机械能附其守恒定律知识点总结与题型归纳
- 格式:doc
- 大小:184.96 KB
- 文档页数:12
机械能守恒定律知识点总结机械能守恒定律是高中物理中一个非常重要的定律,它描述了在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
下面我们来详细总结一下机械能守恒定律的相关知识点。
一、机械能的概念机械能包括动能、重力势能和弹性势能。
动能:物体由于运动而具有的能量,表达式为$E_{k}=\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
重力势能:物体由于被举高而具有的能量,表达式为$E_{p}=mgh$,其中$m$是物体的质量,$g$是重力加速度,$h$是物体相对于参考平面的高度。
弹性势能:物体由于发生弹性形变而具有的能量,与弹簧的劲度系数和形变程度有关。
二、机械能守恒定律的内容在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
三、机械能守恒定律的表达式1、初状态的机械能等于末状态的机械能,即$E_{k1} + E_{p1} =E_{k2} + E_{p2}$。
2、动能的增加量等于势能的减少量,即$\Delta E_{k} =\Delta E_{p}$。
四、机械能守恒定律的条件1、只有重力或弹力做功。
2、受其他力,但其他力不做功或做功的代数和为零。
需要注意的是,“只有重力或弹力做功”不能简单地理解为“只受重力或弹力”。
例如,物体在光滑水平面上做匀速圆周运动,虽然受到绳子的拉力,但拉力始终与速度方向垂直,不做功,所以物体的机械能守恒。
五、机械能守恒定律的应用1、单个物体的机械能守恒分析物体的受力情况,判断机械能是否守恒。
确定初末状态,选择合适的表达式列方程求解。
例如,一个物体从高处自由下落,我们可以根据机械能守恒定律$mgh_1 =\frac{1}{2}mv^2 + mgh_2$来求解物体下落某一高度时的速度。
2、多个物体组成的系统的机械能守恒分析系统内各个物体的受力情况,判断机械能是否守恒。
确定系统的初末状态,注意研究对象的选择和能量的转化关系。
高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
机械能守恒定律知识点总结机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面).(2)转化观点:ΔE k=-ΔE p(不用选零势能参考平面).(3)转移观点:ΔEA增=ΔEB减(不用选零势能参考平面).3.机械能守恒的条件只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零考点一机械能守恒的判断方法1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.4.(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力做功”不等于“只受重力作用”.(2)分析机械能是否守恒时,必须明确要研究的系统.(3)只要涉及滑动摩擦力做功,机械能一定不守恒.对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.考点二机械能守恒定律及应用1.三种表达式的选择如果系统(除地球外)只有一个物体,用守恒观点列方程较方便;对于由两个或两个以上物体组成的系统,用转化或转移的观点列方程较简便.2.应用机械能守恒定律解题的一般步骤(2)分析受力情况和各力做功情况,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况.(4)选择合适的表达式列出方程,进行求解.(5)对计算结果进行必要的讨论和说明.3.(1)应用机械能守恒定律解题时,要正确选择系统和过程.(2)对于通过绳或杆连接的多个物体组成的系统,注意找物体间的速度关系和高度变化关系(3)链条、液柱类不能看做质点的物体,要按重心位置确定高度.。
机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
五机械能及其守恒定律一、基本概念和规律1.功的分析(1)恒力做功的判断:依据力与位移方向的夹角来判断。
(2)曲线运动中功的判断:依据F与v的方向夹角α来判断,0°≤α<90°时,力对物体做正功;90°<α≤180°时,力对物体做负功;α=90°时,力对物体不做功。
(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功。
此方法常用于判断两个相联系的物体。
2.功的计算(1)恒力做功的计算方法(2)变力做功的分析与计算方法以例说法应用动能定理用力F把小球从A处缓慢拉到B处,F做功为WF,则有:W F-mgl(1-cos θ)=0,得W F=mgl(1-cos θ)微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=f·Δx1+f·Δx2+f·Δx3+…+f·Δx n=f(Δx1+Δx2+Δx3+…+Δx n)=f·2πR功率法汽车以恒定功率P在水平路面上运动时间t的过程中,牵引力做功W F =Pt等效转换法恒力F把物块从A拉到B,轻绳对物块做的功W=F·⎝⎛⎭⎪⎫hsin α-hsin β平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)图象法根据力(F)—位移(l)图象的物理意义计算变力对物体所做的功,如图,横轴上方阴影部分的面积减去横轴下方阴影部分的面积在数值上等于变力所做功的大小(1)公式P=Wt和P=F v的区别P=Wt是功率的定义式,P=F v是功率的计算式。
(2)平均功率的计算方法①利用P-=Wt。
②利用P-=F v-cos α,其中v-为物体运动的平均速度。
(3)瞬时功率的计算方法①利用公式P=F v cos α,其中v为t时刻的瞬时速度。
②利用公式P=F v F,其中v F为物体的速度v在力F方向上的分速度。
