第七章_机械能守恒定律知识点总结
- 格式:doc
- 大小:376.50 KB
- 文档页数:4
第七章《机械能守恒定律》知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5 功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W1+W2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Flcos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5 功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W1+W2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Flcos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
第七单元知清单一、功1、定义式:W=Fl2、适用条件:F为恒力且F与l共线3、理解:l是力的作用点在力的方向上相对地面发生的位移。
它不一定就等于物体相对地面发生的位移x,但二者一定有密切的关系。
当F与l不共线的时候可以分解力F或者位移l,转化为F、l共线的情形后根据定义式求功。
二、变力做功的求解方法1、微元法对于变力做功,不能直接用公式进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用定义式求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变,方向总与运动方向相同或相反的变力的做功问题。
2、等效转化法若变力F A所做的功和另一恒力F B所做的功等效,则求变力F A做的功可以转化成恒力F B所做的功。
3、平均值法如果变力的方向与位移方向始终一致而大小随位移线性变化,则可求出平均力等效为恒力用定义式法求解。
4、图像法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移l,,则F-l图象与坐标轴所围成的面积在数值上等于对物体做的功W,横轴上方的面积表示对物体做的正功,横轴下方的面积表示力对物体做负功。
5、分段法若力F大小不变,方向总与运动方向相同或相反,如:水的阻力、空气的阻力等,则该力所做的功为力与路程的乘积,当力和运动方向始终一致时该力做正功,反之做负功。
6、利用w=pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的。
7、利用功能关系求变力做功做功的过程就是能量转化的过程;做了多少功就有多少能量发生了转化;功是能量转化的量度。
具体的功能关系:W G=-△E P W弹=-△E弹W合=-△E k W其=△E机W万=-△E P F f S相对=Q三、合外力做功的求解方法1、合外力对物体做功等于各个外力对物体做功的代数和。
第五讲 机械能及其守恒定律一、功1.概念:物体受到力的作用,并在力的方向上发生一段位移,就叫做力对物体做了功.2.做功的两个不可缺少的因素:(1)作用在物体上的力.(2)物体在力的方向上发生的位移.3.功的计算:①公式:W=FL cos α——恒力功的计算(分解位移;分解力)单位:J.标量注:F 是力的大小、L 是位移的大小、α是F 和L 方向之间的夹角 ②大小不变方向变化的可分段转化为恒力再利用W=FL cos α来计算 ③根据功率恒定,求变力的功,W=Pt.④求出变力F 对位移的平均力来计算,当变力F 是位移s 的线性函数时, 平均力122F F F --+=⑤作出变力F 随位移变化的图象,图象与位移轴所围均“面积”即为变力做的功.⑥根据动能定理求变力做的功W 合=ΔE K⑦根据功和能关系求变力的功.功是能量转化的量度做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化.4、总功的求法:(即合外力的功)①等于各个力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…… ②可先求合力,再利用W=F 合L cos α求解。
注:一般适用于整个过程中合力恒定不变的情况。
5、功的正负:(功有正负,但功是标量.)(1)功的正、负的判断:(一看角、二看意义、三看计算结果)①若00≤α<900,则F 做正功; ②若α=900,则F 不做功;③若900<α≤1800,则F 做负功. (2)功的正负的意义:功是标量,所以功的正、负不表示方向.功的正、负也不表示大小。
正功——力对物体的运动起到的是推动作用负功——力对物体的运动起到的是阻碍作用(物体克服这个力做了功) 注:功的正、负还表示能量转化的方向6、几种特殊力做功:①重力、弹簧的弹力和电场力做功——与路径无关,只与始末点的位置有关; ②滑动摩擦力、空气阻力等做功——与路径有关,注:在曲线运动或往返运动时,这类力(大小不变)的功等于力和路程(不是位移)的积.7、几种力做功的特点:(平衡力做功必一正一负,总功为零)①作用力和反作用力的做功:作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方向相反,就一定有作用力、反作用力的功数值相等,一正一负.所以作用力与反作用力做功不一定相等.注:作用力反作用力可以都做正功或都做负功——两磁铁小车,作用力反作用力做功代数和可以为零、可以为正、可以为负②摩擦力的做功A、静摩擦力做功的特点1)静摩擦力可以做正功,也可以做负功,还可以不做功。
机械能守恒定律知识点总结机械能是指物体的动能和势能的总和,其中动能是物体由于运动而具有的能量,势能是物体由于位置和形状而具有的能量。
根据机械能的定义和守恒定律,可以得出以下几个知识点:1. 机械能的定义:机械能等于动能和势能的总和。
动能是物体由于运动而具有的能量,可以通过动能公式E_k = 1/2 mv^2计算,其中m是物体的质量,v是物体的速度。
势能是物体由于位置和形状而具有的能量,常见的势能有重力势能、弹性势能等。
2.动能的转化:当物体在运动过程中受到外力作用时,动能可以转化为其他形式的能量。
例如,当物体受到摩擦力的阻碍时,动能会逐渐转化为热能,使得物体的速度减小。
