极坐标系与参数方程高考题题型
- 格式:docx
- 大小:175.02 KB
- 文档页数:7
高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。
例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。
解析:将x和y用极坐标表示,得到ρ=2cosθ。
例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。
解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。
求曲线C的极坐标方程和直线l被曲线C截得的弦长。
解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。
2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。
为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。
参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
极坐标参数方程题型归纳7种标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-极坐标与参数方程(高考真题)题型归纳一、极坐标方程与直角坐标方程的互化1.(2015·广东理,14)已知直线l的极坐标方程为2ρsin⎝⎛⎭⎫θ-π4=2,点A的极坐标为A⎝⎛⎭⎫22,7π4,则点A到直线l的距离为________.[立意与点拨]本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离.二、参数方程与直角坐标方程的互化【解析】椭圆方程为:14622=+yx,因为1cossin22=+xx,令⎩⎨⎧==ααcos2sin6yx,则有X+2y=αsin6+αcos4=()ϕα++sin166,最大值22,最小值22-三、根据条件求直线和圆的极坐标方程四、求曲线的交点及交点距离4.(2015·湖北高考)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C的参数方程为⎩⎨⎧x=t-1t,y=t+1t(t为参数),l与C相交于A,B 两点,则|AB|=________.【解析】直线l的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x-y=0,曲线C的参数方程⎩⎨⎧x=t-1t,y=t+1t两式经过平方相减,化为普通方程为y2-x2=4,联立⎩⎪⎨⎪⎧3x-y=0,y2-x2=4解得⎩⎪⎨⎪⎧x=-22,y=-322或⎩⎪⎨⎪⎧x=22,y=322.所以点A⎝⎛⎭⎪⎫-22,-322,B⎝⎛⎭⎪⎫22,322.所以|AB|=⎝⎛⎭⎪⎫-22-222+⎝⎛⎭⎪⎫-322-3222=2 5.5.在平面直角坐标xOy 中,已知直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t ,(t 为参数),直线l 与抛物线y 2=4x 相交于A 、B 两点,求线段AB 的长.[解析] 解法1:将l 的方程化为普通方程得l :x +y =3,∴y =-x +3,代入抛物线方程y 2=4x 并整理得x 2-10x +9=0,∴x 1=1,x 2=9. ∴交点A (1,2),B (9,-6),故|AB |=82+82=8 2.解法2:将l 的参数方程代入y 2=4x 中得,(2+22t )2=4(1-22t ), 解之得t 1=0,t 2=-82,∴|AB |=|t 1-t 2|=8 2.6.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析](1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).五、利用参数方程求最值( 转化与化归思想和函数思想 )[立意与点拨](用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)8.(2015·新课标Ⅱ高考)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【解】(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.(此题C 1代表的是一条过原点的直线) 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.9.(2015·商丘市二模)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:ρsin ⎝⎛⎭⎫θ-π6=12,曲线C 的参数方程为:⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α.(1)写出直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.[解析] (1)∵ρsin ⎝⎛⎭⎫θ-π6=12,∴ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=12,∴32y -12x =12,即l :x -3y +1=0.(2)解法一:由已知可得,曲线上的点的坐标为(2+2cos α,2sin α), 所以,曲线C 上的点到直线l 的距离d =|2+2cos α-23sin α+1|2=⎪⎪⎪⎪4cos ⎝⎛⎭⎫α+π3+32≤72. 所以最大距离为72.解法二:曲线C 为以(2,0)为圆心,2为半径的圆.圆心到直线的距离为32,所以,最大距离为32+2=72.10.(文)(2014·新课标Ⅰ理,23)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[解析](1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ,(θ为参数)直线l 的普通方程为:2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.(将d=|AB|sin30利用三角关系进行转化,转化化归思想,高考考点考察学生思维能力)当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.六、直线参数方程中的参数的几何意义方法一:方法二:根据直线参数方程中t 的几何意义,可知,弦长=|t 1-t 2|.得:053154153154122=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+t t t t ,方程化简,然后用韦达定理求 弦长=|t 1-t 2|=()212214t t t t -+=.....13.(理)在直角坐标系xOy 中,过点P (32,32)作倾斜角为α的直线l 与曲线C :x 2+y 2=1相交于不同的两点M 、N .