高中物理机械能守恒定律知识点归纳1.由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为E P=一mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高h处其重力势能为E P=一mgh,若物体在零势能参考面下方低h处其重力势能为E P=一mgh,“一”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.2.重力做功与重力势能的关系:重力做功等于重力势能的减少量W G=ΔE P减=E P初一E P末,克服重力做功等于重力势能的增加量W克=ΔE P增=E P末—E P初特别应注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2.机械能守恒的条件(1)做功角度:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)能转化角度:对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3.表达形式:E K1+E pl=E k2+E P2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必须选择合适的零势能参考面.且每一状态的E P都应是对同一参考面而言的.(2)其他表达方式,ΔE P=一ΔE K,系统重力势能的增量等于系统动能的减少量.(3)ΔE a=一ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的减少量,三、判断机械能是否守恒首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2被压缩,当撤去外力后,A、L2、B这个系统机械能不守恒,因为L I对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对L I、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不一定守恒.如图5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为v t.(v t>v0)撤去外力,由于摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。
机械能守恒定律知识点总结机械能是指物体的动能和势能的总和,其中动能是物体由于运动而具有的能量,势能是物体由于位置和形状而具有的能量。
根据机械能的定义和守恒定律,可以得出以下几个知识点:1. 机械能的定义:机械能等于动能和势能的总和。
动能是物体由于运动而具有的能量,可以通过动能公式E_k = 1/2 mv^2计算,其中m是物体的质量,v是物体的速度。
势能是物体由于位置和形状而具有的能量,常见的势能有重力势能、弹性势能等。
2.动能的转化:当物体在运动过程中受到外力作用时,动能可以转化为其他形式的能量。
例如,当物体受到摩擦力的阻碍时,动能会逐渐转化为热能,使得物体的速度减小。
3.势能的转化:在重力场中,物体的高度决定了其重力势能的大小。
当物体从高处落下时,其重力势能逐渐转化为动能。
同样地,当物体被抛起时,其动能逐渐转化为重力势能。
4.机械能守恒定律的条件:机械能守恒定律只在满足一定条件下成立。
首先,系统必须是孤立的,即没有外力对系统做功。
其次,系统中不能有能量损耗,例如摩擦力的损耗。
5.实际情况下的机械能守恒:在实际情况下,机械能守恒往往不成立,因为很难找到一个完全孤立且没有能量损耗的系统。
例如,在运动中,摩擦力会将机械能转化为热能,使物体的总能量减少。
6.应用:机械能守恒定律广泛应用于物理学和工程领域。
例如,利用机械能守恒定律可以计算出弹射物的最大射高、最远射程等问题。
同时,在机械能守恒的基础上,也可以进行动力学分析和设计。
7.机械能守恒原理的推导:机械能守恒定律可以通过能量守恒原理和功的定义推导得出。
根据能量守恒原理,一个孤立系统的总机械能不变。
根据功的定义,外力所做的功等于物体的动能的增加量。
由此可以推导出机械能守恒定律。
总之,机械能守恒定律是物体运动中能量转化和守恒的基本定律之一、通过理解和应用机械能守恒原理,可以解决许多与能量转化和运动相关的问题。
然而,在实际情况下,机械能守恒往往不成立,因此需要考虑其他能量转化和损耗的因素。
机械能守恒定律知识点总结及本章试题一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θ——某力功,单位为焦耳()——某力(要为恒力),单位为牛顿()S——物体运动的位移,一般为对地位移,单位为米(m)——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当时,即力与位移成锐角,力做正功,功为正;当时,即力与位移垂直,力不做功,功为零;当时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W总=W1+W2+…+Wn 或W总= F合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:(平均功率)(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。
5应用:(1)机车以恒定功率启动时,由(为机车输出功率,为机车牵引力,为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力时,速度不再增大达到最大值,则。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力恒定为,速度不断增加汽车输出功率随之增加,当时,开始减小但仍大于因此机车速度继续增大,直至时,汽车便达到最大速度,则。
三、重力势能1定义:物体由于被举高而具有的能,叫做重力势能。
2公式:h——物体具参考面的竖直高度3参考面a重力势能为零的平面称为参考面;b选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。
第七章机械能守恒定律【知识点】:1、功1、做功两个必要因素:力和力的方向上发生位移。
2、功的计算:W = FLCOS83、正功和负功:①当。
^a< H /2时,cosa>0, w>o,表示力对物体做正功。
②当a二刃/2时,cosa=0, w=0.表示力对物体不做功(力与位移方向垂直)。
③当n/2<a^n时,cosa<0. w<0>表示为对物体做负功。
4、求合力做功:1)先求出合力,然后求总功,表达式为W .Q二F R L COS O(为合力与位移方向的夹角)2)合力的功等于各分力所做功的代数和,即W总二W1+W2+W3+ ----------例题.如图1所示,用力拉一质量为m的物体,使它沿水平匀速移动距离s,若物体和地而间的摩擦因数为U,则此力对物体做的功为()A. u mgsB・ M mgs/ (cos a + u sin u )C・ P mgs/ (cos a - u sin o )D・ P mgscos a / (cos a + u sin a )二、功率w图1K定义式:P =—,所求出的功率是时间t内的平均功率。
t2、计算式:P = Fvcos<9,其中()是力与速度间的夹角。
用该公式时,要求F为恒力。
1)当V为瞬时速度时,对应的P为瞬时功率:2)当v为平均速度时,对应的P为平均功率3)若力和速度在一条直线上,上式可简化为P = Fv3.机车起动的两种理想模式1)以恒定功率启动逅加直线运动 2)以恒定加速度a 启动匀送 | K= N^aTl©〉 凸尸=Z^L 时, C = O » 至]就尢"“・=K "F G 速三、 亟力势能重力势能表达式:Ep=mgh重力做功:= E P] -E P2 = -A£P (重力做功与路径无关,只与物体的初末位置有关)四、 弹性势能弹性势能表达式:E P =kAl 2/2 (△/为弹簧的型变量)五、 动能定理(1)动能定理的数学表达式为: 勻速直 线运动(2)动能泄理应用要点①外力对物体所做的总功,既等于合外力做的功,也等于所有外力做功的代数和。
