos sin 2f x x x x =+−,给出下列结论: (1)函数()y f x =的图像关于点5,012π⎛⎫⎪⎝⎭对称;(2)函数()y f x =在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤−⎢⎥⎣⎦;(3)将函数()y f x =的图像向左平移3π个单位长度得到函数cos2y x =−的图像; (4)曲线()y f x =在4x π=处的切线的斜率为1.则所有正确的结论是( ). A .(1)(2) B .(2)(3) C .(2)(4)D .(1)(3) 【答案】C【解析】因为()2122f x sin x x =+−=12226cos x sin x π⎛⎫−=− ⎪⎝⎭(1)因为552012663f sin sin ππππ⎛⎫⎛⎫=−==≠ ⎪⎪⎝⎭⎝⎭所以函数()y f x =的图像不关于点5012,π⎛⎫⎪⎝⎭对称,故错误;8(2)当263x ,ππ⎡⎤∈⎢⎥⎣⎦时,72666x ,πππ⎡⎤−∈⎢⎥⎣⎦,所以12162sin x ,π⎛⎫⎡⎤−∈− ⎪⎢⎥⎝⎭⎣⎦,故正确;(3)将函数()y f x =的图像向左平移3π个单位长度得222362y sin x sin x cos x ⎡⎤πππ⎛⎫⎛⎫=+−=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故错误;(4)因为()26f x sin x π⎛⎫=− ⎪⎝⎭,所以()'226f x cos x π⎛⎫=− ⎪⎝⎭,'221,4266f cos sin ππππ⎛⎫⎛⎫∴=−== ⎪ ⎪⎝⎭⎝⎭即曲线()y f x =在4x π=处的切线的斜率为1,故正确. 故选:C.16.已知()y f x =是定义在R 上的偶函数,若任意1x 、[)20,x ∈+∞且12x x ≠时,121212()()2()f x f x x x x x −>+−恒成立,且(2)8f =,则满足222()2()f m m m m +≤+的实数m 的取值范围为( ). A .[]2,1− B .[]0,1 C .[]0,2 D .[]2,2−【答案】A【解析】设12x x >,则()()()2212122f x f x x x −>−,所以()()22112222f x x f x x −>−,令()()22g x f x x =−,则()()12g x g x >,所以函数()g x 在[)0,+∞上为增函数, 对任意的x R ∈,()()()()()2222g x f x x f x x g x −=−−−=−=所以函数()g x 为R 上的偶函数,且()()222220g f =−⨯=由()()2222f m m m m ++…可得()()2220f m m m m +−+…,即()()22g m m g +…即()()22g m m g +…,所以,22m m +…,即222m m −+剟,解得21m −剟.故选:A . 三.解答题17.(1)5,,,1212T k k k Z ππ⎡⎤=ππ−π+∈⎢⎥⎣⎦(2)()()min maxf x f x ==918.(1)证明略(219.(1)当0a =时,奇函数;当0a ≠时,非奇非偶函数; (2)单调递增,证明略20.(本题满分16分,其中第(1)小题8分,第(2)小题8分)中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分,传承视觉形象和造型格式,蕴涵了丰富的文化历史信息,表达了广大民众的社会认知、道德观念、实践经验、生活理想和审美情趣.现有一张矩形卡片ABCD ,对角线长为t (t 为常数),从△ABD 中裁出一个内接正方形纸片EFGH ,使得点E ,H 分别AB ,AD 上,设02DBA π⎛⎫∠=α<α< ⎪⎝⎭,矩形纸片ABCD的面积为1S ,正方形纸片EFGH 的面积为2S .(1)当512πα=,1t =时,求正方形纸片EFGH 的边长; (2)当α变化时,求21SS 的最大值及对应的α值.