(1)写出直线l 的参数方程;(2)求1|PM |+1|PN |的取值范围.(根据直线参数方程中t 的几何意义,用参数t 表示所求量1|PM |+1|PN |,然后用t 的二次方程的韦达定理,转化成三角函数进而求范围,此题较难)[解析] (1)⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α,(t 为参数).(2)将⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α.(t 为参数)代入x 2+y 2=1中,消去x ,y 得,t 2+(3cos α+3sin α)t +2=0,由Δ=(3cos α+3sin α)2-8=12sin 2(α+π6)-8>0⇒sin(α+π6)>63, 1|PM |+1|PN |=1-t 1+1-t 2=-t 1+t 2t 1t 2=3cos α+3sin α2=3sin(α+π6)∈(2,3].七、求动点坐标、求变量的值14.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析] (1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).(此处用参数t 来表示所求距离,然后当作变量为t 的二次函数,求最值)15.(2016全国卷I)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程; (Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =(圆与圆交点所在直线的求法,联立圆方程,两方程相减,可得变量的方程)16.(文)(2015·唐山市二模)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ; (2)O 为极点,A ,B 为C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.[解析] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆; l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 相切可得|a -3|2=a ,解得a =1. (求符合条件的变量值,建立等量关系,解方程)(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6, 当θ=-π6时,|OA |+|OB |取得最大值2 3.(用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)。
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
高考极坐标与参数方程题型及解题方法1. 引言在高考数学考试中,极坐标与参数方程是比较常见的题型。
掌握这些题型的解题方法对于考生来说非常重要。
本文将针对高考中常见的极坐标与参数方程题型进行介绍,并给出相应的解题方法。
2. 极坐标题型及解题方法2.1 求曲线方程在给定了极坐标方程$r=f(\\theta)$的情况下,求曲线的方程是比较常见的题型。
要解决这类题目,一般有以下步骤:•首先,观察函数$f(\\theta)$的性质,判断是否是一个周期函数,通过实例来确定周期。
•根据这个周期,可以得到对应的关系式。
•使用关系式消去r和$\\theta$,得到曲线的直角坐标方程。
•最后,通过画图或其他方式,验证所得方程是否正确。
2.2 求曲线的长度求曲线的长度也是一个常见的问题,一般分为以下几步:•根据给定的极坐标方程$r=f(\\theta)$,利用弧长公式进行求解。
公式为:$$L=\\int_{\\alpha}^{\\beta}\\sqrt{[f'(\\theta)]^2+f^2(\\theta)}d\\theta$$ •其中$\\alpha$和$\\beta$为曲线所在区间,$f'(\\theta)$为导数。
•确定曲线所在区间,并计算导数$f'(\\theta)$。
•将上述求得的值带入弧长公式中,进行计算。
2.3 求曲线与极轴的夹角有时候,我们需要求出曲线与极轴的夹角。
对于这类问题,一般可以按照以下步骤进行求解:•首先,通过给定的极坐标方程$r=f(\\theta)$求出曲线与极轴的交点。
•然后,求出曲线在交点处的切线斜率k。
斜率的求解公式为:$$k=\\tan(\\pi/2-\\theta)=-\\frac{dr}{d\\theta}/r$$•最后,利用切线的斜率k求出曲线与极轴的夹角。
3. 参数方程题型及解题方法3.1 求曲线方程对于给定的参数方程x=f(t)和y=g(t),求曲线的方程也是常见的高考题型。
高考数学极坐标与参数方程题型归纳在高考数学试题中,关于极坐标与参数方程的题型占据着重要的位置。
理解和掌握这部分知识点,不仅有助于应对考试,也对于深入理解数学的概念和应用有着重要意义。
下面我们来归纳总结一些常见的高考数学极坐标与参数方程题型。
极坐标题型1.求一点在极坐标系中的坐标给定一点在极坐标系中的表示形式,要求将其转换为直角坐标系中的坐标表示。
2.求极坐标下的函数表达式已知一函数在直角坐标系中的表达式,要求将其转换为极坐标下的函数表达式。
3.求曲线在极坐标系中的方程已知函数在极坐标系中的表达式,要求确定其对应的曲线在极坐标系下的方程式。
4.求曲线与极轴、极径的交点给定曲线在极坐标系下的方程,要求求解其与极轴或者极径的交点。
参数方程题型1.极坐标与参数方程的互相转化给定一个曲线的参数方程,要求将其转换为极坐标系的方程表示,或者反之。
2.参数方程求切线斜率已知曲线的参数方程,要求求解某点处的切线的斜率。
3.参数方程求曲线间的距离给定两条曲线的参数方程,要求确定其之间的距离。
4.参数方程求曲线的长度已知曲线的参数方程,要求确定其在一定区间内的弧长。
解题技巧1.理解极坐标与参数方程的基本概念在解题时,首先要对极坐标、参数方程的定义及基本性质有清晰的理解。
2.熟练运用坐标转换公式对于极坐标与直角坐标系之间的转换,可以根据公式进行相应的转化,这是解题的基本技巧。
3.掌握参数方程的运算方法参数方程的运算方法在解题时非常重要,要善于利用参数方程的特点进行计算。
4.多练习,熟悉题型通过多练习不同类型的题目,熟悉题型变形和解题技巧,提高解题效率。
高考数学中的极坐标与参数方程题型涵盖了数学的多个重要概念,需要认真理解和掌握。
通过不断的练习和积累,相信在高考数学中能够取得优异的成绩。
高考数学极坐标及参数方程专题1.设(,)P x y 是曲线(θ为参数,02θπ≤≤)上任意一点, (1)将曲线化为普通方程;(2)求的取值范围.2.知曲线1C 的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为。
(1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥, 02θπ≤<)。