机械能守恒定律基本知识点汇总机械能守恒定律是物理学中一个非常重要的定律,它描述了一个封闭系统中机械能的守恒性质。
机械能是指一个物体的动能和势能的总和。
根据机械能守恒定律,当一个物体在一个封闭系统内运动时,它的机械能始终保持不变。
下面是机械能守恒定律的基本知识点汇总。
1. 机械能的定义:机械能是指一个物体的动能和势能的总和。
动能是物体由于运动而具有的能量,通常用公式KE = 1/2mv^2表示,其中m是物体的质量,v是物体的速度。
势能是物体由于位置而具有的能量,通常用公式PE = mgh表示,其中m是物体的质量,g是重力加速度,h是物体的高度。
2.机械能守恒定律的表达式:机械能守恒定律可以用公式E1=E2表示,其中E1是系统的初始机械能,E2是系统的末尾机械能。
根据这个定律,当一个物体从一个位置移动到另一个位置时,它的机械能保持不变。
3.能量转化:机械能守恒定律描述了机械能在封闭系统内的转化过程。
当一个物体在系统内运动时,它的动能和势能会相互转化。
例如,当一个物体从高处下落时,它的势能会逐渐减少,而动能会增加。
在系统完全封闭的情况下,势能的减少和动能的增加相互补偿,使得系统的机械能保持不变。
4. 弹性势能:弹性势能是机械能守恒定律中重要的一种势能形式。
当一个物体被弹性力压缩或拉伸时,它会具有弹性势能。
弹性势能通常用公式PE = 1/2kx^2表示,其中k是弹簧的弹性系数,x是物体相对于平衡位置的位移。
5.实例分析:机械能守恒定律可以应用于各种各样的物理问题。
例如,假设有一个滑块从高出地面h的位置滑下,滑到地面时的速度可以用机械能守恒定律来计算。
根据机械能守恒定律,滑块的初始势能等于末尾动能。
由于滑块在地面时势能为零,所以初始势能等于零,动能即为滑块末尾的动能。
根据动能的定义,可以得到滑块末尾的速度。
6.真实系统的限制:虽然机械能守恒定律在许多理想情况下是成立的,但在真实的系统中会受到各种因素的影响而不完全成立。
第七章 机械能守恒单元总结知识要点一:功和功率的计算1.功的计算方法(1)利用W =Fl cos α求功,此时F 是恒力. (2)利用动能定理或功能关系求功. (3)利用W =Pt 求功. 2.功率的计算方法(1)P =Wt :此式是功率的定义式,适用于任何情况下功率的计算,但常用于求解某段时间内的平均功率.(2)P =Fv cos α:此式一般计算瞬时功率,但当速度为平均速度v 时,功率P 为平均功率.质量为m =20 kg 的物体,在大小恒定的水平外力F 的作用下,沿水平面做直线运动.0~2 s 内F 与运动方向相反,2~4 s 内F 与运动方向相同,物体的v -t 图象如图1所示,g 取10 m/s 2,则( )思维导图知识要点A.拉力F 的大小为100 NB.物体在4 s 时拉力的瞬时功率为120 WC.4 s 内拉力所做的功为480 JD.4 s 内物体克服摩擦力做的功为320 J 【答案】 B【解析】 由图象可得:0~2 s 内物体做匀减速直线运动,加速度大小为:a 1=Δv Δt =102 m/s 2=5 m/s 2,匀减速过程有F +F f =ma 1.匀加速过程加速度大小为a 2=Δv ′Δt ′=22 m/s 2=1 m/s 2,有F -F f =ma 2,解得F f =40 N ,F =60 N ,故A 错误.物体在4 s 时拉力的瞬时功率为P =Fv =60×2 W =120 W ,故B 正确.4 s 内物体通过的位移为x =(12×2×10-12×2×2)m =8 m ,拉力做功为W =-Fx =-480 J ,故C 错误.4 s 内物体通过的路程为s =(12×2×10+12×2×2) m =12 m ,摩擦力做功为W f =-F f s =-40×12 J =-480 J ,故D 错误. (2019·广东佛山高一模拟)质量为2 kg 的小铁球从某一高度由静止释放,经3 s 到达地面,不计空气阻力,g 取10 m/s 2.则( )A .2 s 末重力的瞬时功率为200 WB .2 s 末重力的瞬时功率为400 WC .2 s 内重力的平均功率为100 WD .2 s 内重力的平均功率为400 W 【答案】:B【解析】:小铁球只受重力,做自由落体运动,2 s 末速度为v 1=gt 1=20 m/s ,下落2 s 末重力做功的瞬时功率P =mgv 1=2×10×20 W =400 W ,故选项A 错误,B 正确;2 s 内的位移为h 2=12gt 22=20 m ,所以前2 s 内重力的平均功率为P =mgh 2t 2=2×10×202W =200 W ,故选项C 、D 错误. 知识要点二:机车启动问题1.模型一 以恒定功率启动(1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:2.模型二 以恒定加速度启动 (1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:3.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =PF 阻.(2)机车以恒定加速度启动时,匀加速过程结束时功率最大,速度不是最大,即v =P F <v m =PF 阻.(3)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F 阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移或速度.一列火车总质量m =500 t ,发动机的额定功率P =6×105 W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍.(g 取10 m/s 2) (1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1 m/s 和v 2=10 m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P ′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间. 【答案】:(1)12 m/s (2)1.1 m/s 2 0.02 m/s 2(3)5×105 W (4)4 s【解析】:(1)列车以额定功率行驶,当牵引力等于阻力,即F =F f =kmg 时,列车的加速度为零,速度达到最大值v m ,则v m =P F =P F f =P kmg=12 m/s.