3.势能的转化:在重力场中,物体的高度决定了其重力势能的大小。
当物体从高处落下时,其重力势能逐渐转化为动能。
同样地,当物体被抛起时,其动能逐渐转化为重力势能。
4.机械能守恒定律的条件:机械能守恒定律只在满足一定条件下成立。
首先,系统必须是孤立的,即没有外力对系统做功。
其次,系统中不能有能量损耗,例如摩擦力的损耗。
5.实际情况下的机械能守恒:在实际情况下,机械能守恒往往不成立,因为很难找到一个完全孤立且没有能量损耗的系统。
例如,在运动中,摩擦力会将机械能转化为热能,使物体的总能量减少。
6.应用:机械能守恒定律广泛应用于物理学和工程领域。
例如,利用机械能守恒定律可以计算出弹射物的最大射高、最远射程等问题。
同时,在机械能守恒的基础上,也可以进行动力学分析和设计。
7.机械能守恒原理的推导:机械能守恒定律可以通过能量守恒原理和功的定义推导得出。
根据能量守恒原理,一个孤立系统的总机械能不变。
根据功的定义,外力所做的功等于物体的动能的增加量。
由此可以推导出机械能守恒定律。
总之,机械能守恒定律是物体运动中能量转化和守恒的基本定律之一、通过理解和应用机械能守恒原理,可以解决许多与能量转化和运动相关的问题。
然而,在实际情况下,机械能守恒往往不成立,因此需要考虑其他能量转化和损耗的因素。
第七章机械能守恒定律【知识点】:1、功1、做功两个必要因素:力和力的方向上发生位移。
2、功的计算:W = FLCOS83、正功和负功:①当。
^a< H /2时,cosa>0, w>o,表示力对物体做正功。
②当a二刃/2时,cosa=0, w=0.表示力对物体不做功(力与位移方向垂直)。
③当n/2<a^n时,cosa<0. w<0>表示为对物体做负功。
4、求合力做功:1)先求出合力,然后求总功,表达式为W .Q二F R L COS O(为合力与位移方向的夹角)2)合力的功等于各分力所做功的代数和,即W总二W1+W2+W3+ ----------例题.如图1所示,用力拉一质量为m的物体,使它沿水平匀速移动距离s,若物体和地而间的摩擦因数为U,则此力对物体做的功为()A. u mgsB・ M mgs/ (cos a + u sin u )C・ P mgs/ (cos a - u sin o )D・ P mgscos a / (cos a + u sin a )二、功率w图1K定义式:P =—,所求出的功率是时间t内的平均功率。
t2、计算式:P = Fvcos<9,其中()是力与速度间的夹角。
用该公式时,要求F为恒力。
1)当V为瞬时速度时,对应的P为瞬时功率:2)当v为平均速度时,对应的P为平均功率3)若力和速度在一条直线上,上式可简化为P = Fv3.机车起动的两种理想模式1)以恒定功率启动逅加直线运动 2)以恒定加速度a 启动匀送 | K= N^aTl©〉 凸尸=Z^L 时, C = O » 至]就尢"“・=K "F G 速三、 亟力势能重力势能表达式:Ep=mgh重力做功:= E P] -E P2 = -A£P (重力做功与路径无关,只与物体的初末位置有关)四、 弹性势能弹性势能表达式:E P =kAl 2/2 (△/为弹簧的型变量)五、 动能定理(1)动能定理的数学表达式为: 勻速直 线运动(2)动能泄理应用要点①外力对物体所做的总功,既等于合外力做的功,也等于所有外力做功的代数和。
一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
1高中物理必修二第7章-机械能守恒定律-知识点1、物体在 力的方向上 发生了 位移 ,则力对物体做了功。
做功的两个要素:① 力 ,②物体 在力的方向有位移 ,缺一不可。
重力 、弹力 、摩擦力 所做的功叫做机械功。
2、功的计算:W = Fscos θ。
θ是 力 和 位移 的夹角,当θ是 锐角 或为 0°时,cos θ>0,物体做 正功 ;当θ是 直角 时,cos θ=0,物体不做功 。
当θ是 钝角 或为180°时,cos θ<0,物体做 负功;功是 标 量,正功表示 动力 做功,负功表示 阻力 做功(也可以说物体 克服阻力 做功)。
3、多个力做功时,可以 分别计算 各个力做的功,再把所有功 相加 ;也可以先求出 合力 ,再计算 合力 做的功。
4、功的图示:当F 和s 方向在 同一条直线上 时,可以作 F-x 图,图中直线与横坐标轴所围 面积 就表示物体在这段位移上做的功。
5、功率表示做功的 快慢 ,P= W/t = F ν。
求平均功率P 用平均速度 ,求瞬时功率P 用瞬时速度ν 。
恒力F 恒定时,P 与ν成正比;速度ν恒定时,P 与F 成正比;功率P 恒定时,F 与ν成反比。
这就是汽车在上坡路段要切换到低速挡的原因,因为发动机输出功率是恒定 的,切换到低速挡可以提供更强 的动力。
6、额定功率:机械正常条件下长时间工作的最大功率。
实际功率:机械实际 运行时的功率。
实际功率可以小于 额定功率,但不允许长时间超过 额定功率。
7、动能:物体由于 运动 而具有的能量,用 E k 表示, E k = 21m ν² 。
动能描述物体的运动状态,是 状态 量。
动能是 标 量,只有 正 值或 零 。
8、动能定理:合力对物体做的功等于动能变化量,W 合= △E k =21m νt ²-21m ν0²。
合力做正功,动能增加 ;合力做负功(物体克服 合力做功),动能减小 。
第七章 机械能守恒单元总结知识要点一:功和功率的计算1.功的计算方法(1)利用W =Fl cos α求功,此时F 是恒力. (2)利用动能定理或功能关系求功. (3)利用W =Pt 求功. 2.功率的计算方法(1)P =Wt :此式是功率的定义式,适用于任何情况下功率的计算,但常用于求解某段时间内的平均功率.(2)P =Fv cos α:此式一般计算瞬时功率,但当速度为平均速度v 时,功率P 为平均功率.质量为m =20 kg 的物体,在大小恒定的水平外力F 的作用下,沿水平面做直线运动.0~2 s 内F 与运动方向相反,2~4 s 内F 与运动方向相同,物体的v -t 图象如图1所示,g 取10 m/s 2,则( )思维导图知识要点A.拉力F 的大小为100 NB.物体在4 s 时拉力的瞬时功率为120 WC.4 s 内拉力所做的功为480 JD.4 s 内物体克服摩擦力做的功为320 J 【答案】 B【解析】 由图象可得:0~2 s 内物体做匀减速直线运动,加速度大小为:a 1=Δv Δt =102 m/s 2=5 m/s 2,匀减速过程有F +F f =ma 1.