数学教育学课件
- 格式:doc
- 大小:278.00 KB
- 文档页数:9
浅谈数学美——数学的实用价值和欣赏价值相信每个人多多少少都学过数学。
有些人对相信每个人多多少少都学过数学。
有些人对数学就是那么如痴如醉,而有些人对数学就永远都提不起兴趣,原因和在?答案只有一个,那就是数学传播的载体——教育制度。
答案就在于,如今的数学教育过分注重数学的实用价值,而忽略了数学的欣赏价值。
这是最致命的错误。
就好像你对一个女孩子的态度,如果你只知道跟女孩子一起就是一天到晚洗衣做饭,而不懂得欣赏这个女孩的美,这岂不是很无趣?又如这个世界五彩缤纷的动植物,如果你只知道这些动植物可以拿来食用,而不懂得欣赏他们的话,这个世界岂不是相当无聊?比如圆周率π,这个老生常谈的问题,都知道π=3.1415926……,都知道π是周长与直径之比,如果仅仅是因为这样,那么你是丝毫提不起来欣赏π美的兴趣的,但是如果你知道π可以写成下面的形式的话,你一定会无比惊叹:抛开π具体的实用价值,只去欣赏上面两个公式的美妙,那么你一定会对数学有所喜欢,这两个公式就好像数学王国里的孔雀,向你展示这个王国的丰富多彩,干嘛非要去分析小数点后有多少位?这也刚好提出另外一个问题,就如这个π,为何就算我们不知道上面的两个公式,我们也对它印象深深?这一点,就是来源于对他的敬畏,用敬畏的态度去学习数学,就像一个虔诚的基督教徒去迎接上帝一样去迎接数学(来源于新浪微博网友的评论)。
我们对未知世界,总是充满好奇,而好奇就产生探索的兴趣,并由此产生动力,而等到得到结果以后,又对无与伦比的结果把玩不止,如此反复,良好循环。
这就好像我们对网线另一头的ta总是充满好奇一样,不过“数学”这个ta不会让你失望,不会见光死。
想起这句话:对女孩子美的怀念来源于三个地方——天堂,人间和地狱。
数学美的来源,也是这三个地方。
第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
目录第一章数育教育学的概述 (1)第二章数学教学的目的与内容 (1)第三章教学课程的演变及理论研究 (2)第四章数学课程设计与教材编写 (7)第五章数学教学过程及教学设计 (9)第六章数学学习与数学认知结构 (10)第七章数学学习的认知过程 (12)第八章数学教育实验、测量和评价 (13)第十章数学教师的培训与终身学习 (15)参考书目 (19)试题 (20)第一章数育教育学的概述1、数育教育学的研究对象是以数学教学过程为研究对象,研究领域主要有数学教学论、数学学习论、数学课程论。
2、数学教学的主要内容(1)数学学习论,主要研究数学学习心理学、研究学生知识获得和保持,揭示学生学习过程的基本心理规律(2)数学教学论,研究范围是数学教学的目的和任务,数学教学过程的基本原理、数学教学组织形式,数学教学原则以及数学教学效果的检查与评价等。
(3)数学课程论,主要研究什么是课程、课程技能问题,影响课程设置的因素,教学内容的选择、内容的体系安排、课程评价。
第二章数学教学的目的与内容1、人类数学发展的四个高率(P20~22)(1)希腊的注释数学时期(2)牛顿—莱布尼茨的微积分时期(3)希尔伯特为代表的形式主义公现化时期(4)以计算机技术为标志的新教学时期2、关于数学特征的概述(P27~29)(1)流行的提法:抽象性、严谨性和广泛应用性(2)张真西艾先生的看法(P29)A、教育对象的特征:思想材料的形式化抽象B、教育思维的特征:策略创造与逻辑注释的结合C、教育知识的特征:通过简易的科学语言D、教育应用的特征:教学模型的技术3、数学概念的变化(p29~33)(1)国家改革开放的大环境与数学教育(2)教育普及和数学教学(3)心理学的进步,带来数学教育新模式(4)数学和信息科学的进步对数学教育的影响4、孔子的教育思想(p36)(1)有教无类:主张教育平等(2)诲人不倦:要求教师有奉献精神(3)举一反三:倡导启发式教育(4)教育相长:为在发展学术探讨(5)学而优则仕:万般皆下品,唯有读书高,师道尊严等消极方面。
教育学完整版课件一、教学内容本节课的教学内容来自人教版小学数学四年级下册第五单元《认识分数》的第一课时。
具体内容包括:分数的概念、分数的表示方法、分数的比较大小以及分数的加减法运算。
二、教学目标1. 让学生掌握分数的概念,理解分数的意义。
2. 培养学生运用分数进行表示、比较大小和计算的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:分数的概念、分数的表示方法、分数的比较大小以及分数的加减法运算。