(2)当v <v m 时,列车做加速运动,若v 1=1 m/s ,则F 1=Pv 1=6×105 N ,根据牛顿第二定律得a 1=F 1-F fm =1.1 m/s 2若v 2=10 m/s ,则F 2=Pv 2=6×104 N根据牛顿第二定律得a 2=F 2-F fm=0.02 m/s 2.(3)当v =36 km/h =10 m/s 时,列车匀速运动,则发动机的实际功率P ′=F f v =5×105 W. (4)由牛顿第二定律得F ′=F f +ma =3×105 N在此过程中,速度增大,发动机功率增大,当功率为额定功率时速度为v ′,即v ′=PF ′=2 m/s ,由v ′=at 得t=v ′a=4 s. 分析机车启动问题常出现的三点错误(1)在机车功率公式P =Fv 中,F 是机车的牵引力而不是机车所受合力,当P =F f v m 时,牵引力与阻力平衡,机车达到最大运行速度.(2)恒定功率下的启动过程一定不是匀加速,匀变速直线运动的公式不适用,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).知识要点三:动能定理的理解和应用1.对动能定理的理解(1)W总=W 1+W 2+W 3+…是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F 合l cos α。
功和能、机械能守恒定律第1课时 功 功率考点1.功1.功的公式:W=Fscos θ0≤θ< 90°力F 对物体做正功, θ= 90°力F 对物体不做功,90°<θ≤180° 力F 对物体做负功。
特别注意:①公式只适用于恒力做功②F 和S 是对应同一个物体的;③某力做的功仅由F 、S 决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W G =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - f ΔS 4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W = 1/2 kx 12 – 1/2 kx 22(x 1、x 2为弹簧的形变量) 5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为 ΣW =ΣF ×S ×cos θ(2)合力的功等于各分力所做功的代数和,即 ΣW =W 1 +W 2+W 3+……6.变力做功: 基本原则——过程分割与代数累积 (1)一般用动能定理W 合=ΔE K 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功 (3)还可用F-S 图线下的“面积”计算.(4)或先寻求F 对S 的平均作用力F , S F W7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化例1.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是 A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功考点2.功率 1. 定义式:tWP =,所求出的功率是时间t 内的平均功率。
功能关系专题(一)力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量(状态量):p=mv=KmE2 冲量(过程量):I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-m v 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。
(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。
(理想化条件)②系统受外力作用,但合外力为零。
③系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。
④系统在某一个方向的合外力为零,在这个方向的动量守恒。
⑤全过程的某一阶段系统受合外力为零,该阶段系统动量守恒,即:原来连在一起的系统匀速或静止(受合外力为零),分开后整体在某阶段受合外力仍为零,可用动量守恒。
例:火车在某一恒定牵引力作用下拖着拖车匀速前进,拖车在脱勾后至停止运动前的过程中(受合外力为零)动量守恒“动量守恒定律”、“动量定理”不仅适用于短时间的作用,也适用于长时间的作用。
不同的表达式及含义(各种表达式的中文含义):P =P ′ 或 P 1+P 2=P 1′+P 2′ 或 m 1V 1+m 2V 2=m 1V 1′+m 2V 2′(系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) ΔP =-ΔP ' (两物体动量变化大小相等、方向相反)如果相互作用的系统由两个物体构成,动量守恒的实际应用中的具体表达式为 m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
七章机械能守恒定律知识点小结1.功(1)功的定义:力和作用在力的方向上通过的位移的乘积.是描述力对空间积累效应的物理量,是过程量.定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角. (2)功的大小的计算方法:①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功.②根据W=P·t,计算一段时间平均做功. ③利用动能定理计算力的功,特别是变力所做的功.④根据功是能量转化的量度反过来可求功.例1:A、B叠放在光滑水平面上,ma=1kg,mb=2kg,B上作用一个3N的水平拉力后,AB一起前进了4m,如图4 所示.在这个过程中B对A做的功[]A.4 J B.12 JC.0 D.-4J(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热)例2:关于摩擦力对物体做功,以下说法中正确的是[]A.滑动摩擦力总是做负功B.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体一定做负功D.静摩擦力对物体总是做正功2.功率(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.(2)功率的计算①平均功率:P=W/t(定义式)表示时间t的平均功率,不管是恒力做功,还是变力做功,都适用. ②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角.(3)额定功率与实际功率:额定功率:发动机正常工作时的最大功率. 实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率.①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m=P/f 作匀速直线运动, .②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度v m=P/f作匀速直线运动。