匀加速过程加速度大小为a 2=Δv ′Δt ′=22 m/s 2=1 m/s 2,有F -F f =ma 2,解得F f =40 N ,F =60 N ,故A 错误.物体在4 s 时拉力的瞬时功率为P =Fv =60×2 W =120 W ,故B 正确.4 s 内物体通过的位移为x =(12×2×10-12×2×2)m =8 m ,拉力做功为W =-Fx =-480 J ,故C 错误.4 s 内物体通过的路程为s =(12×2×10+12×2×2) m =12 m ,摩擦力做功为W f =-F f s =-40×12 J =-480 J ,故D 错误. (2019·广东佛山高一模拟)质量为2 kg 的小铁球从某一高度由静止释放,经3 s 到达地面,不计空气阻力,g 取10 m/s 2.则( )A .2 s 末重力的瞬时功率为200 WB .2 s 末重力的瞬时功率为400 WC .2 s 内重力的平均功率为100 WD .2 s 内重力的平均功率为400 W 【答案】:B【解析】:小铁球只受重力,做自由落体运动,2 s 末速度为v 1=gt 1=20 m/s ,下落2 s 末重力做功的瞬时功率P =mgv 1=2×10×20 W =400 W ,故选项A 错误,B 正确;2 s 内的位移为h 2=12gt 22=20 m ,所以前2 s 内重力的平均功率为P =mgh 2t 2=2×10×202W =200 W ,故选项C 、D 错误. 知识要点二:机车启动问题1.模型一 以恒定功率启动(1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:2.模型二 以恒定加速度启动 (1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:3.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =PF 阻.(2)机车以恒定加速度启动时,匀加速过程结束时功率最大,速度不是最大,即v =P F <v m =PF 阻.(3)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F 阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移或速度.一列火车总质量m =500 t ,发动机的额定功率P =6×105 W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍.(g 取10 m/s 2) (1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1 m/s 和v 2=10 m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P ′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间. 【答案】:(1)12 m/s (2)1.1 m/s 2 0.02 m/s 2(3)5×105 W (4)4 s【解析】:(1)列车以额定功率行驶,当牵引力等于阻力,即F =F f =kmg 时,列车的加速度为零,速度达到最大值v m ,则v m =P F =P F f =P kmg=12 m/s.(2)当v <v m 时,列车做加速运动,若v 1=1 m/s ,则F 1=Pv 1=6×105 N ,根据牛顿第二定律得a 1=F 1-F fm =1.1 m/s 2若v 2=10 m/s ,则F 2=Pv 2=6×104 N根据牛顿第二定律得a 2=F 2-F fm=0.02 m/s 2.(3)当v =36 km/h =10 m/s 时,列车匀速运动,则发动机的实际功率P ′=F f v =5×105 W. (4)由牛顿第二定律得F ′=F f +ma =3×105 N在此过程中,速度增大,发动机功率增大,当功率为额定功率时速度为v ′,即v ′=PF ′=2 m/s ,由v ′=at 得t=v ′a=4 s. 分析机车启动问题常出现的三点错误(1)在机车功率公式P =Fv 中,F 是机车的牵引力而不是机车所受合力,当P =F f v m 时,牵引力与阻力平衡,机车达到最大运行速度.(2)恒定功率下的启动过程一定不是匀加速,匀变速直线运动的公式不适用,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).知识要点三:动能定理的理解和应用1.对动能定理的理解(1)W总=W 1+W 2+W 3+…是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F 合l cos α。
必修二第七章机械能守恒定律重要知识点小结1.功(1)功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角. (2)功的大小的计算方法:①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间内平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q (摩擦生热)2.功率(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.(2)功率的计算①平均功率:P=W/t(定义式)表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角.(3)额定功率与实际功率:额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率.①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动, .②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。