3.已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数)经过伸缩变换32x x y y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程; (2)若点M 在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.4.在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线2C . (1)求2C 的方程(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .⎩⎨⎧=+-=θθsin ,cos 2y x x y5.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN V 的面积6.极坐标系中,已知射线1C :(0)6πθρ=≥动圆2C :220002cos 40()x x x R ρρθ-+-=∈. (1)求1C ,2C 的直角坐标方程;(2)若射线1C 与动圆2C 相交于M 与N 两个不同点,求0x 的取值范围.7.在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数) (1)求过椭圆的右焦点,且与直线42(3x t t y t=-⎧⎨=-⎩为参数)平行的直线l 的普通方程。
欢迎阅读极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A.C 2.ρ4=A.ρ=C.ρ= 0sin cos 2ρθθθ∴=≤≤ ⎪+⎝⎭ 所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
【答案】 31【解析】.C (2014陕西)(坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014天津)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.若ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224x y ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014广东)(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1. (2014新课标I)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ).直线ld =则||PA =当(sin θ当(sin θ2. (20142cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3. (2014辽宁)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 (1) π∈[0,θθsin 2,θcos ,==y x (2) 03θsin ρ4-cos θ 2ρ=+ 【解析】(1)(2)4(2014 (I (II 解:圆C (2)故圆(2013)A . C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(2013天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | =1(2013上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2(2013北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____. 3重庆数学(理))在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】1642013广东(理))(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为 , 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为 .【答案】x+y=2 ;sin 24πρθ⎛⎫+= ⎪⎝⎭5(2013陕西(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26(2013江西(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________【答案】2cos sin 0ρθθ-=7(2013湖南卷(理))在平面直角坐标系xoy中,若,3cos, :(t)C:2sin x t xly t a yϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a的值为________.【答案】38(2013湖北(理))在直角坐标系xOy中,椭圆C的参数方程为cossinx ay bθθ=⎧⎨=⎩()0a bϕ>>为参数,.)中,(2013α与β=(Ⅰ(Ⅱ9(20132C(I)12(II)设P为1C的圆心,Q为1C与2C交点连线的中点.已知直线PQ的参数方程为()3312x t at Rby t⎧=+⎪∈⎨=+⎪⎩为参数,求,a b的值【答案】10(2013福建(理))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos(4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos(4a πρθ-=上,可得a =(Ⅱ)11(2013程为.【答案】0 ①12(2013新课标1(理))选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t =+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】已知曲线C 1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为(2,) (Ⅰ)求点A 、B 、C 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值范围. 解析:【2012辽宁文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。
直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。
1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。
13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。
高考极坐标与参数方程题型总结1.在极坐标系中,要将直线C1:x=-2和圆C2:(x-1)^2+(y-2)^2=1转化为极坐标方程。
以坐标原点为极点,x轴正半轴为极轴,将直线和圆的方程中的x和y用极坐标中的r和θ表示,然后化简即可得到它们的极坐标方程。
求出C2和C3的交点M、N的坐标,然后计算三角形OMN的面积即可求出C2MN的面积。