机械能守恒定律一.知识聚焦1.定义:物体由于做机械运动而具有的能叫机械能,用符号E 表示,它是动能和势能(包括重力势能和弹性势能)的统称.2.表达式:E =Ek +Ep.机械能是标量,没有方向,只有大小,可有正负(因势能可有正负).3.机械能具有相对性:因为势能具有相对性(需确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是地面),所以机械能也具有相对性.只有在确定的参考系和零势能参考平面的情况下,机械能才有确定的物理意义二.经典例题例1 下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 解析 物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A 、C 项正确;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g 的加速度向上做匀减速运动时,由牛顿第二定律F -mg =m(-45g),有F =15mg ,则物体受到竖直向上的大小为15mg 的外力作用,该力对物体做了正功,机械能不守恒. 答案 AC例2 如图所示,在水平台面上的A 点,一个质量为m 的物体以初速度v 0被抛出,不计空气阻力,求它到达B 点时速度的大小.解析 物体抛出后的运动过程中只受重力作用,机械能守恒,若选地面为参考面,则mgH +12mv 20=mg(H -h)+12mv 2B 解得v B =v 20+2gh若选桌面为参考面,则12mv 20=-mgh +12mv 2B 解得它到达B 点时速度的大小为v B =v 20+2gh答案 v 20+2gh例3 如图所示,斜面的倾角θ=30°,另一边与地面垂直,高为H ,斜面顶点上有一定滑轮,物块A和B 的质量分别为m 1和m 2,通过轻而柔软的细绳连结并跨过定滑轮.开始时两物块都位于与地面垂直距离为12H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面的竖直边下落.若物块A 恰好能达到斜面的顶点,试求m 1和m 2的比值.滑轮的质量、半径和摩擦均可忽略不计.解析 设B 刚下落到地面时速度为v ,由系统机械能守恒得m 2g H 2-m 1g H 2sin 30°=12(m 1+m 2)v 2① A 物体以v 上滑到顶点过程中机械能守恒12m 1v 2=m 1g H 2sin 30°②由①②得m 1m 2=1∶2 答案 1∶2例4 质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h 高度,下列说法中正确的是( )A .物体的重力势能减少2mghB .物体的机械能保持不变C .物体的动能增加2mghD .物体的机械能增加mgh解析 因重力做了mgh 的功,由重力做功与重力势能变化关系可知重力势能减少mgh ,合力做功为2mgh ,由动能定理可知动能增加2mgh ,除重力之外的力做功mgh ,所以机械能增加mgh ,A 、B 错,C 、D 对.答案 CD例5用弹簧枪将一质量为m 的小钢球以初速度v 0竖直向上弹出,不计空气阻力,当小钢球的速度减为v 04时,钢球的重力势能为(取弹出钢球点所在水平面为参考面)( )A.1532mv 20B.1732mv 20C.132mv 20D.49mv 20 答案 A解析 由12mv 20=Ep +12m(v 04)2得 Ep =1532mv 20. 三、基础演练1.关于机械能守恒,下列说法正确的是( )A .物体匀速运动,其机械能一定守恒B .物体所受合外力不为零,其机械能一定不守恒C .物体所受合外力做功不为零,其机械能一定不守恒D .物体沿竖直方向向下做加速度为5 m/s 2的匀加速运动,其机械能减少答案 D2.如图所示,在抗洪救灾中,一架直升机通过绳索,用恒力F 竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程中,以下说法正确的有( )A .力F 所做功减去克服阻力所做的功等于重力势能的增量B .木箱克服重力所做的功等于重力势能的增量C .力F 、重力、阻力,三者合力所做的功等于木箱动能的增量D .力F 和阻力的合力所做的功等于木箱机械能的增量答案 BCD解析 对木箱受力分析如右图所示,则由动能定理:WF -mgh -WF f =ΔEk ,故C 对.由上式得:WF -WF f =ΔEk +mgh ,即WF -WF f =ΔEk +ΔEp =ΔE ,故A 错,D 对.3.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M>m ,不计摩擦,系统由静止开始运动过程中( )A .M 、m 各自的机械能分别守恒B .M 减少的机械能等于m 增加的机械能C .M 减少的重力势能等于m 增加的重力势能D .M 和m 组成的系统机械能守恒解析:M 下落过程,绳的拉力对M 做负功,M 的机械能不守恒,减少;m 上升过程,绳的拉力对m 做正功,m 的机械能增加,A 错误.对M 、m 组成的系统,机械能守恒,易得B 、D 正确;M 减少的重力势能并没有全部用于m 重力势能的增加,还有一部分转变成M 、m 的动能,所以C 错误.答案:BD4.(2009年营口质检)如图13所示,在地面上以速度v0抛出质量为m 的物体,抛出后物体落到比地面低h 的海平面上.若以地面为零势能面而且不计空气阻力, 则①物体到海平面时的势能为mgh ②重力对物体做的功为mgh ③物体在海平面上的动能为12mv20+mgh ④物体在海平面上的机械能为12mv20 其中正确的是( )A .①②③B .②③④C .①③④D .①②④解析:以地面为零势能面,物体到海平面时的势能为-mgh ,①错,重力对物体做功为mgh ,②对;由机械能守恒,12mv20=Ek -mgh ,Ek =12mv20+mgh ,③④对,故选B. 答案:B5.如图14所示,一轻质弹簧竖立于地面上,质量为m 的小球,自弹簧正上方h 高处由静止释放,则从小球接触弹簧到将弹簧压缩至最短(弹簧的形变始终在弹性限度内)的过程中,下列说法正确的是( )A .小球的机械能守恒B .重力对小球做正功,小球的重力势能减小C .由于弹簧的弹力对小球做负功,所以弹簧的弹性势能一直减小D .小球的加速度先减小后增大解析:小球与弹簧作用过程,弹簧弹力对小球做负功,小球的机械能减小,转化为弹簧的弹性势能,使弹性势能增加,因此A 错误,C 错误;小球下落过程中重力对小球做正功,小球的重力势能减小,B 正确;分析小球受力情况,由牛顿第二定律得:mg -kx =ma ,随弹簧压缩量的增大,小球的加速度a 先减小后增大,故D 正确.答案:BD6.利用传感器和计算机可以测量快速变化的力,如图16所示是用这种方法获得的弹性绳中拉力F 随时间的变化图象.实验时,把小球举高到绳子的悬点O 处,然后让小球自由下落.