3.动能:物体由于运动而具有的能量叫做动能.表达式:E k=mv2/2 (1)动能是描述物体运动状态的物理量.(2)动能和动量的区别和联系①动能是标量,动量是矢量,动量改变,动能不一定改变;动能改变,动量一定改变.②两者的物理意义不同:动能和功相联系,动能的变化用功来量度;动量和冲量相联系,动量的变化用冲量来量度.③两者之间的大小关系为E K=P2/2m4.动能定理:外力对物体所做的总功等于物体动能的变化.表达式(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变力及物体作曲线运动的情况. (2)功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式.(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷.(4)当物体的运动是由几个物理过程所组成,又不需要研究过程的中间状态时,可以把这几个物理过程看作一个整体进行研究,从而避开每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.5.重力势能(1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能,EP=mgh.①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的.②重力势能的大小和零势能面的选取有关.③重力势能是标量,但有“+”、“-”之分.(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关.W G =mgh.(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值.即W G =-ΔE P .6.弹性势能:物体由于发生弹性形变而具有的能量.7.机械能守恒定律(1)动能和势能(重力势能、弹性势能)统称为机械能,E=E k +E p .(2)机械能守恒定律的内容:在只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变. (3)机械能守恒定律的表达式(4)系统机械能守恒的三种表示方式:①系统初态的总机械能E 1 等于末态的总机械能E 2,即E1 =E2②系统减少的总重力势能ΔE P减等于系统增加的总动能ΔE K增,即ΔE P减=ΔE K增③若系统只有A、B两物体,则A物体减少的机械能等于B物体增加的机械能,即ΔE A减=ΔE B 增[注意]解题时究竟选取哪一种表达形式,应根据题意灵活选取;需注意的是:选用①式时,必须规定零势能参考面,而选用②式和③式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量.(5)判断机械能是否守恒的方法①用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹簧弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒.②用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.③对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒.8.功能关系(1)当只有重力(或弹簧弹力)做功时,物体的机械能守恒.(2)重力对物体做的功等于物体重力势能的减少:W G =E p1 -E p2 .(3)合外力对物体所做的功等于物体动能的变化:W 合 =E k2 -E k1(动能定理)(4)除了重力(或弹簧弹力)之外的力对物体所做的功等于物体机械能的变化:W F=E 2-E 19.能量和动量的综合运用动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题.分析这类问题时,应首先建立清晰的物理图景,抽象出物理模型,选择物理规律,建立方程进行求解.这一部分的主要模型是碰撞.而碰撞过程,一般都遵从动量守恒定律,但机械能不一定守恒,对弹性碰撞就守恒,非弹性碰撞就不守恒,总的能量是守恒的,对于碰撞过程的能量要分析物体间的转移和转换.从而建立碰撞过程的能量关系方程.根据动量守恒定律和能量关系分别建立方程,两者联立进行求解,是这一部分常用的解决物理问题的方法.机械能守恒定律练习题(一)一.不定项选择题1. 关于机械能是否守恒的叙述,正确的是()A.做匀速直线运动的物体机械能一定守恒B.做变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.若只有重力对物体做功,物体的机械能一定守恒2.关于机械能守恒定律的适用条件,下列说法中正确的是()A.只有重力和弹力作用时,机械能守恒B.当有其他外力作用时,只要合外力为零,机械能守恒C.当有其他外力作用时,只要合外力的功为零,机械能守恒D.炮弹在空中飞行不计阻力时,仅受重力作用,所以爆炸前后机械能守恒3.若不计空气的阻力,以下实例中运动物体机械能守恒的是()A.物体沿斜面匀速下滑 B.物体做竖直上抛运动C.物体做自由落体运动D.用细绳拴着小球,一端为圆心,使小球在竖直平面内做圆周运动4.绳子拉着物体沿竖直方向减速上升,下面关于物体上升过程中的叙述正确的是()A.动能减小,重力势能增加B.机械能不变C.机械能一定增加D.机械能一定减小5.物体在平衡力作用下的运动中()A.物体的机械能一定不变B.如果物体的重力势能有变化,则它的机械能一定有变化C.物体的动能一定不变,但重力势能一定变化D.物体的重力势能可能变化,但它的机械能一定不变6.质量为m的小球,从桌面上竖直抛出,桌面离地面高为h,小球能达到的最大高度离地面为H.若以桌面作为重力势能的参考面,不计空气阻力,则小球落地时的机械能为()A.mgHB.mghC.mg(H+h)D.mg(H-h)7.设质量m=1.0kg的物体从倾角为300,高2.0m的光滑斜面由静止开始下滑,那么当它滑到斜面中点时刻所具有的机械能是(取地面为参考平面)()A、零B、20焦耳C、40焦耳D、10焦耳8.如图右所示,物体在斜面上受到平行于斜面向下拉力F作用,沿斜面向下运动,已知拉力F 大小恰好等于物体所受的摩擦力,则物体在运动过程中( )A、作匀速运动;B、作匀加速运动;C、机械能保持不变;D、机械能减小。