【答案】(1)15(2)4πα=【解析】(1)设正方形EFGH 的边长为a ,则AEH ∠=α,,AB cos =α 则,,a BE AE acos sin ==αα,AB AE BE =+即,a cos acos sin α=+αα整理得到 5256,.151********sincos sin cos sin a a sin cos sin cos sin sin πααααπ===α===π+αα+α+α+α当时(2)222,22tsin S sin α⎛⎫= ⎪+α⎝⎭2211•22S tsin tcos t sin cos t sin =αα=αα=α,0,2,π⎛⎫α∈ ⎪⎝⎭10则()(]20,201,,sin ,α∈πα∈则()22122222122222222sin S t sin sin S sin sin sin +αα===ααα⎛⎫⎪+α⎝⎭222sin ++α 令2x sin =α,222x y x =++在(]01,上单调递减,故12192222min S S ⎛⎫=++= ⎪⎝⎭ 故21S S 的最大值为29,此时21sin α=,0,.24,ππ⎛⎫α∈α= ⎪⎝⎭故21.(本题满分18分,其中第(1)小题4分,第(2)小题6分,第(3)小题8分) 设0t >,函数()y f x =的定义域为R .若对满足21x x t −>的任意1x 、2x ,均有21()()f x f x t −>,则称函数()y f x =具有“()P t 性质”. (1)在下述条件下,分别判断函数()y f x =是否具有(2)P 性质,并说明理由; ①3()2f x x =;②()10sin2f x x =; (2)已知3()f x ax =,且函数()y f x =具有(1)P 性质,求实数a 的取值范围;(3)证明:“函数()y f x x =−为增函数”是“对任意0t >,函数()y f x =均具有()P t 性质”的充要条件.【答案】(1)①是,②不是 (2)4a …(3)见解析【解析】(1)①是,因为对任意212x x −>,()()()2121332,2f x f x x x −=−>>所以符合定义;②不是,学生只需举一组反例;(2)显然0a >,所以设210x x m −=>,则()()212f x f x ax −=,当12mx =−时,取()()21f x f x −最小值34am ,原问题等价于当1m >时,314am >恒成立,即34a m >恒成立,所以得4a …; (3)证明:充分性:11如果函数()y f x x =−为增函数,则对任意的21x x >,均有()()2211f x x f x x −−…, 即()()2121f x f x x x −−…,因此,对任意0t >,若21x x t −>,则()()21f x f x t −>,函数()y f x =具有()P t 性质,充分性得证; 必要性:若对任意0t >,函数()y f x =均具有()P t 性质,假设函数()y f x x =−不是增函数, 则存在21x x >,满足()()2211f x x f x x −<−,即()()2121f x f x x x −<−, 取()()212102f x f x x x t −+−=则显然()()21021f x f x t x x −<<−,即对于0t ,存在210x x t −>,但是()()210,f x f x t −<与"对任意0t >,函数()y f x =均具有()P t 性质"矛盾,因此假设不成立,即函数()y f x x =−为增函数,必要性得证。
2023-2024学年上海市高一上册10月月考数学专项突破模拟试题一、填空题1.集合{|03A x x =≤<且}x ∈Z ,2{|9B x x =≤且}x ∈Z ,则A B = ____.【正确答案】{0,1,2}【分析】根据题意先求出集合,A B 的具体取值,然后利用交集的定义即可求解.【详解】因为集合{|03A x x =≤<且}x ∈Z ,2{|9B x x =≤且}x ∈Z ,则{0,1,2}A =,2{|9B x x =≤且}{|33x x x ∈=-≤≤Z 且}x ∈Z ,所以{3,2,1,0,1,2,3}B =---,则有{0,1,2}A B ⋂=,故答案为.{0,1,2}2.已知集合{|2},{|}A x x B x x a =≤=≥,且A B = R ,则实数a 的取值范围为____.【正确答案】2a ≤【分析】数形结合,即可得到答案.【详解】根据A B = R ,结合数轴可知,a 在2的左侧或与之重合,故2a ≤.故答案为.2a ≤3.已知方程230x x +-=的两根为1x ,2x ,则12x x -=______.【分析】由方程易知0∆>,根据根与系数的关系写出12x x +、12x x ,由12x x -=可求值.