从图象所提供的信息,判断以下说法中正确的是( )A .t1时刻小球速度最大B .t2时刻小球动能最大C .t2时刻小球势能最大D .t2时刻绳子最长解析:小球自由下落的过程中,t1时刻绳子的拉力为零,此时速度不是最大,动能也不是最大,最大速度的时刻应是绳子拉力和重力相等时,即在t1、t2之间某一时刻,t2时刻绳子的拉力最大,此时速度为零,动能也为零,绳子的弹性势能最大,而小球的势能不是最大,而是最小,t2时刻绳子所受拉力最大,绳子最长.答案:D四.能力提升1.如图7-8-7所示,某人以拉力F 将物体沿斜面拉下,拉力大小等于摩擦力,则下列说法中正确的是( )A .物体做匀速运动B .合力对物体做功等于零C .物体的机械能守恒D .物体的机械能减小答案 C2.下列四个选项的图中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的F 为木块所受的外力,方向如图中箭头所示,图A 、B 、D 中的木块向下运动,图C 中的木块向上运动.在这四个图所示的运动过程中机械能守恒的是( )答案 C解析 依据机械能守恒条件:只有重力做功的情况下,物体的机械能才能保持守恒,由此可见,A 、B 均有外力F 参与做功,D 中有摩擦力做功,故A 、B 、D 均不符合机械能守恒的条件.3.(2010年山东名校联考)一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变 B .物体的动能减小13mgh C .物体的机械能增加23mgh D .物体的重力势能增加mgh 解析:设物体受到的向上的拉力为F.由牛顿第二定律可得:F 合=F -mg =-13mg ,所以F =23mg.动能的增加量等于合外力所做的功-13mgh ;机械能的增加量等于拉力所做的功23mgh ,重力势能增加了mgh ,故B 、C 、D 正确,A 错误.答案:BCD4.(2010年成都模拟)如图10所示,质量相等的A 、B 两物体在同一水平线上,当A 物体被水平抛出的同时,B 物体开始自由下落(空气阻力忽略不计),曲线AC 为A 物体的运动轨迹,直线BD 为B 物体的运动轨迹,两轨迹相交于O 点,则两物体( )A .经O 点时速率相等B .在O 点相遇C .在O 点具有的机械能一定相等D .在O 点时重力的功率一定相等解析:由机械能守恒定律可知,A 、B 下落相同高度到达O 点时速率不相等,故A 错.由于平抛运动竖直方向的运动是自由落体运动,两物体从同一水平线上开始运动,将同时达到O 点,故B 正确.两物体运动过程中机械能守恒,但A 具有初动能,故它们从同一高度到达O 点时机械能不相等,C 错误.重力的功率P =mgvy ,由于两物体质量相等,到达O 点的竖直分速度vy 相等,故在O 点时,重力功率一定相等,D 项正确.答案:BD五、个性天地1.如图7-8-8所示,翻滚过山车轨道顶端A 点距地面的高度H =72 m ,圆形轨道最高处的B 点距地面的高度h =37 m .不计摩擦阻力,试计算翻滚过山车从A 点由静止开始下滑运动到B 点时的速度.(g 取10 m/s 2)答案 26.5 m/s解析 取水平地面为参考平面,在过山车从A 点运动到B 点的过程中,对过山车与地球组成的系统应用机械能守恒定律,有mgh +12mv 2=mgH 可得过山车运动到B 点时的速度为v =2g (H -h )=2×10×(72-37) m /s≈26.5 m/s2.某人站在离地面h =10 m 高处的平台上以水平速度v 0=5 m/s 抛出一个质量m =1 kg 的小球,不计空气阻力,g 取10 m/s 2,问:(1)人对小球做了多少功?(2)小球落地时的速度为多大?答案 (1)12.5 J (2)15 m/s解析 (1)人对小球做的功等于小球获得的动能,所以W =12mv 20=12×1×52 J =12.5 J[来源:] (2)根据机械能守恒定律可知 mgh +12mv 20=12mv 2 所以v =v 20+2gh =52+2×10×10 m/s =15 m/s3.如图7-8-9所示,光滑的水平轨道与光滑半圆轨道相切,圆轨道半径R =0.4 m .一个小球停放在水平轨道上,现给小球一个v 0=5 m/s 的初速度,求:(g 取10 m/s 2)(1)小球从C 点飞出时的速度.(2)小球到达C 点时,对轨道的作用力是小球重力的几倍?(3)小球从C 点抛出后,经多长时间落地?(4)落地时速度有多大?答案 (1)3 m/s (2)1.25倍 (3)0.4 s (4)v 0解析 (1)小球运动至最高点C 过程中机械能守恒,有12mv 20=2mgR +12mv 2Cv C =v 20-4gR =52-4×10×0.4 m/s =3 m/s(2)对C 点由向心力公式可知FN +mg =m v 2C RFN =m v 2C R-mg =1.25mg 由牛顿第三定律可知小球对轨道的压力为小球重力的1.25倍.(3)小球从C 点开始做平抛运动由2R =12gt 2知 t = 4R g = 4×0.410s =0.4 s (4)由于小球沿轨道运动及做平抛运动的整个过程机械能守恒,所以落地时速度大小等于v 0.4 如图6所示,作平抛运动的小球的初动能为6J ,不计一切阻力,它落在斜面上P 点时的动能为:( )A. 12JB. 10JC. 14JD. 8J解析:把小球的位移分解成水平位移s 和竖直方向的位移h 。
第八章机械能守恒定律章末复习[知识点]一:动能和势能的转化1.动能与重力势能间的转化只有重力做功时,若重力做正功,则重力势能转化为动能,若重力做负功,则动能转化为重力势能,转化过程中,动能与重力势能之和保持不变.2.动能与弹性势能间的转化被压缩的弹簧把物体弹出去,射箭时绷紧的弦把箭弹出去,这些过程都是弹力做正功,弹性势能转化为动能.二.机械能动能、重力势能和弹性势能统称为机械能,在重力或弹力做功时,不同形式的机械能可以发生相互转化.三:机械能守恒定律1、在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.守恒定律表达式(1)E k2-E k1=E p1-E p2,即ΔE k增=ΔE p减.(2)E k2+E p2=E k1+E p1.(3)E2=E1.四.守恒条件物体系统内只有重力或弹力做功.1.对机械能守恒条件的理解(1)从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化.(2)从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在:①只受重力作用,例如:所有做抛体运动的物体(不计空气阻力时)机械能守恒.②系统内只有重力和弹力作用,如图甲、乙、丙所示.甲乙丙图甲中,小球在摆动过程中线的拉力不做功,如不计空气阻力,只有重力做功,小球的机械能守恒.图乙中,A、B间,B与地面间摩擦不计,A自B上端自由下滑的过程中,只有重力和A、B间的弹力做功,A、B组成的系统机械能守恒.