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能守恒定律考点考点1.功1.功的公式:W=Fscosθ特别注意:①公式只适用于恒力做功②F和S是对应同一个物体的;③某力做的功仅由F、S和q决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:WG=mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功,一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS 4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W= 1/2 kx12–1/2 kx22(x1、x2为弹簧的形变量)5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为ΣW=ΣF×S ×cosθ(2)合力的功等于各分力所做功的代数和,即ΣW=W1 +W2+W3+……6.变力做功:基本原则——过程分割与代数累积(1)一般用动能定理W合=ΔEK 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功(3)还可用F-S图线下的“面积”计算.(4)或先寻求F对S的平均作用力7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化考点2.功率1.定义式:,所求出的功率是时间t内的平均功率。
2.计算式:P=Fvcos θ, 其中θ是力F与速度v间的夹角。
用该公式时,要求F为恒力。
(1)当v为即时速度时,对应的P为即时功率;(2)当v为平均速度时,对应的P为平均功率。
(3)重力的功率可表示为PG=mgv⊥,仅由重力及物体的竖直分运动的速度大小决定。
(4)若力和速度在一条直线上,上式可简化为Pt=F·vt考点3.动能1.定义:物体由于运动而具有的能叫动能2.动能和动量的关系:动能是用以描述机械运动的状态量。
第七章 《机械能守恒定律》知识提纲一、知识网络二、重点内容讲解1.关于功的四个基本问题(1)定义:力对物体所做的功等于力的大小、位移的大小、力与位移夹角的余弦三者的乘积。
即αcos FL W =(0απ≤≤),(注:此公式只适用于恒力做功,若F 取合力,则W 为总功,若F 为某一个力,则W 为这个力对物体做的功。
)(2)做功的两个必要因素:力;物体在力的方向上有位移;(3)功是标量,单位:J;(4)正负功的意义:力对物体做正功说明该力对物体运动起推动作用;力对物体做负功说明该力对物体运动起阻碍作用。
(5)求总功的方法: W 1+W 2+W 3+ …… 求功的方法: αcos FLW 总= W= Pt αcos L F 合 △E K(6)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd (d 是两物体间的相对路程),且W=Q (摩擦生热)2.功率(1)概念:W P t =,单位:瓦特(W),表示物体做功快慢的物理量 (2)理解:平均功率的计算方法: cos P FV α= 或W P t= (其中V 是平均速度, α是力矢量F 与平均速度矢量V 之间的夹角)瞬时功率的计算方法: cos P FV α=(其中V 是平均速度,α是力矢量F 与瞬时速度矢量V 之间的夹角)(3)额定功率与实际功率额定功率:发动机正常工作时的最大功率.实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.3.重力势能 重力做功与重力势能的关系(1)概念:重力势能EP=mgh 重力做功WG=mg(h 1-h 2) 重力势能的增加量△Ep =mgh 2-mgh 1 W G = —△Ep(2)理解:(1)重力做功与路径无关只与始末位置的高度差有关;(2)重力做正功重力势能减少,重力做负功重力势能增加;(3)重力做功等于重力势能的减少量;(4)重力势能是相对的,是和地球共有的,即重力势能的相对性和系统性.4.弹性势能 弹簧的弹性势能只与弹簧的劲度系数和形变量有关。
第七章机械能守恒定律一、功的概念1、四种计算方法:(1)定义式计算:(2)平均功率计算:(3)动能定理计算:(4)功能关系计算:2、各种力做功的特点:;(1)重力做功:(2)弹力做功:(3)摩擦力做功:(4)电场力:(5)洛伦兹力:(6)一对相互作用力做功:二、能量的概念、1、重力势能:2、弹性势能:3、动能:4、机械能:5、内能:微观本质:物体内部所有分子热运动的动能和分子势能的总和。
宏观表现:摩擦生热、热传递三、功能关系的本质:功是能量转化的量度(不同能量之间的转化通过做功实现){四、动能定理应用步骤:(1)选取研究对象,明确并分析运动过程. (2)分析受力及各力做功的情况,求出总功.受哪些力→各力是否做功→做正功还是负功→做多少功→确定求总功思路→求出总功$(3)明确过程初、末状态的动能E k1及E k2.(4)列方程W =E k2-E k1,必要时注意分析题目潜在的条件,列辅助方程进行求解.五、机械能守恒定律应用步骤:(1)选取研究对象——物体或系统;(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒; (3)恰当地选取参考平面,确定研究对象在过程初、末状态时的机械能;)(4)选取适当的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、ΔE k =-ΔE p 或ΔE A =-ΔE B )进行求解.六、能量守恒定律: 七、功率1、平均功率:2、瞬时功率: 两种方式 以恒定功率启动¥以恒定加速度启动P -t 图和v -t 图除重力和弹力之外的力做的功机械能变化除重力和弹力之外的力做多少正功,物体的机械能就增加多少;除重力和弹力之外的力做多少负功,物体的机械能就减少多少W 除G 、弹力外=ΔE【电场力的功电势能变化电场力做正功,电势能减少;电场力做负功,电势能增加W 电=-ΔE p一对滑动摩擦力的总功内能变化作用于系统的一对滑动摩擦力一定做负功,系统内能增加Q =F f ·l 相对OA段过程分析v↑⇒F=P(不变)v↓#⇒a=F-F阻m↓a=F-F阻m不变⇒F不变⇒v↑P=Fv↑直到P额=Fv1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t0=v1aAB段…过程分析F=F阻⇒a=0⇒F阻=Pv m v↑⇒F=P额v↓⇒a=F-F阻m↓运动性质以v m匀速直线运动加速度减小的加速运动$BC段无F=F阻⇒a=0⇒以v m=P额F阻匀速运动八、习题:例1、如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离l.