难点:分数的比较大小以及分数的加减法运算。
四、教具与学具准备教具:黑板、粉笔、课件、分数卡片、实物等。
学具:练习本、笔、分数卡片等。
五、教学过程1. 实践情景引入:教师展示一个水果盘,里面有3个苹果,要求学生用分数表示盘中的苹果数量。
2. 分数的概念:教师讲解分数的概念,让学生理解分数的意义。
3. 分数的表示方法:教师讲解分数的表示方法,如分子、分母、分数线等。
4. 分数的比较大小:教师用课件展示分数的比较大小方法,让学生分组讨论并练习。
5. 分数的加减法运算:教师讲解分数的加减法运算规则,让学生分组讨论并练习。
6. 例题讲解:教师讲解分数的加减法运算例题,让学生跟随讲解过程,理解运算方法。
7. 随堂练习:教师布置随堂练习题,让学生独立完成,巩固所学知识。
六、板书设计板书内容:分数的概念、分数的表示方法、分数的比较大小、分数的加减法运算。
七、作业设计1. 请用分数表示下列物品的数量:2个橙子、3个香蕉、4个草莓。
答案:2/3、3/3、4/32. 请比较下列分数的大小:1/2、3/4、2/3。
答案:1/2 < 2/3 < 3/43. 请计算下列分数的加减法:1/2 + 1/4、3/4 1/2。
答案:1/2 + 1/4 = 3/4;3/4 1/2 = 1/4八、课后反思及拓展延伸课后反思:本节课学生对分数的概念、表示方法、比较大小和加减法运算有了基本的认识和理解,但在分数的加减法运算中,部分学生还需加强练习。
数学教育学课件
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
第一讲:为什么要学习数学教育学
第一节数学教育成为一个专业的历史
数学教师是一种职业,是一种需要特殊培养的专业人士。
古代:学校教育的主要目的是培养大大小小的官吏、僧侣和文职人员
西方:数学教育的目的主要是为了训练学生的心智,<七艺教育:文法、修辞、逻辑学、算术、几何、天文、音乐)b5E2RGbCAP
中国:古代算学以测量田亩、计算税收等为目的,主要用于国家管理,数学教育的主要目的是为了经世致用,地位不高。
(六艺教育:礼、乐、射、御、书、数>p1EanqFDPw
进入19世纪,数学在学校教育中占据重要地位:
西方——古典教育与科学教育之争;
中国——西方传教士兴办教会学校,但数学未普及。
Jeremy Kilpatrick<杰瑞M·克伯屈)《一份数学教育研究的历史》:19世纪末,人们意识到,教好数学需要既懂数学又懂教案法。
DXDiTa9E3d
20世纪,数学教育开始成为一门专业
⑴1911年,F·Klein指导的第一个数学教育博士Rudolf Schimmack毕业。
⑵隶属于国际数学联合会的国际数学教育委员会<ICMI)成立。
⑶各国教师培养计划中重视和加强教案法培训的倾向更加明显。
第二节数学教育成为一门科学学科的历史
有两门学科对数学教育研究有过根本性影响的,而且继续发挥影响:数学和心理学
此外,哲学、社会学、人类学、经济学、政治学、生态学等不断影响数学教育领域,尤其是人类文化视角深刻地影响着人们对数学教育的认识。
RTCrpUDGiT
⑴数学——Felix Klein,首任ICMI主席,热心倡导数学教育改革,一再强调:
①数学教师应该具有较高的观点——掌握或了解数学概念、方法及其发展与完善的过程及数学教育演化的经过;
②教育应该是发生性的——空间直观、数学应用、函数概念非常必要;
③应该用综合起来的一般概念和方法来解决问题;
④应该以函数为中心将算术、代数与几何综合起来。
总之,数学影响教案内容的选取。
第三节数学教育研究热点的改变
第二节数学教育研究关注的对象年龄范围在逐渐扩大中学→两头;校内→校外
第三节数学教育研究关注的问题范围在拓展。
宏观:课程→教师教育→学习问题→课堂教案问题→社会、文化、语言问题以及评价问题
微观:符号化与形式化、问题解决、应用与建模、证明与论证、各个学习领域的教与学、各个层次的数学教育问题
3、数学教育研究方法的多样性:
说理、展示实际教案经验、对自己或别人的经验与印象进行系统反思、逻辑哲学层面的思考;
利用纪实录像收集数据、利用测试卷作定性或定量的数据分析与解释;
借助心理学、哲学、历史、人类学、社会学作相应的研究,对数学本质作纯粹研究。
4、数学教育热点的变迁
1)1960-1970年代,对象:教育体制、课程、教案经验、大规模课程实验;方法:统计分析方法的定量比较研究。
5PCzVD7HxA 2)1970年代后期,对个别人、少数学生的小型的定性研究的增加。