【详解】由题设知:2Δ141(3)130=-⨯⨯-=>,∴121x x +=-,123x x =-,∴12x x -==.故答案为4.已知正实数128,,, a a a 满足12820a a a +++= 及12812⋅⋅⋅= a a a ,则128,,, a a a 中至少有一个小于1,用反证法证明该命题时,第一步是假设结论不成立,则128,,, a a a ____.【正确答案】都不小于1【分析】存在量词命题的否定为全称量词命题,写出答案即可.【详解】至少有一个小于1的否定是都不小于1.故都不小于15.已知条件:211p k x k -≤≤-,:33q x -≤<,且p 是q 的必要条件,则实数k 的取值范围为_________.【正确答案】(,2]-∞-【分析】根据集合的包含关系得到关于k 的不等式组解出即可.【详解】∴[)[]3,321,1k k -⊆--,∴32131k k-≥-⎧⎨≤-⎩,解得2k ≤-,故(],2-∞-.结论点睛:一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.6.已知等式22231(1)(1)x x a x b x c --=-+-+恒成立,其中,,a b c 为实数,则a b c -+=_____.【正确答案】1-【分析】方法一:将等式左边展开,比较系数可得答案;方法二:令0x =可得答案.【详解】法一:222231(1)(1)(2)x x a x b x c ax b a x a b c --=-+-+=+-+-+,所以1a b c -+=-;法二:在22231(1)(1)x x a x b x c --=-+-+中,令0x =得1a b c -+=-.故1-7.已知集合|0,R 1x A x x x ⎧⎫=≥∈⎨⎬-⎩⎭,{}21,R B y y x x ==+∈,则A B = ____.【正确答案】(1,)+∞【分析】解分式不等式得到A ,得到{|1}B y y =≥,进而求出交集.【详解】01x x ≥-等价与()1010x x x ⎧-≥⎨-≠⎩,解得:1x >或0x ≤,故{|0A x x =≤或1}x >,又211y x =+≥,故{|1}B y y =≥,所以(1,)A B ⋂=+∞.故答案为.(1,)+∞8.已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是______________.【正确答案】10,4⎡⎤⎢⎥⎣⎦【详解】本题考查二次方程有关知识与绝对值不等式知识的综合应用;由于关于x 的二次方程有实根,那么114()04a a ∆=--+≥即1144a a -+≤,而11244a a a -+≤-,从而11244a -≤,解得104a ≤≤.9.若不等式|3|4xb -<的解集中的整数有且仅有1,2,3,则b 的取值范围是_____【正确答案】(5,7)【详解】由|3|4x b -<得4433b b x -+<<由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<10.定义集合运算(){}|,,A B z z xy x y x A y B ==+∈∈ ,集合{}{}0,1,2,3A B ==,则集合A B 所有元素之和为________【正确答案】18【分析】由题意可得0,6,12=z ,进而可得结果.【详解】当0,2,0==∴=x y z 当1,2,6==∴=x y z 当0,3,0==∴=x y z 当1,3,12==∴=x y z 和为0+6+12=18故1811.已知集合2{|360M m x mx =∈+-=Z 有整数解},非空集合A 满足条件:(1)A M ⊆,(2)若a A ∈,则a A -∈,则所有这样的集合A 的个数为____.【正确答案】31【分析】根据集合2{|360M m x mx =∈+-=Z 有整数解},结合韦达定理可求出集合M ,再由题目信息中集合A 满足的两个条件,得到集合M 中互为相反数的两个元素同属于集合A 或同不属于集合A ,即可求解.【详解】因为2360x mx +-=的整数解只能是36的约数,当方程的解为1-,36时,35m =-;当方程的解为2-,18时,16m =-;当方程的解为3-,12时,9m =-;当方程的解为4-,9时,5m =-;当方程的解为6-,6时,0m =;当方程的解为1,36-时,35m =;当方程的解为2,18-时,16m =;当方程的解为3,12-时,9m =;当方程的解为4,9-时,5m =;故集合{35,16,9,5,0,5,9,16,35}M =----由非空集合A 满足条件:(1)A M ⊆,(2)若a A ∈,则a A -∈,即集合M 中互为相反数的两个元素同属于集合A 或同不属于集合A ,得这样的集合共有52131-=个,故答案为.3112.