(1)摩擦力对物体做的功为(物体与斜面相对静止) ()~A.0 B.μmgl cos θC.-mgl sin θcos θD.mgl sin θcos θ(2)斜面对物体的弹力做的功为()A.0 B.mgl sin θcos2θC.-mgl cos2θD.mgl sin θcos θ(3)重力对物体做的功为()A.0 B.mgl C.mgl tan θD.mgl cos θ(4)斜面对物体做的功是多少各力对物体所做的总功是多少`例2、水平传送带以速度v匀速传动,一质量为m的小物块A由静止轻放在传送带上,若小物块与传送带间的动摩擦因数为,如图所示,设工件质量为m,当它在传送带上滑动一段距离后速度达到v而与传送带保持相对静止,则在工件相对传送带滑动的过程中()A.滑摩擦力对工件做的功为mv2/2B.工件的机械能增量为mv2/2C.工件相对于传送带滑动的路程大小为v2/2μgD.传送带对工件做功为零;例3、质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用.力的大小F与时间t的关系如图所示,力的方向保持不变,则( )A .3t 0时刻的瞬时功率为5F 20t 0mB .3t 0时刻的瞬时功率为15F 20t 02mC .在t =0到3t 0这段时间内,水平力的平均功率为23F 20t 02mD .在t =0到3t 0这段时间内,水平力的平均功率为25F 20t 06m…例4、如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则从A 到C 的过程中弹簧弹力做功是( )A .mgh -12mv 2 mv 2-mgh C .-mgh D .-(mgh +12mv 2)例5、2010年广州亚运会上,刘翔重归赛场,以打破亚运会记录的成绩夺得110 m 跨栏的冠军.他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,向前加速的同时提升身体重心.如图所示,假设刘翔的质量为m ,起跑过程前进的距离为s ,重心升高为h ,获得的速度为v ,克服阻力做功为W 阻,则在此过程中( )A .运动员的机械能增加了12mv 2B .运动员的机械能增加了12mv 2+mgh C .运动员的重力做功为mgh】D .运动员自身做功W 人=12mv 2+mgh例6、如图所示,竖直向上的匀强电场中,绝缘轻质弹簧竖直立于水平地面上,上面放一质量为m 的带正电小球,小球与弹簧不连接,施加外力F 将小球向下压至某位置静止.现撤去F ,小球从静止开始运动到离开弹簧的过程中,重力、电场力对小球所做的功分别为W 1和W 2,小球离开弹簧时速度为v ,不计空气阻力,则上述过程中 ( )A .小球与弹簧组成的系统机械能守恒B .小球的重力势能增加-W 1C .小球的机械能增加W 1+12mv 2D .小球的电势能减少W 2+12mv 2例7、若礼花弹在由炮筒底部击发至炮筒口的过程中,克服重力做功W 1,克服炮筒阻力及空气阻力做功W 2,高压燃气对礼花弹做功W 3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ( ){A .礼花弹的动能变化量为W 3+W 2+W 1B .礼花弹的动能变化量为W 3-W 2C .礼花弹的机械能变化量为W 3-W 2D .礼花弹的机械能变化量为W 3-W 2-W 1例8、如图9所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静放有一小球C,A、B、C的质量均为m.现给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环的摩擦阻力),瞬时速度必须满足()A.最小值4gr B.最大值6gr`C.最小值5gr D.最大值3gr例9、在一次探究活动中,某同学设计了如图6所示的实验装置,将半径R=1 m的光滑半圆弧轨道固定在质量M =0.5 kg、长L=4 m的小车上表面中点位置,半圆弧轨道下端与小车的上表面水平相切.现让位于轨道最低点的质量m=0.1 kg的光滑小球随同小车一起沿光滑水平面向右做匀速直线运动.某时刻小车碰到障碍物而瞬时处于静止状态(小车不反弹),之后小球离开圆弧轨道最高点并恰好落在小车的左端边沿处,该同学通过这次实验得到了如下结论,其中正确的是(g取10 m/s2)()A.小球到达最高点的速度为210 m/sB.小车向右做匀速直线运动的速度约为6.5 m/sC.小车瞬时静止前后,小球在轨道最低点对轨道的压力由1 N瞬时变为ND.小车与障碍物碰撞时损失的机械能为J例10、如图所示,摩托车做特技表演时,以v0=10.0 m/s的初速度冲向高台,然后从高台水平飞出.若摩托车冲向高台的过程中以P=kW的额定功率行驶,冲到高台上所用时间t=s,人和车的总质量m=×102 kg,台高h=5.0 m,摩托车的落地点到高台的水平距离x=10.0 m.不计空气阻力,取g=10 m/s2.求:(1)摩托车从高台飞出到落地所用时间;(2)摩托车落地时速度的大小;(3)摩托车冲上高台过程中克服阻力所做的功.例11、如图4所示,半径R=1.0 m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向间的夹角θ=37°,另一端点C为轨道的最低点.C点右侧的水平路面上紧挨C点放置一木板,木板质量M=1 kg,上表面与C点等高.质量m=1 kg的物块(可视为质点)从空中A点以v0=1.2 m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=,木板与路面间的动摩擦因数μ2=,sin 37°=,cos 37°=,取g=10 m/s2.试求:(1)物块经过轨道上的C点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
