八年级数学三角形全等的条件5
- 格式:ppt
- 大小:233.00 KB
- 文档页数:9
BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。
已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。
已知:如图,∠AOB 。
求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。
八年级数学上册 12.2 三角形全等的判定第2课时用“SAS”判定三角形全等说课稿(新版)新人教版一. 教材分析本次说课的内容是新人教版八年级数学上册第12.2节三角形全等的判定,第2课时,主要讲解的是用“SAS”判定三角形全等。
这一节内容是在学习了三角形相似和三角形全等的概念基础上进行的,是三角形全等判定方法中的重要一环。
通过本节课的学习,学生能够理解和掌握“SAS”判定三角形全等的方法,并能够运用到实际问题中。
二. 学情分析根据我对学生的了解,他们在学习了三角形相似和三角形全等的基础上,对于全等的概念已经有了初步的认识,但是对于如何用“SAS”判定三角形全等,可能还存在着一些理解和运用上的困难。
因此,在教学过程中,我需要通过具体的例子和练习题,引导学生理解和掌握“SAS”判定三角形全等的方法。
三. 说教学目标本次课的教学目标是让学生理解和掌握“SAS”判定三角形全等的方法,能够运用“SAS”判定三角形全等,并能够解决实际问题。
四. 说教学重难点教学重点是让学生理解和掌握“SAS”判定三角形全等的方法,教学难点是如何引导学生理解和运用“SAS”判定三角形全等。
五. 说教学方法与手段在教学过程中,我会采用讲解法、示范法、练习法等教学方法。
通过讲解法,让学生了解“SAS”判定三角形全等的原理;通过示范法,让学生直观地理解“SAS”判定三角形全等的步骤;通过练习法,让学生巩固“SAS”判定三角形全等的方法。
六. 说教学过程1.导入:通过复习三角形相似和三角形全等的概念,引导学生进入本节课的学习。
2.讲解:“SAS”判定三角形全等的方法:首先,让学生观察两个三角形,找出它们的两个边和夹角分别相等;然后,根据全等三角形的性质,得出这两个三角形全等。
3.示范:通过具体的例子,演示如何用“SAS”判定三角形全等,让学生直观地理解全等的判定过程。
4.练习:让学生通过练习题,运用“SAS”判定三角形全等,巩固所学的方法。
三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。
三角形的判定大题知识点1、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:例题精讲---sss例1.如图,,,求证:.例2.如图,AB = DE,AC = DF,BE = CF. 求证:AB∥DE.对应练习3.如图CE=CB,CD=CA,DE=AB,求证:∠DCA=∠ECB4.已知:如图A、F、B、D四点在同一直线上,且AC=DE,CB=EF,AF=DB.求证:∠A=∠D.例题精讲---ASA例1:.如图,已知:AD是BC上的中线,BE∥CF.求证:DF=DE.对应练习7.如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.例题精讲--AAS例1.如图,在△ABC中,,,,垂足为,,垂足为.求证:.例2 .如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F. 求证:DF=EF.对应练习10:.如图已知:如图,DE⊥AC于点E,BF⊥AC于点F,CD∥AB,AB=CD。
求证:△ABF≌△CDE。
11.已知:如图,∠ABC=90°,AB=BC,CE⊥BE,AD⊥BE,求证:△ABD≌△BCE.例题精讲-SAS例1.如图,已知AC=AD,∠CAB=∠DAB,求证:∠C=∠D。
例2.如图,点B,E,F,C在一条直线上,AB=DC,BE=CF,∠B=∠C.求证:∠A=∠D。
对应练习13.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.例题精讲--HL14.如图,,,,垂足分别为, ,.求证:.15.如图,AB⊥BD,AC⊥CD,垂足分别为点B、C,AB=CD。
初二数学第2课时三角形全等的判定(1)四、总结反思拓展升华本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.五、课堂作业P15 1 2教学理念/反思第3课时三角形全等的判定(2)教学目标1、会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、掌握作已知角的平分线的方法及步骤。
教学重点用尺规作一个角等于已知角,作已知角的平分线。
教学难点规范使用尺规,规范使用作图语言,规范的按照步骤作出图形。
教学互动设计设计意图一、创设情境导入新课前面我们用量角器画一个角等于已知角和画一个已知角∠AOB的平分线OC,怎样用尺规来作一个角等于已知角和作已知角的平分线呢?由具体的问题引入,激发学生的学生兴趣二、合作交流解读探究【问题1】作一个角等于已知角。
已知如图,∠AOB求作:∠A’O’B’,使∠A’O’B’=∠AOB教师在黑板上作图,同时写出作法:⏹作射线O’A’。
⏹以O点为圆心,以任意长为半径画弧,交OA于点C,交OB于点D。
⏹以O’为圆心,以OC长为半径画弧,交O’A’于点C。
⏹以C’为圆心,以CD长为半径画弧,交前面的弧于点D’。
⏹过点D’作射线O’B’,∠A’O’B’ 就是所求作的角。
学生探索作图方法通过示范,使学生明白如何利用尺规作一个角等于已知角。
只用无刻度的直尽和圆规作图的方法称为尺规作图。
问:你能验证你所作的角与已知角相等吗? 【问题2】作一个已知角∠AOB 的平分线OC 。