已知集合{}230123|777A x x a a a a ==+⨯+⨯+⨯,其中,{}0,1,,6(0,1,2,3)i a i ∈⋅⋅⋅=,且30a ≠.若正整数m 、n ∈A ,且m+n=2010(m>n),则符合条件的正整数m 有_______个.【正确答案】662【详解】依题意,知m 、n 是七进制中的四位数,而七进制四位数中最大的一个数为3267676762400⨯+⨯+⨯+=,最小的一个数为317343⨯=.因为m+n=2010(m>n),所以,1006≤m≤1667.故符合条件的正整数m 有1667-1006+1=662(个).二、单选题13.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【正确答案】D【分析】根据集合元素的互异性即可判断.【详解】由题可知,集合{},,M a b c =中的元素是ABC 的三边长,则a b c ≠≠,所以ABC 一定不是等腰三角形.故选:D .14.设集合0123,,},{S A A A A =,在S 上定义运算:i j k A A A ⊕⊕=,其中k 为i j +被4除的余数(其中,0,1,2,3i j =,则满足关系式20()x x A A ⊕⊕=的()x x S ∈的个数为()A .4B .3C .2D .1【正确答案】C 【分析】根据题目信息,在集合S 中取值验证即可.【详解】当0x A =时,20020220()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕=≠当1x A =时,2112220()()x x A A A A A A A ⊕⊕=⊕⊕=⊕=当2x A =时,22220220()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕=≠当3x A =时,23322200()()x x A A A A A A A A ⊕⊕=⊕⊕=⊕==则满足关系式20()x x A A ⊕⊕=的()x x S ∈的个数为2个,故选:C .15.已知,则满足关于的方程的充要条件是A .220011x ,22R ax bx ax bx ∃∈-≥-B .220011x ,22R ax bx ax bx ∃∈-≤-C .220011x ,22R ax bx ax bx ∀∈-≥-D .220011x ,22R ax bx ax bx ∀∈-≤-【正确答案】C 【详解】试题分析:满足关于的方程,则0ax b =,220011x ,22R ax bx ax bx ∀∈-≥-则0x 处取得函数()212f x ax bx =-最小值,函数为二次函数,0122b b x a a -∴=-=⨯,所以满足关于的方程的充要条件是220011x ,22R ax bx ax bx ∀∈-≥-充分条件与必要条件点评:若p q ⇒则p 是q 的充分条件,q 是p 的必要条件16.若关于x 的不等式2664ax x ax ++--≥恒成立,则实数a 的取值范围是A .(],1-∞B .[]1,1-C .[)1,-+∞D .(][),11,-∞-+∞ 【正确答案】B 【分析】分类讨论去绝对值求解.【详解】(1)当xx ≤260x ax --≥,不等式2664ax x ax ++--≥为24x ≥,若不等式2664ax x ax ++--≥恒成立,必需2112a a ≥≥-⎧⇒⎨≤⎩≤-所以11a -≤≤;(2)当22a a x <<时,260x ax --<,不等式为26(6)4ax x ax +---≥即2280x ax --≤,(ⅰ)当0x =时,不等式2280x ax --≤对任意a 恒成立,(ⅱ)当0x <<时,不等式2280x ax --≤恒成立即42x a x≥-恒成立,所以4a a ≥,解得1a ≥-,(ⅲ0x <<时,不等式2280x ax --≤恒成立即42x a x≤-恒成立,所以4a a ≤1a ≤综上,实数a 的取值范围是[]1,1-本题考查绝对值不等式,含参数的二次不等式恒成立.含参数的二次不等式恒成立通常有两种方法:1、根据二次函数的性质转化为不等式组;2、分离参数转化为求函数最值.三、解答题17.