5功是一个过程所对应的量,因此功是过程量。
6功仅与F、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W总=W1+W2+…+Wn 或W总= F合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Fl cosα求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
例1. (09年上海卷)46.与普通自行车相比,电动自行车骑行更省力。
下表为某一品牌电动自行车的部分技术参数。
在额定输出功率不变的情况下,质量为60Kg的人骑着此自行车沿平直公路行驶,所受阻力恒为车和人总重的0.04倍。
当此电动车达到最大速度时,牵引力为 N,当车速为2s/m时,其加速度为 m/s2(g=10m m/s2)例2. (09年广东理科基础)9.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tWP =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f =ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
一、功1观点:一个物体遇到力的作用,并在力的方向上生了一段位移,个力就物体做了功。
功是能量化的量度。
2条件: . 力和力的方向上位移的乘3公式: W=F S cos θW ——某力功,位焦耳(J )F ——某力(要恒力),位牛(N )S——物体运的位移,一般地位移,位米(m)——力与位移的角4功是量,但它有正功、功。
某力物体做功,也可成“物体战胜某力做功”。
当[0, ) ,即力与位移成角,功正;力做功;2当,即力与位移垂直功零,力不做功;2当( , ] ,即力与位移成角,功,阻力做功;25功是一个程所的量,所以功是程量。
6功与 F、S 、θ相关,与物体所受的其余外力、速度、加快度没关。
7几个力一个物体做功的代数和等于几个力的协力物体所做的功。
即 W总=W1+W2+⋯ +Wn 或 W总 = F 合 Scos θ8合外力的功的求法:方法 1:先求出合外力,再利用W=Fl cosα求出合外力的功。
方法 2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1 观点:功跟达成功所用的比,表示力( 或物体 ) 做功的快慢。
2 公式:P W(均匀功率)tP F cos(均匀功率或刹时功率)3 单位:瓦特 W4分类:额定功率:指发动机正常工作时最大输出功率实质功率:指发动机实质输出的功率即发动机产生牵引力的功率,P实≤P 额。
5 剖析汽车沿水平面行驶时各物理量的变化,采纳的基本公式是P=Fv 和 F-f = ma6 应用:( 1)机车以恒定功率启动时,由 P F(P为机车输出功率,F为机车牵引力,为机车行进速度)机车速度不停增添则牵引力不停减小,当牵引力F f 时,速度不再增大达到最大值m ax ,则 max P / f 。
( 2)机车以恒定加快度启动时,在匀加快阶段汽车牵引力 F 恒定为ma f ,速度不停增添汽车输出功率 P F随之增添,当 P P额定时,F开始减小但仍大于 f 因此机车速度持续增大,直至F f 时,汽车便达到最大速度m ax ,则max P / f 。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正;当2πθ=时,即力与位移垂直,力不做功,功为零;当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ没有做功的情况一般有以下几种:(1)劳而无功。
如人用100N 的力推石头没动。
(2)不劳无功。
如在光滑水平面上的物体靠惯性做匀速直线运动。
(3)垂直无功。
当物体受力的方向与该物体的运动方向垂直时,如手提水桶在水平面上匀速前进。
例1、下列情况中,有力对物体做功的是( )A 、用力推车,车不动B 、小车在光滑的水平面上匀速运动C 、举重运动员举着杠铃沿着水平方向走了1m.D 、苹果从树上落下 例2、在100m 深的矿井里,每分钟积水9m 3,要想不让水留在矿井里,应该用至少多大功率的水泵抽水?解:每分钟泵抽起水的重力G=gV 水ρ,水泵克服重力做功gVh W 水ρ=,完成这些功所需时间秒60=t∴tgVht W p 水ρ===6010098.91013⨯⨯⨯⨯=147000W=147(kW ) 二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tWP =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m a x υ,则f P /m a x =υ。
【例1】下列关于功率的说法正确的是( )A.物体做功越多,功率越大B.物体做功时间越短,功率越大C.物体做功越快,功率越大D.物体做功时间越长,功率越大 功率大,做功一定快,但做功不一定多(需控制时间)。
三、动能1概念:物体由于运动而具有的能量,称为动能。
2动能表达式:221υm E K =3动能定理(即合外力做功与动能关系):12K K E E W -=4理解:①合F 在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
②合F 做正功时,物体动能增加;合F 做负功时,物体动能减少。
③动能定理揭示了合外力的功与动能变化的关系。
4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。
5应用动能定理解题步骤: a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。
四、势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。
一)重力势能1定义:物体由于被举高而具有的能,叫做重力势能。
2公式:mgh E P =h ——物体具参考面的竖直高度 3参考面a 重力势能为零的平面称为参考面;b 选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。