分析:假如∠AOB 的平分线OC 已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD ,那么CE=CD .这个实验也启发我们:如果有OE=OD ,CE=CD ,那么OC 平分∠AOB 吗? 用“SSS”公理易证△OEC ≌△ODC ,∠EOC=∠DOC ,即OC 平分∠AOB .于是容易看出,要作∠AOB 的平分线OC ,在于怎样才能找到起关键作用的点C ?怎样确定点C 呢?不难看出,为了确定C 点,必须先找点E 、D .以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E ,那么OD=OE 吗?再分别以D 、E 为圆心,适当的长度为半径作弧,设两弧交于点C ,那么CD=CE 吗?而D 、E 为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?已知:∠AOB ,如图求作:射线OE ,使∠AOE=∠BOE .作法:(1)在OA 和OB 上,分别截取OC 、OD ,使OC=OD .(2)分别以C 、D 为圆心,大于1/2CD 的长为半径作弧,在∠AOB 内,两弧交于点E .(3)作射线OE . OE 就是所求的射线. 三、应用迁移 巩固提高【例1】已知∠AOB ,利用尺规作∠A ’O ’B ’,使∠A ’O ’B ’=2∠AOB 【例2】如图,已知AD=AE ,PD=PE ,能否判定∠DAP=∠PAE ?请写出证明过程。
《三角形全等的判定》知识全解课标要求1.探索几何的基本图形——三角形,探索全等三角形的基本性质、三角形全等的判定条件和其相互关系,及角平分线性质,进一步丰富对空间图形的认识和感受.2.在探索全等三角形的性质、与他人合作交流等活动过程中,发展合情合理,进一步学习有条理地思考与表达;在积累了三角形的性质的基础上,探索全等三角形的判定条件和角平分线性质及其逆运用.知识结构内容解析在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。
◆如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。
(2)可以从已知条件出发,看已知条件确定哪两个三角形可证它们全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。
重点难点本节的重点是:掌握三角形全等的判定定理,并灵活运用。
本节的难点是:在较复杂的图形中,找出证明两个三角形全等的条件,恰当的选择判定定理,正确地书写演绎推理过程。
教法导引1.注重培养探索归纳能力经历探究三角形全等条件的过程:由全等三角形的定义可以知道,由三条边对应相等、三个角对应相等能判定三角形全等,那么减少条件能否判定三角形全等呢?于是,依次探究:满足一个条件、两个条件、三个条件、……能否判定三角形全等.通过探究得到:满足一个条件、两个条件不能判定三角形全等;满足三个条件不一定能判定三角形全等,即“边边边”、“边角边”、“角边角”、“角角边”能判定三角形全等,“边边角”、“角角角”不能判定三角形全等.将三角形全等的判定方法运用于直角三角形,可以判定直角三角形全等;但对于满足斜边和直角边对应相等的两个直角三角形,就无法运用三角形全等的判定方法来进行判断了,因此应探究“斜边、直角边”能否判定直角三角形全等.2.注重培养推理能力本章要求学生有理有据地推理论证,精炼准确地表达推理过程,这对于学生比较困难,因此我们在教学中应采取以下措施突破难点:(1)注意减缓坡度,循序渐进.精心选择全等三角形的证明问题,开始阶段的例题,证明方向明确、过程简单,容易规范书写格式,主要让学生体会证明思路及格式.然后逐步增加题目的复杂程度,每一步都为下一步做准备,下一步又要注意复习前一步训练过的内容.(2)在不同的阶段,安排不同的内容,突出一个重点.先安排证明两个三角形全等,进而安排通过证明三角形全等证明两条线段或两个角相等,重点使学生熟悉证明的步骤和方法.最后安排的问题涉及前面学过的内容,重点培养学生分析问题,选择推理途径的证明能力.(3)注重分析思路注重分析思路,让学生学会思考问题.(4)注重规范书写格式注重规范书写格式,让学生学会清楚地表达思考的过程.3.注重联系实际从实际例子引入全等形的概念,易于学生理解概念,易于调动学生学习的积极性.从分析平分角仪器的原理引入角平分线的画法,通过确定集贸市场位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生感受理论来源于实际的需要.运用全等三角形可以解决实际中许多测量边、角的问题.学法建议学生在初一学习过三角形的相关知识,会作一个三角形等于已知三角形,本节是使学生在原有知识的基础上探索怎样判定三角形全等的判定条件及恰当地选择判定定理来判别两个三角形全等,并能灵活运用全等三角形的判定方法解决线段或者角相等的问题。
初二数学上册:三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
《13。
2。
5 边边边》说课稿一、教材分析:(一)本节内容在全书和章节的地位本节内容选自华师版初中数学八年级上册第13章,本课是探索三角形全等条件的第4课时,是在学习了全等三角形的概念,全等三角形的性质后展开的。
对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。
因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
(二)三维教学目标1.知识与能力目标本节课主要给学生讲解全等三角形的“SSS"判定公理,同时理解三角形的稳定性,能用三角形全等解决一些现实问题,熟悉掌握“SSS"|的判定方法,能够自主探索,动手操作,在过程中体会到自主学习索取知识的乐趣,从而启发学生学习数学的方式,为下节课打下基础。
2.过程与方法目标通过分解三角形的各个边和角,两个三角形做对比,用问题分解法求解,探索全等三角形的全等条件,经历认知探知过程,体会挖掘知识的过程。
通过两个三角形边与角的对比发现全等三角形的判定条件“SSS”,锻炼学生分析问题,解决问题的能力。
3.情感态度与价值观培养学生勇于探索、团结协作的精神,积累数学活动的经验。
(三)重点与难点1.教学难点认识三角形全等的发现过程以及边边边的辨析.能够对运用三角形判定公理“SSS”解决三角形全等问题,对三角形其他定理的拓展与思考,了解三角形的稳定性.2.教学重点利用性质和判定,关键是学会准确地找出两个全等三角形中的对应边与对应角. 准确理解“SSS"三角形判定的公理,规范书写全等三角形的证明;二、教法与学情分析1.教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生知其然,而且还要使学生知其所以然。