已知不等式:①|3|2||x x +>,②22132x x x +≥-+,③2210x mx +-<.(1)分别求出不等式①与②的解集;(2)若同时满足①②的x 值也满足③,求实数m 的取值范围.【正确答案】(1){|13}A x x =-<<,{|01B x x =≤<或24}x <≤(2)173m ≤-【分析】(1)解一元二次不等式和高次不等式即可求解;(2)根据不等式2210x mx +-<的解集包含[0,1)(2,3) ,结合二次函数的性质即可求解.【详解】(1)由①得22|3|4||x x +>,即23690x x --<,故解集为{|13}A x x =-<<,由②得224032x x x x -≤-+,即(4)(1)(2)0(1)(2)0x x x x x x ---≤⎧⎨--≠⎩,解得解集{|01B x x =≤<或24}x <≤,(2){|01A B x x =≤< 或23}x <<,由题意得不等式2210x mx +-<的解集包含[0,1)(2,3) ,令2()21f x x mx =+-,只需(0)10(3)18310f f m =-<⎧⎨=+-≤⎩,解得173m ≤-.18.在①1|1A x x ⎧⎫=<⎨⎬⎩⎭,②{|1}A x x =>,③{}11A x x =-<这三个条件中任选一个,补充在下列横线中,求解下列问题.设集合__________,集合{}22|210B x x x a =++-=.(1)若集合B 的子集有2个,求实数a 的取值范围;(2)若A B A ⋃=,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】答案见解析【分析】(1)依题意集合B 元素个数为1,则0∆=,计算可得;(2)分别求出集合A ,再由A B A ⋃=,则B A ⊆,即可得到不等式组,解得即可;【详解】解:(1)∵集合B 的子集有2个,∴集合B 元素个数为1∴2441()0a ∆=--=解得:0a =(2)选①集合1|1(,0)(1,)A x x ⎧⎫=<=-∞⋃∞⎨⎬⎩⎭集合{}[][]{}22|210|(1)((1)0B x x x a x x a x a =++-==+-++=∵A B A ⋃=∴B A⊆显然有1a ≠±要满足条件,必有:111111a a ⎧<⎪⎪--⎨⎪<⎪-+⎩,解111a <--,即1101a +>+,所以201a a +>+解得1a >-或2a <-;解111a <-+,即1101a +>-,所以01a a >-解得1a >或a<0;综上可得()()(),21,01,a ∈-∞-⋃-⋃+∞选②{|1}A x x =>,集合{}[][]{}22|210|(1)((1)0B x x x a x x a x a =++-==+-++=∵A B A ⋃=∴B A⊆要满足条件,必有:1111a a ->⎧⎨-->⎩解得a ∈∅;选③{}11A x x =-<解得{}02A x x =<<集合{}[][]{}22|210|(1)((1)0B x x x a x x a x a =++-==+-++=∵A B A ⋃=∴B A⊆要满足条件,必有:012012a a <-<⎧⎨<--<⎩解得a ∈∅;19.选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅱ>是a b c d -<-的充要条件.【正确答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【详解】(Ⅰ)因为2a b =++2c d +=++a b c d +=+,ab cd >,得22>.(Ⅱ)(ⅰ)若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >,由(Ⅰ+.(ⅱ),则22>,即a b ++>c d ++因为a b c d +=+,所以ab cd >,于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-,综上,是a b c d -<-的充要条件.推理证明.20.已知关于x 的不等式22(23)(1)10(R)k k x k x k --+++>∈的解集为M ;(1)若R M =,求k 的取值范围;(2)若存在两个不相等负实数,a b ,使得(,)(,)M a b =-∞⋃+∞,求实数k 的取值范围;(3)是否存在实数k ,满足:“对于任意*N n ∈,都有n M ∈;对于任意的Z m -∈,都有m M ∉”,若存在,求出k 的值,若不存在,说明理由.