2.在直角坐标系中,曲线C1的参数方程为x=tcosα,y=tsinα,其中α∈[0,π)。
将C1的参数方程转化为极坐标方程,即可得到C2和C3的极坐标方程。
求出C2和C1的交点A和C3和C1的交点B的极坐标,然后计算AB的极坐标差值的正弦值的最大值,即可得到AB的最大值。
3.在直角坐标系中,曲线C1的参数方程为x=acos(t),y=1+asin(t),其中a>0.将C1的方程转化为极坐标方程,即可得到C2的极坐标方程。
设C3的极坐标方程为ρ=k,其中k>0.将C1和C2的极坐标方程代入C3的极坐标方程中,解出a即可。
1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为r=cos(2θ),参数方程为x=cos(2t),y=sin(2t)。
2.求解:(1) C1的极坐标方程为r=cos(2θ);(2) 射线x=λ与曲线C1分别交于M,N,求实数λ的最大值。
3.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为r=cos(θ),直线L的极坐标方程为θ=π/3.1) 将曲线C极坐标方程化为直角坐标方程得y=cos(x),其中x=θ-π/2;2) 直线L与曲线C交于A,B两点,点P(0,1)过点A,求点B的坐标为(√3/2,-1/2)。
4.在极坐标系中,已知曲线C的极坐标方程为r=2cos(θ)。
1) 点P的轨迹的极坐标方程为r=2cos(θ)+2sin(θ);2) 以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,直线L:y=√3x 与曲线C相交于E,求E的坐标为(1,√3)。
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
《极坐标与参数方程》高考题一、轨迹问题1、(2010)(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2x cos sin y θθ=⎧⎨=⎩(θ为参数),(Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。
2、(2011).选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x ay a =⎧⎨=+⎩ (α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u r u u u u r,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.3、 (2013课标全国2卷)选修4—4:坐标系与参数方程 已知动点P ,Q 都在曲线C :2cos ,2sin x t y t=⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.4、(2017课标全国2卷)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.5、(2017课标全国3卷) 在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.二、距离问题1、(2012)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上, 且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围。
练习题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、选择题1.在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( ) A .1 B .2 C .3 D .4 2.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22sin()4πρθ=+B .22sin()4πρθ=-C .22cos()4πρθ=+D .22cos()4πρθ=-3.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .221x y +=或1y = B .1x =C .221x y +=或1x = D .1y =4.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为()A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-5.在极坐标中,与圆4sin ρθ=相切的一条直线方程为( )A .sin 2ρθ=B .cos 2ρθ=C .cos 4ρθ=D .cos 4ρθ=-6.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是( )(A )圆和直线 (B )直线和直线 (C )椭圆和直线 (D )椭圆和圆 评卷人 得分二、填空题7.在极坐标系中,经过点)3,4(π且与极轴垂直的直线的极坐标方程为 .8.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;9.极坐标系中,圆θρsin 4=的圆心到直线)(3R ∈=θπθ 的距离是 .10.已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .三、解答题(题型注释)11.在平面直角坐标系中,已知直线l 过点(),12P - ,倾斜角6πα=,再以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为3ρ=. (Ⅰ)写出直线l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于、M N 两点,求PM PN ⋅的值.12.在极坐标系中,已知曲线)4sin(22:πθρ-=C ,P 为曲线C 上的动点,定点)4,1(πQ .(1)将曲线C 的方程化成直角坐标方程,并说明它是什么曲线; (2)求P 、Q 两点的最短距离.13.在平面直角坐标系xOy 中,直线l 经过点(10)A -,,其倾斜角是α,以原点O 为极点,以x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程是26cos 5ρρθ=-.(Ⅰ)若直线l 和曲线C 有公共点,求倾斜角α的取值范围; (Ⅱ)设()B x y ,为曲线C 任意一点,求3x y +的取值范围.14.在直角坐标系xoy 中,直线l 的参数方程为212242x ty t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数).再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy 有相同的长度单位.在该极坐标系中圆C 的方程为4sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为()2,1-,求MA MB +的值.15.