八年级数学全等三角形高频考点知识梳理单选题1、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边答案:A解析:OC=OA,∠AOB=∠COD,OB=OD,根据SAS得:△OAB≌△OCD.则AB=CD.故选A.2、作∠AOB的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D 为圆心,适当的长度为半径作弧使两弧在∠AOB的内部相交于一点,则这个适当的长度()A.大于12CD B.等于12CD C.小于12CD D.以上都不对答案:A解析:根据作已知角的角平分线的方法即可判断.因为分别以C,D为圆心画弧时,要保证两弧在∠AOB的内部交于一点,所以半径应大于12CD,小提示:本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、如图,在△ABC中,∠B=40°,∠C=60°,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则∠EDB的度数为()A.30°B.20°C.10°D.15°答案:B解析:利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求∠EDB的度数.解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,{AE=AC∠EAD=∠CADAD=AD,∴△ADE≌△ADC(SAS),∴∠DEA=∠C=60°,∵∠B=40°,∠DEA=∠B +∠EDB,∴∠EDB=60°−40°=20°;故选:B本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.4、下列四个选项图中,与题图中的图案完全一致的是()A.B.C.D.答案:A解析:根据全等形是能够完全重合的两个图形进行分析判断.解:将原图绕其中心顺时针旋转144度后,可以和A中的图形重合;原图通过旋转变换不能得到与B、C、D中的图形重合,故选:A.小提示:本题考查的是全等形的识别,通过旋转找出原图与选项中的图形重合是解题的关键.5、如图,两座建筑物AB,CD相距160km,小月从点B沿BC走向点C,行走ts后她到达点E,此时她仰望两座建筑物的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知建筑物AB的高为60m,小月行走的速度为1m/s,则小月行走的时间t的值为()答案:A解析:首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间.解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△ECD中{∠B=∠C∠A=∠DEC AE=ED,∴△ABE≌△ECD(AAS),∴EC=AB=60m,∵BC=160m,∴BE=100m,∴小华走的时间是100÷1=100(s),故选:A.小提示:本题主要考查了全等三角形的应用,关键是正确判定△ABE≌△ECD.6、如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R,S,给出下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS.其中正确的是 ( )A.①②③B.①C.①②D.①③答案:C解析:先求证两个三角形全等,可得角、边对应相等,再根据同位角相等从而得出平行关系即可解题.如图在RT△APR和RT△APS中,PS=PR,AP=AP,∴RT△APR≅RT△APS,∴AS=AR,①正确;因为AQ=PQ∴∠PAQ=∠QPA,又因为∠PAQ=∠PAR,∴∠PQC=∠PAQ+∠QPA=∠BAC,∴QP∥AR,②正确;△ BRP和△QPS中只有一个条件PR=PS,没有别的条件可以证明这两个三角形全等,③错误;所以正确答案选C.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边对应角相等的性质,本题中求证RT△APR≅RT△APS 是解题的关键7、如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14B.13C.12D.10答案:C解析:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO ∴∠EAO=∠FCO∵在△AEO和△CFO中,{∠AEO=∠CFO AO=CO ∠AOE=∠COF∴△AEO≌△CFO∴AE=CF,EO=FO=1.5∵C四边形ABCD=18∴CD+AD=9∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C小提示:本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.8、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5答案:C解析:过点O作OE⊥AC于点E,作OF⊥AB于点F,作OG⊥BC于点G,先根据角平分线的性质可得OE=OF=OG,再根据三角形的面积公式即可得.解:如图,过点O作OE⊥AC于点E,作OF⊥AB于点F,作OG⊥BC于点G,∵OA,OB,OC是△ABC的三条角平分线,∴OE=OF=OG,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,故选:C.小提示:本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.填空题9、如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连;③HD//BG;④△ABG∽△DHF.其中正确的结论有__.(请接BG、DH.给出下列结论:①AF⊥DE;②DG=85填上所有正确结论的序号)答案:①④解析:证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;通过AB≠AG,得到∠ABG和∠AGB不相等,则∠AGB≠∠DHF,可判断③;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定△ABG~△DHF,可判断④.