【正确答案】(1)13(,1](,)3k ∈-∞-⋃+∞;(2)13(3,3k ∈;(3)存在,3【分析】(1)讨论二次项系数2230k k --=和不为0时,求出原不等式的解集为R 时k 的取值范围;(2)若存在两个不相等负实数,a b ,使得(,)(,)M a b =-∞⋃+∞,即x a =和x b =是方程22(23)(1)10k k x k x --+++=的两根,由判别式及韦达定理求解即可;(3)根据题意得出解集M ,讨论223k k --的取值,求出原不等式的解集,判断是否满足条件即可.【详解】(1)解:当2230k k --=时,解得3k =或1k =-,当1k =-时,不等式化为1>0,∴1k =-时,解集为R ,当3k =时,不等式化为410x +>,对任意实数x 不等式不成立,当R M =时,()()22223014230k k k k k ⎧-->⎪⎨+---<⎪⎩,解得:13(,1)(,)3k ∈-∞-⋃+∞,综上,k 的取值范围是13(,1](,)3k ∈-∞-⋃+∞;(2)解:若存在两个不相等负实数,a b ,使得(,)(,)M a b =-∞⋃+∞,所以方程22(23)(1)10k k x k x --+++=的两根分别为x a =和x b =,所以()()222222301423010231023k k k k k k k k k k ⎧-->⎪+--->⎪⎪⎪+⎨-<⎪--⎪⎪>⎪--⎩,解得:13(3,3k ∈;(3)解:根据题意,得出解集(,)M t =+∞,[1,1)t ∈-;当2230k k --=时,解得3k =或1k =-,3k =时,不等式的解集为1(,)4-+∞,满足条件;1k =-时,1>0恒成立,不满足条件;当2230k k -->时,此时对应的一元二次不等式的解集形式不是(,)t ∞+的形式,不满足条件;当2230k k --<时,此时对应的一元二次不等式的解集形式不是(,)t ∞+的形式,不满足条件;综上,满足条件k 的值为3.21.已知集合{}12,,,(2)k A a a a k =≥ ,其中(1,2,,)i a i k ∈=Z ,由A 中的元素构成两个相应的集合:{}(,)|,,S a b a A b A a b A =∈∈+∈,{}(,),,T a b a A b A a b A =∈∈-∈.其中(,)a b 是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(Ⅰ)检验集合{}0,1,2,3与{}1,2,3-是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T .(Ⅱ)对任何具有性质P 的集合A ,证明(1)2k k n -≤.(Ⅲ)判断m 和n 的大小关系,并证明你的结论.【正确答案】(Ⅰ)集合{}0,1,2,3不具有性质P ,集合{}1,2,3-具有性质P ,相应集合(1,3)S =-,(3,1)-,集合(2,1)T =-,(2,3)(Ⅱ)见解析(Ⅲ)m n=【详解】解:集合{}0123,,,不具有性质P .集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,,{}(21)(23)T =-,,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个.因为0A ∉,所以()(12)i i a a T i k ∉= ,,,,;又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12)j i a a T i j k ∉= ,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=,即(1)2k k n -≤.(III )解:m n =,证明如下:(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,.如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤,由(1)(2)可知,m n =.。
上海市育才中学2010学年第一学期高三数学第二次月考试卷(理)
(浦东八佰伴联合中心 田小宝 提供)
一、填空题(每题4分,共56分) 1、函数)2lg(1)(x x x f -+-=