在极坐标系中,已知点A 的极坐标为(22,)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系16.已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).17.在平面直角坐标系xoy 中,已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),将1C 上的所有点的横坐标、纵坐标分别伸长为原来的2和2倍后得到曲线2C ,以平面直角坐标系xoy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线():2cos sin 4l ρθθ+=.(1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值.18.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :23sin x Cy θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 33πρθ⎛⎫-= ⎪⎝⎭的距离的最大值.19.在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为2,4π⎛⎫⎪⎝⎭,直线的极坐标方程为cos 4a πρθ⎛⎫-= ⎪⎝⎭,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.21.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2sincos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ⋅=,求a 的值.22.在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),若以直角极坐标方程为2cos()4πρθ=-.(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求AB 的距离.23.已知在直角坐标系xOy 中,曲线t t y t x C (,233,211:1⎪⎪⎩⎪⎪⎨⎧+-=+-=为参数,)2≠t ,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρsin 32:2=C ,曲线θρcos 2:3=C . (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 2与C 1相交于点A ,C 3与C 1相交于点B ,求||AB 的值.24.在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (Ⅱ)射线4:πθ=OM 与圆C 的交点为O 、P 两点,求P 点的极坐标.25.已知曲线C 的参数方程是()cos sin x y m ααα=⎧⎨=+⎩为参数,直线l 的参数方程为()5152545x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于,P Q 两点,且455PQ =,求实数m 的值。
极坐标系中常见的高考题型
一、极坐标方程与直角坐标方程的互化(互化条件、互化公式)
例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=. (I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.
例2(2003全国)圆锥曲线
θθ
ρ2cos sin 8=
的准线方程是
(A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ
例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴
建立极坐标系,若椭圆两焦点的极坐标分别是(1,2π
),(1,23π),长轴长是4,则此椭圆的直
角坐标方程是_______________.
类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1cos 41
22-=
θρ,则它的直角坐
标方程是___________.
2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4 (C) (x-2)2+y 2=4 (D) (x+2)2+y 2=4
3(2013·广东文)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的直角坐标方程为 . 二、已知曲线的极坐标方程,判断曲线类型
例4(1990年全国)极坐标方程4ρsin 22θ
=5所表示的曲线是
(A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线 类题:1(1991年三南
)极坐标方程4sin 2θ=3
表示的曲线是 (A)二条射线 (B)二条相交直线 (C) 圆 (D) 抛物线 2(1987年全国)极坐标方程ρ=sin θ+2cos θ所表示的曲线是 (A)直线 (B)圆 (C)双曲线 (D) 抛物线 3(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是 (A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线
4(2003北京)极坐标方程
1cos 22cos 2=-θρθρ表示的曲线是
(A)圆 (B)椭圆 (C)抛物线 (D)双曲线
例5(1994年全国)极坐标方程ρ=cos(4π
-θ)所表示的曲线是
(A) 双曲线 (B)椭圆 (C)抛物线 (D)圆
例π
(A) (B) (C) (D)
类题:1(2002江苏)极坐标方程θρcos =与θρcos =21
的图形是
21 21 21
(A) (B) (C) (D)
2.(2004北京春)在极坐标系中,圆心在(),2π且过极点的圆的方程为 (A) θρcos 22= (B)θρcos 22-= (C)θρsin 22= (D)θρsin 22-= 三、判断曲线位置关系
例7(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系 (A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合 四、根据条件求直线和圆的极坐标方程
例8(2002北京春)在极坐标系中,如果一个圆的方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是
(A) ρsin θ=3 (B) ρsin θ = –3 (C) ρcos θ =2 (D) ρcos θ = –2
类题:1(1992年上海)在极坐标方程中,与圆ρ=4sin θ相切的一条直线的方程是 (A) ρsin θ=2 (B)ρcos θ=2 (C)ρcos θ= 4 (D) ρcos θ=- 4