但对B来说,A对B的弹力做功,这个力对B来说是外力,B的机械能不守恒.图丙中,不计空气阻力,球在摆动过程中,只有重力和弹簧与球间的弹力做功,球与弹簧组成的系统机械能守恒.但对球来说,机械能不守恒.2.判断机械能守恒的方法(1)做功分析法(常用于单个物体)分析物体受力⇒明确各力做功情况⇒⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫只有重力、弹簧弹力做功有其他力做功,但W其他=0⇒机械能守恒(2)能量分析法(常用于多个物体组成的系统)分析能量种类⇒只有动能、重力势能、弹性势能⇒机械能系统守恒五.机械能守恒定律和动能定理的比较两大规律比较内容机械能守恒定律动能定理表达式E1=E2ΔE k=-ΔE pΔE A=-ΔE B W=ΔE k 应用范围只有重力或弹力做功时无条件限制物理意义其他力(重力、弹力以外)所做的功是机械能变化的量度合外力对物体做的功是动能变化的量度关注角度 守恒的条件和始末状态机械能的形式及大小动能的变化及改变动能的方式(合外力做功情况)[考点题型]考点题型一:机械能的概念和计算1.(2021·湖南郴州·高一期末)用拉力将一个重为5N 的物体匀速提升4m ,在这个过程中,不计阻力,下列说法正确的是( )A .物体的重力做了20J 的功B .拉力对物体做了20J 的功C .物体动能减少了20JD .物体的机械能减少了20J2.(2021·北京市延庆区教育科学研究中心高一期末)一位同学在实验室的地面上用一个质量为1kg 的小车以一定的速度挤压弹簧,当小车的动能为20J 时,弹簧的弹性势能恰好是10J ,如果以距地面3m 高的天花板为零势面,则此时小车、弹簧和地球构成的系统总机械能是( )(g =10m/s 2)A .30JB .0JC .60JD .-30J 3.(2021·黑龙江·尚志市尚志中学高一期末)起重机以4g的加速度将质量为m 的物体匀减速地沿竖直方向提升高度h ,已知重力加速度为g ,空气阻力不计,则( )A .物体克服重力做功为mghB .起重机钢索的拉力对物体做功为34mghC .物体的动能减少了34mghD .物体的机械能减少了34mgh考点题型二:机械能守恒定律的条件4.(2021·广东广州·高一期末)如图所示,拉力F 将物体沿斜面向下拉,已知拉力大小与摩擦力大小相等,则下列说法中正确的是()A.物体的动能增加B.物体的动能保持不变C.物体的总机械能增加D.物体的总机械能保持不变5.(2020·辽宁·朝阳县柳城高级中学高一期末)关于机械能是否守恒的论述,正确的是()A.沿水平面运动的物体,机械能一定守恒B.做匀速运动的物体,机械能一定守恒C.合外力对物体做功等于零时,物体的机械能一定守恒D.只有重力对物体做功时,机械能一定守恒6.(2021·湖南湘西·高一期末)如图所示,下列关于机械能守恒的判断正确的是()A.甲图中,火箭加速升空的过程中,机械能守恒B.乙图中物体在拉力F作用下沿斜面匀速上升,机械能守恒C.丙图中小球在水平面内做匀速圆周运动,机械能守恒D.丁图中轻弹簧将地面上A、B两小车弹开,两小车组成的系统机械能守恒考点题型三:机械能与曲线运动7.(2021·陕西·宝鸡市陈仓区教育体育局教学研究室高一期末)如图所示,在地面上以速度v0斜向上抛出质量为m的物体,抛出后物体落在比地面低h的湖面上。
功和能、机械能守恒定律第1课时功功率考点1.功1.功的公式:W=Fscosθ0≤θ< 90°力F对物体做正功,θ= 90°力F对物体不做功,90°<θ≤180°力F对物体做负功。
特别注意:①公式只适用于恒力做功②F和S是对应同一个物体的;③某力做的功仅由F、S决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
G3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功,一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
、 1/2 kx(xx(2)弹簧的弹力的功——W = 1/2 kx –2211合力的功——有22为弹簧的形变量)两种方法:5. )先求出合力,然后求总功,表达式为(1 θS ×cosΣΣW=F×)合力的功等于各分力所做功的代数和,即(2 +WW+W+……ΣW=312变力做功: 基本原则——过程分割与代数累积6. E求之;合1)一般用动能定理W=Δ(K , 过程无限分小后,可认为每小段是恒力做功(2)也可用(微元法)无限分小法来求.图线下的“面积”计算F-S(3)还可用FSFW?SF对 , 的平均作用力4)(或先寻求做,做功意味着能量的转移与转化,7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点 ,相应就有多少能量发生转移或转化多少功图象如图所示。
下列表述正确的是物体在合外力作用下做直线运动的v一t1.例内,合外力做正功0—1s.在AB.在0—2s内,合外力总是做负功C.在1—2s内,合外力不做功内,合外力总是做正功3s —0.在D.考点2.功率W?P,所求出的功率是时间定义式:t内的平均功率。
1.t2.计算式:P=Fvcos θ , 其中θ是力F与速度v间的夹角。
用该公式时,要求F为恒力。
(1)当v为即时速度时,对应的P为即时功率;(2)当v为平均速度时,对应的P为平均功率。
(3)重力的功率可表示为P =mgv⊥,仅由重力及物体的竖直分运动的速度大小决定。
G(4)若力和速度在一条直线上,上式可简化为Pt=F·vt例2.质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用。
力的大小F与时间t的关系如图所示,力的方向保持不变,则2tF5003t时刻的瞬时功率为. A0m2tF15003t时刻的瞬时功率为. B0m2tF23003t0?t这段时间内,水平力的平均功率为到C.在04m2t25F003t0?t这段时间内,水平力的平均功率为到D. 在06m例3 物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端,重力做功的瞬时功率为( )第2课时动能、动能定理知识:动能定理例1.以初速度v竖直向上抛出一质量为m的小物体。
假定物块所受的空气阻力f大小不变。
已知重力加速度为g,0则物体上升的最大高度和返回到原抛出点的速率分别为22vv mgf?mg00vv B.A和.和00ff f??fmgmg)(12g(12g?)?mgmg22vv mg?fmg00vv和C..和 D00f22f fmg?mg?f)(1?2g(1?)2gmgmg例2.半径R=20cm的竖直放置的圆轨道与水平直轨道相连接。
如图所示。
质量为m=50g 的小球A以一定的初速度由v=4m/s,A经过轨道最高点点时的速度M时对轨道的压直轨道向左运动,并沿圆轨道的内壁冲上去,如果A经过N12.5N,取g=10m/s力为0.求:小球A从N到M这一段过程中克服阻力做的功W.动能考点1.定义:物体由于运动而具有的能叫动能1.12mvE? :,2.表达式为k2动量确定的动能和动量的关系:动能是用以描述机械运动的状态量。