4标量,但有正负。
重力势能为正,表示物体在参考面的上方; 重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。
5单位:焦耳(J )6重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。
7重力做功与重力势能的关系:21P P G E E W -=重力做正功时,物体重力势能减少;重力做负功时,物体重力势能增加。
二)弹性势能1概念:发生弹性形变的物体的各部分之间,由于弹力的相互作用具有势能,称之为弹性势能。
2弹簧的弹性势能:221kx E P =影响弹簧弹性势能的因素有:弹簧的劲度系数k 和弹簧形变量x 。
3弹力做功与弹性势能的关系:21P P F E E W -=弹力做正功时,物体弹性势能减少;弹力做负功时,物体弹性势能增加。
例1、判断下列几种情况下物体的动能、势能是否变化?是增大还是减小? (1)汽车沿着斜坡匀速上行 (2)电梯上升得越来越快 (3)皮球在空中下落 (4)汽车在平直马路上匀速前进答(1)汽车沿斜坡匀速上行的过程中,汽车的高度越来越高,所以它的势能增大,由于汽车速度保持不变,所以它的动能不变。
(2)电梯上升,高度增加,所以电梯的势能增加,电梯速度越来越快,所以它的动能不断增加。
(3)皮球从空中下落,高度越来越小,速度越来越大,所以皮球的势能减小,动能增大。
(4)汽车在平直马路上匀速前进,它的高度不变,速度也不变,所以汽车的动能和势能都没有发生变化。
六、机械能1机械能包含动能和势能(重力势能和弹性势能)两部分,即P K E E E +=。
2机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,即 21E E =2211P K P K E E E E +=+ΔΕK = —ΔΕP ΔΕ1 = —ΔΕ2。
3机械能守恒条件:做功角度:只有重力或弹力做功,无其它力做功; 外力不做功或外力做功的代数和为零; 系统内如摩擦阻力对系统不做功。
能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。
4运用机械能守恒定律解题步骤: a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功,判断机械能是否守恒c 恰当选取参考面,确定研究对象在运动过程中初末状态的机械能d 列方程、求解。
七、能量守恒定律1内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变,即2211其它机械能其它机械能E E E E +=+。
2能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。
例1.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道的最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h 的取值范围。
解:设物块在圆形轨道最高点的速度为v ,由机械能守恒得 mgh =2mgR +21mv 2① 物块在最高点受的力为重力mg 、轨道的压力N 。
重力与压力的合力提供向心力,有mg +N =m Rv 2②物块能通过最高点的条件是N ≥0 ③ 由②③式得v ≥gR ④ 由①④式得 h ≥25R ⑤ 按题的要求,N ≤5mg ,由②⑤式得v ≤gR 6 ⑥ 由①⑥式得h ≤5R ⑦ h 的取值范围是25R ≤h ≤5R 例2.如图,质量都为m 的A 、B 两环用细线相连后分别套在水平光滑细杆OP 和竖直光滑细杆OQ 上,线长L=0.4m ,将线拉直后使A 和B 在同一高度上都由静止释放,当运动到使细线与水平面成30°角时,A 和B 的速度分别为v A 和v B ,求v A 和v B 的大小。
(取g=10m/s 2)解:将A v 、B v 都分解成平行于细线和垂直于细线方向(如右图),由于运动中绳长不变。
即////B A v v = ︒=︒30cos 30sin B A v v 即B A v v 3=A 球下落的高度m L h 2.0214.030sin =⨯=︒= 由机械能守恒可得:222121B A mv mv mgh +=联立①②并代入数据可得:s m v A /3=,s m v B /1=。
机械能单元测试一、填空题1.功率是表示_______________的物理量,自行车运动员比赛时的功率可达1 kW ,若某运动员以此功率骑车1 min ,做功为_______ J 。
2.发条拧的越紧的钟表,走的时间越_______,这是因为发条越紧_______能越大。
3.质量为0.5 kg 的物体从8 m 高处落到地面,重力对该物体做的功是_______ J ,物体的_______能减小,_______能增大;若不计空气阻力,则物体增加的_______能是_______。
4.体积相同的实心铁球和木球,以相同的速度沿水平桌面滚动,要使它们具有相同的动能,可以_______;若它们处于同一高度,要使它们的重力势能相等,可以_______。
5.一个重物从高处下落的过程中,不计空气阻力它的重力势能不断_______,它的动能不断_______,而它的机械能_______。
(填“增大”“减小”或“不变”)6.一个空中飞行的物体具有80 J 的机械能,若它的重力势能为50J,则它的动能为_________ J;利用它的重力势能最多可做_______ J的功;若将它的重力势能全部转化为动能,则动能的大小为_______ J,此时它的机械能为_______ J。
7.正常人的心脏推动血液流动的功率为1.5 W,那么在一天时间内心脏做功_________ J,这些功可把一个重600 N的人匀速举高_________ m。
8.起重机匀速吊起重为1000 N的物体沿竖直方向提升3 m,又使物体沿水平方向匀速移动2 m,则起重机对物体的拉力是_______ N,在整个过程中,拉力对物体做的功是_______。
9.一辆上海产“大众牌”汽车,在京石高速公路上以30 m/s的速度匀速行驶,受到的阻力是2000 N,这辆汽车1 min做的功是_______ J。