2(1993年上海)在极坐标方程中,过点M(2,2π
)且平行于极轴的直线的极坐标方程
_______.
3(1994年上海)已知点P 的极坐标为(1,π),那么过点P 且垂直于极轴的直线的极坐标方程为
(A)ρ=1 (B)ρ=cos θ (C)ρ=θcos 1-
(D)ρ=θcos 1
4(2000年全国)以极坐标系中点(1,1)为圆心,1为半径的圆的方程是
(A)ρ=2cos(θ-4π) (B)ρ=2sin(θ-4π
) (C)ρ=2cos(θ-1) (D)ρ=2sin(θ-1)
5(2013安徽理·T7)在极坐标系中,圆=2cos ρθ的垂直于极轴的两条切线方程分别为 ()
A.=0()cos=2∈R θρρ和
B.ρρπ
θ=(∈R)和cos =2
2 C. π
θ=(ρ∈R)和ρcos =1
2 D.θ=0(ρ∈R)和ρcos =1
6(2012 陕西文)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 。
7(2012江西15).(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________。
8.在极坐标中,已知圆C 经过点
(
)4P
π,
,圆心为直线
(
)
sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.
9(2012 辽宁文)在直角坐标中,圆,圆。
(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方
程,并求出圆的交点坐标(用极坐标表示);
(Ⅱ)求圆的公共弦的极坐标方程。
10(2014·辽宁卷23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的方程;
(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以
坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.
xOy 221:4C x y +=222:(2)4C x y -+=12
,C C 12
,C C 12
C C 与
11(2012年江苏)在极坐标中,已知圆经过点
,圆心为直线
与极轴的交点,求圆的极坐标方程.
12(2013·辽宁理·T23)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系。
圆
1
C ,直线
2
C
的极坐标方程分别为
4sin ,cos()4
π
ρθρθ=-=
()I 求1C 与2C 的交点的极坐标;
()II 设P 为1C 的圆心,Q 为1C 与2C 的交点连线的中点,求直线PQ 的极坐标方程.
五、求曲线中点的极坐标
例9(2003上海)在极坐标系中,定点A(1,2π
),点B 在直线0sin cos =+θρθρ上运动,
当线段AB 最短时,点B 的极坐标是_________.
例10(1999上海)极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为_________.
例11.[2014·广东14]在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与
ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐
标系,则曲线C 1与C 2交点的直角坐标为________. 六、求距离
C (
)
4P
π
,
sin 3ρθπ⎛
⎫
-= ⎪⎝
⎭C
例12(2007广东文)在极坐标系中,直线 的方程为ρsin θ=3,则点(2,6π
)到直线 的
距离为___________.
例13(1992年全国、1996年上海)极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是
(A) 2 (B) 2 (C) 1 (D) 22
例14(1997年全国)已知直线的极坐标方程为ρsin(θ+4π
)=22,则极点到该直线的
距离是_______.
类题:1(2000年上海)在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ= 4cos
θ于A 、B 两点,则|AB|=______.
2(2004上海)在极坐标系中,点M(4,3π
)到直线 :4)sin cos 2(=+θθρ的距离
d=__________________.
3[2014·陕西卷15] 在极坐标系中,点⎝ ⎛⎭
⎪⎫2,π6到直线ρ sin ⎝⎛
⎭⎫θ-π6=1的距离是
________.
4(2012安徽13)在极坐标系中,圆
的圆心到直线
的
距离是
5(2013·上海理科·T7)在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________
6(北京理科·T9)在极坐标系中,点(2,6π
)到直线ρsin θ=2的距离等于
七、判定曲线的对称性
4sin ρθ=()
6
R π
θρ=
∈_____
例15(1999年全国)在极坐标系中,曲线ρ= 4sin(θ-3π
)关于
(A) 直线θ=3π
轴对称 (B)直线θ=65π轴对称
(C) 点(2, 3π
)中心对称 (D)极点中心对称
八、求三角形面积
例16(2006上海)在极坐标系中,O 是极点,设点A(4,3π),B(5,65π
-
),则△OAB 的面
积是 .。