动量是从机械运动出发量化机械运动的状态,3.物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。
2.动能定理考点. 这个结论叫做动能定理定义:合外力所做的总功等于物体动能的变化量. ——1.1122E???mv?mvW表达式:,2.K21合22. 是做功过程中始末两个状态动能的增量ΔE 式中W合是各个外力对物体做功的总和,K推导:动能定理实际上是在牛顿第二定律的基础上对空间累积而得:3. s,即可得F=ma在牛顿第二定律两端同乘以合外力方向上的位移1122mv??WFs?mas?mv12合22对动能定理的理解:4.. WW表示各个力做功的代数和,即合外力所做的功)式中的①如果物体受到几个力的共同作用,则(1合 +W=W+W+……312.即不追究全过程中的运动性质和状态变化细节.②应用动能定理解题的特点:跟过程的细节无关③动能定理的研究对象是质点.但对变力,④动能定理对变力做功情况也适用.动能定理尽管是在恒力作用下利用牛顿第二定律和运动学公式推导的. 做功情况亦适用. 动能定理可用于求变力的功、曲线运动中的功以及复杂过程中的功能转换问题的理解)总功 (⑤对合外力的功⑴可以是几个力在同一段位移中的功,也可以是一个力在几段位移中的功,还可以是几个力在几段位移中的功⑵求总功有两种方法:一种是先求出合外力,然后求总功,表达式为ΣW=ΣF×S ×cos 为合外力与位移的夹角另一种是总功等于各力在各段位移中做功的代数和,即ΣW=W +W+W+……312重难点:汽车启动中的变力做功问题34Pvt的额定功率沿平直公路继续前进,经 W=6=0时刻速度×=10m/s,随后以×1例3.质量为50 kg的汽车在1003v内经过)汽车在72sN。
求:(1)汽车的最大速度2;(1072s达到最大速度,设汽车受恒定阻力,其大小为2.5×m s。
的路程 4.关于汽车在水平路上运动,下列说法中正确的是()例 A.汽车启动后以额定功率行驶,在速率达到最大以前,加速度不断增大 B.汽车启动后以额定功率行驶,在速度达到最大以前,牵引力不断减小.汽车以最大速度行驶后,若减小功率,速率将会减小C .汽车以最大速度行驶后,若减小牵引力,速率将会增大D第3课时重力势能机械能守恒定律知识点1:机械能守恒问题例1.游乐场中的一种滑梯如图所示。
小朋友从轨道顶端由静止开始下滑,沿水平轨道滑动了一段距离后停下来,则A.下滑过程中支持力对小朋友做功B.下滑过程中小朋友的重力势能增加C.整个运动过程中小朋友的机械能守恒D.在水平面滑动过程中摩擦力对小朋友做负功知识点2:机械能守恒问题、重力势能问题如图8所示,用一轻绳系一小球悬于O点。
现将小球拉至水平位置,然后释放,不计阻力。
小球下落到最2.例低点的过程中,下列表述正确的是A.小球的机械能守恒B.小球所受的合力不变.小球的动能不断减小C .小球的重力势能增加DA30°的点冲上倾角为例3.如图所示,一个质量为m的物体(可视为质点)以某一速度从hg。
则物体在沿斜面度为,物体在斜面上上升的最大高/43固定斜面,其运动的加速度为上升的全过程中()3..mgh重力势能增加了重力势能增加了ABmgh41..mgh 机械能损失了CD动能损失了mgh2 2、知识网络考点1.重力做功的特点与重力势能1.重力做功的特点:重力做功与路径无关,只与始末位置的竖直高度差有关,当重力为的物体从A点运动到B点,W?mgh mgh所做的功均为,重力无论走过怎样的路径,只要A、B两点间竖直高度差为G E?mgh h为物体所在处相对于所选重力势能:物体由于被举高而具有的能叫重力势能。
其表达式为:,其中2.P取的零势面的竖直高度,而零势面的选取可以是任意的,一般是取地面为重力势能的零势面。
由于零势面的选取可以是任意的,所以一个物体在某一状态下所具有的重力势能的值将随零势面的选取而不同,但物体经历的某一过程中重力势能的变化却与零势面的选取无关。
3.重力做功与重力势能变化间的关系:重力做的功总等于重力势能的减少量,即- E = W重力做正功时,重力势能减少,减少的重力势能等于重力所做的功Δ a. GP E = - W克服重力做功时,重力势能增加,增加的重力势能等于克服重力所做的功Δb. GP考点2.弹性势能1. 发生弹性形变的物体具有的能叫做弹性势能2kxE弹性势能的大小跟物体形变的大小有关,2.×′= 1/2P:3. 弹性势能的变化与弹力做功的关系′EW= - Δ弹力所做的功,等于弹性势能减少. P弹机械能守恒定律考点3.机械能:动能和势能的总和称机械能。
而势能中除了重力势能外还有弹性势能。
所谓弹性势能批量的是物体由于发1. 生弹性形变而具有的能。
、机械能守恒守律:只有重力做功和弹力做功时,动能和重力势能、弹性势能间相互转换,但机械能的总量保持不2 变,这就是所谓的机械能守恒定律。
3 、机械能守恒定律的适用条件: 1)对单个物体,只有重力或弹力做功.(机械能也没, ,系统跟外界没有发生机械能的传递物体间只有动能和重力势能及弹性势能相互转化(2)对某一系统, ,则系统的机械能守恒.)有转变成其它形式的能(如没有内能产生,又适用于几个物体组成的物体系,但前提必须满足)(3()定律既适用于一个物体实为一个物体与地球组成的系统机械能守恒的条件.重难点:如何理解、应用匀变速直线运动规律的这个公式?例3.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为Rm的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道的最高。
一质量为mggh为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度点,且在该最高点与轨道间的压力不能超过5(的取值范围。
第4课时功能关系能的转化和守恒定律考点:功能关系——功是能量转化的量度⑴重力所做的功等于重力势能的减少⑵电场力所做的功等于电势能的减少⑶弹簧的弹力所做的功等于弹性势能的减少⑷合外力所做的功等于动能的增加⑸只有重力和弹簧的弹力做功,机械能守恒WEEE = = -Δ⑹重力和弹簧的弹力以外的力所做的功等于机械能的增加F12E = fSS为相对滑动的距离)ΔΔ⑺克服一对滑动摩擦力所做的净功等于机械能的减少Δ(⑻克例1.如图7-8-1所示装置中,木块与水平桌面间的接触面是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短,则从子弹开始射木块到弹簧压缩至最短的整个过程中(bd)A.子弹与木块组成的系统机械能守恒B.子弹与木块组成的系统机械能不守恒C.子弹、木块和弹簧组成的系统机械能守恒D.子弹、木块和弹簧组成的系统机械能不守恒例2.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上作振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长。