的定义域是 ([)2,1)
2
34) 567(891011、三个实数c b a ,,成等比数列,若有1=++c b a 成立,则b 的取值范围是 (()2
2
2
2
2
44211,b
ac ac c a b b c a ac b =≥++=-⇒-=+=
()()3
10,010********≤
<<≤-⇒≤+-⇒≤-+⇒b b b b b b )
12、已知函数]1,0[27
4)(2∈--=
x x
x x f ,设1≥a ,函数)321()13()(222a a x a x g --+-=]1,0[∈x 。
若对于任意的]1,0[1∈x ,总存在]1,0[0∈x ,使得)()(10x f x g =成立,则实数a 的取值范围是 (2
31≤
≤a ) 1314
15
16
17
18、如图所示的三角形数阵叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,
第n 行有n 个数且两端的数均为
)2(1
≥n n
,每个数是它下一行左右相邻两数的和,如,...,12
1
4131,613121,212111+=+=+=
则第10行第4个数(从左往右数)
19
20、(共14分)已知命题)1lg()(:2
++=ax x x f p 的定义域为R ;命题q :关于x 的不等式12>-+a x x 的解集为R ,若p 和q 中有且仅有一个为真命题,求实数a 的取值范围。
解:P 为真命题时:42
2042
'<<-⇒<-=∆a a
命题q 为真命题时:
令a x g a x a a x a x a x x x g 2)(.2,2,
2,22|2|)(min =∴⎩
⎨
⎧<≥-=-+=。
当2a>1时,即01.2
1'>
a
若命题p 、q 中一真一假,则有
⎧≥-≤⎧<<-,22,22ora a a
21中
ik a (((()()()()0212121211111=∙+∙+-∙+∙∙+=----j i j i jk
jm
ik im m k k m a a a a ;9分
(3)()()1
2
2
22121-∙++∙-+∙++=n n n n n A ,
()()n n n n n A 2221221232∙++∙-+∙+∙+=
以上两式相减得:()()
123,323-=++-∙=n
n n
n n A n A 。
当)(3*N m m n ∈=时,183-∙=+m
n n A ,当m=1时,21=+n A n ,能被21整除;当2≥m 时,
()[][
]
177311731110-+++=-+=+--m
m m m m m m
n C C C n A
[]
110721--++∙=m m
m m C C ,()n A N C C n m m m m +∈++∙--|21,7*
110 。
14分
22、(共16分,9+7)有两块扇形铁板,分别记为1M 和2M ,它们的圆心角分别为2
0(π
αα<
<和απ-,
((
()()[]()[
]
.0,2
,cot 2sin cot 121cot 2cos 12sin 21cot sin cos sin 222
22ααπ
ϕαϕααα<<-=-++=
--=-=∴x x R x x R x x x R S 2分。
∴当2α
=x 时,2
tan 2sin 2cos 1sin cos sin 12122
21ααααααR R R S =∙-=⎥⎦⎤⎢⎣⎡-= 6分 2M 中:设θθθcos 2
2
,sin 22,R OA R AB AOB ==
=∠。
)
2,0(2sin 4cos sin 2122⎪⎭⎫
⎝⎛∈==∴R R S πθθθθ
23(((((3)设函数)(x f 的定义域为D ,值域为B ,函数)(t g 的定义域为1D ,值域为1B ,写出)(t g x =是)(x f
的一个等值域变换的充分非必要条件(充分性不必证明),并举例说明此条件的不必要性。
解:(1)(A ),,2)(R x b x x f ∈+=值域为R 。
().4)(.2322b t g f y t t x +≥=∴≥+-=
∴x=g(t)不是f(x)的一个等值域变换。
2分
(B )⎪⎭
⎫
⎢⎣⎡+∞=≥+⎪⎭⎫ ⎝⎛-=+-=,43,4343211)(2
2f Z x x x x f , ,02>=t x 则[]43)()(≥
==x f t g f y ,其值域仍然为⎪⎭
⎫
⎢⎣⎡+∞,43, ∴x=g(t)是f(x)的一个等值域变换。
5分。