解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(S A S),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;∵AD=4,DF=1CD=2,2∴AF=√42+22=2√5,∴DG=AD×DF÷AF=4√5,故②错误;5∵H为AF中点,∴HD=HF=1AF=√5,2∴∠HDF=∠HFD,∵AB//DC,∴∠HDF=∠HFD=∠BAG,∵AG=√AD2−DG2=8√5,AB=4,5∴△ABG~△DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;所以答案是:①④.小提示:正方形的性质、相似三角形的判定、全等三角形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.10、如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的总长度为 ________cm.答案:45解析:利用SAS证明△ABC≌△DEF,即可得△DEF的周长=△ABC的周长=24cm.再由制成整个金属框架所需这种材料的总长度为△DEF的周长+△ABC的周长-CF即可求解.∴BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠E,BC=EF,∴△ABC≌△DEF(SAS),∴△DEF的周长=△ABC的周长=24cm.∵CF=3cm,∴制成整个金属框架所需这种材料的总长度为:△DEF的周长+△ABC的周长-CF=24+24-3=45cm.故答案为45.小提示:本题考查了全等三角形的判定与性质,证明△ABC≌△DEF得到△DEF的周长=△ABC的周长=24cm是解决问题的关键.11、如图,AB=AD,AC=AE,∠1=∠2,求证:BC=DE.证明:∵∠1=∠2(已知)∴________+________=________+________即∠BAC=________在△________和△________中AB=________,∠BAC=________,AC=________∴________≌________._______∴BC=DE_______答案:∠1∠3∠2∠3∠DAE BAC DAE AD∠DAE AE△BAC△DAE SAS全等三角形对应边相等解析:根据“边角边”证明△BAC≌△DAE即可.解:证明:∵∠1=∠2(已知)∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,在△BAC和△DAE中,AB=AC,∠BAC=∠DAE,AC=AE,∴△BAC≌△DAE.(SAS)∴BC=DE(全等三角形对应边相等),所以答案是:∠1;∠3;∠2;∠3;∠DAE;BAC;DAE;AD;∠DAE;AE;△BAC;△DAE;SAS;全等三角形对应边相等.小提示:本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理以及性质定理是解本题的关键.12、如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是___cm.答案:80解析:根据题意可得:OF=OG,OC=OD,利用已知条件判断出△OFC≌△OGD,得到CF=DG,即可求出答案. ∵O是FG和CD的中点∴OF=OG,OC=OD在△OFC和△OGD中{OF=OG∠FOC=∠GODOC=OD∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明离地面的高度=支点到地面的高度+CF=50+30=80cm故答案为80小提示:本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法.13、如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为_______.答案:9.解析:根据等腰三角形的性质及全等三角形的判定与性质即可求解.因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD≅△ACE(ASA),所以BD=EC,EC=9.小提示:此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.解答题14、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.答案:见解析解析:先在线段BC上截取BE=BA,连接DE,根据BD平分∠ABC,可得∠ABD=∠EBD,根据{AB=EB∠ABD=∠EBDBD=BD,可判定△ABD≌△EBD,根据全等三角形的性质可得:AD=ED,∠A=∠BED.再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.证明:在线段BC上截取BE=BA,连接DE,如图所示, ∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,{AB=EB∠ABD=∠EBDBD=BD,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.小提示:本题主要考查全等三角形的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定和性质.15、如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.答案:证明见解析.解析:利用SSS可证明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根据三角形外角的性质即可得∠3=∠BAD+∠ABD,即可得结论.在△ABD和△ACE中,{AB=ACAD=AEBD=CE,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.小提示:本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.。