3)1980年代之后,解释学生理解的理论及相应的思想学派兴旺。
第二讲与时俱进的数学教育
第四节 20世纪数学观的变化
1、数学文明与数学课程的关系
一数学发展史上的几个高峰
1、古希腊公理化数学——Euclid《Elements》<600B.C-6世纪)
东方算法数学——中国《九章算术》<100B.C-1世纪)
2、无穷小算法数学——Newton、Leibniz的Calculus<17世纪)
3、现代公理化数学——Hilbert《The Basic of Geometry》<19-20世纪中叶)jLBHrnAILg
4、信息时代的数学——现代计算机技术<20世纪50年代-)
以上发展阶段,显示出“数学应用”与“严密的公理化”这两种思想的交替出现。
1.古希腊数学——从公理系统出发用逻辑方法演绎出知识体系
2.微积分——无穷小算法不严密,却有效
3.现代公理化数学——形式主义公理化方法
1)公理体系的要求:相容性、独立性、完备性;
2)目的:构造出一组“数学公理”,一切命题均由其判定;
3)K.Godel不完备性定理:任何包含自然数在内的公理体系,总有一个命题,在体系内无法判定其“真”“伪”。
xHAQX74J0X
4.信息时代数学
1)应用数学蓬勃发展,数学技术随之产生;
2)纯粹数学更加抽象、更加统一、更深入地基础探讨。
三数学观的变化
1.公理化方法、形式演绎仍然是数学的特征之一
2.算法方法、经验归纳也是数学的特征之一
3.在计算机技术的支持下,数学更加关注应用
4.数学发展的两翼——直觉与逻辑
5.数学是一种文化,与人类生活的方方面面有着密切的联系
2、作为社会文化的数学教育
1.数学是人类文明的火车头
人类文明往往以数学成就作为特殊的标志:
古希腊文明—传流于世的标志性著作:Euclid《Elements》
资本主义文明——标志性著作 Newton的科学成就
现代科学文明——Einstein的相对论奠基于Riemann几何之上信息时代文明——信息论、控制论、von Noeumann计算机方案2.数学打上了人类各个文化发展阶段的烙印
古希腊数学与中国古代数学的对比:不同的民族文化催生不同风格的数学,它们都被打上了鲜明的时代烙印;
古希腊数学闪耀着理性思维的光辉:不迷信权威、不感情用事、不人云亦云。
具有“演绎数学”和“数学公理化”的特征。
LDAYtRyKfE
中国古代数学崇尚实用:以计算见长,具有“算法数学”和“数学机械化”的特征。
3.数学应从社会文化中吸取营养
创立数学需从社会文化中吸取营养,许多数学的本原思想和人类普通的思想是相通的。
4.数学思维方式对人类文化的独特贡献
数学为人类提供了用高度抽象思维把握现实存在的文化范例:对现实世界的抽象化、符号化描述。
5.数学成为描述自然和社会的语言
6.应将数学文化的渗透于数学“双基”教案密切结合。
第三节 20世纪我国数学教育观的变化
1992年,数学教育高级研讨班“纪要”——《数学素质教育设计<草案)》提出许多新观点:
1)可贵的国际测试高分下隐伏的危机;
2)儒家考试文化下的中国数学教育;
3)高考指挥棒可能走向“八股化”;
4)从英才数学教育走向大众数学教育;
5)让孩子们喜欢数学;
6)“数学素质”需要设计;
7)数学应用意识的失落;
8)突破口:数学问题解决;
9)观念变化:允许非形式化;
10)把学习的主动权交给学生;
11)薄弱环节:数学学习心理学;
12)数学教育中德育的新思路;
13)紧迫课题:计算器进入课堂;
14)适度性原则:不要走极端;
15)中国数学教育正在走向世界。
数学教案理念的发展
一关心教师的“教”→同时关心学生的“学”
1951:讲授→1963:突出以“教”为主→1982:调动学生学习的积极性,遵循认知规律→1996:学生是学习的主体,调动学习的主动性。
Zzz6ZB2Ltk
二“双基”→“三力”→广泛的能力观与素质观
1954:双基→1963:双基+三大能力→1982:用双基,培能力,学思想→1996:界定双基、三大能力,培养分析和解决问题的能力→2001:新的数学能力观。
dvzfvkwMI1
史宁中教授提出四基<双基加上基本思想和基本活动经验),顾泠沅教授不认同,“思想没有基本的”。
三听课、阅读、演题→实验、讨论、探索
1951:听讲、温习、演题、预习→1963:对数学练习的处理→2000:独立思考、探究发现→2001:动手实践、自主探究、合作交流。
rqyn14ZNXI
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。