高斯求积公式
- 格式:ppt
- 大小:374.50 KB
- 文档页数:22
高斯求积公式范文高斯求积公式,也称为高斯–勒让德求积公式(Gauss-Legendre Quadrature),是数值计算中一种常见的数值积分方法。
它通过选择适当的节点和权重来近似计算一个确定积分的值。
高斯求积公式的基本思想是通过选取合适的节点,使得积分节点上的函数值和求积公式的节点值与相应的权重值的乘积之和等于被积函数的积分。
要了解高斯求积公式,首先需要了解勒让德多项式(Legendre Polynomials)。
勒让德多项式是定义在区间[-1,1]上的一个连续函数系列,它们具有许多重要的性质。
其中最为重要的性质是勒让德多项式是在[-1,1]上正交的,即在区间[-1,1]上的积分为0,除非两个不同的多项式相乘。
高斯求积公式可以通过使用勒让德多项式的正交性质来推导。
假设我们要计算函数f(x)在区间[-1,1]上的积分,可以通过勒让德多项式来近似这个积分。
具体的做法是,首先选择一个适当的正整数n,计算n个勒让德多项式。
然后,在区间[-1,1]上选择n个互不相同的节点x_i,通过求解勒让德多项式的根来得到这些节点。
接下来,计算n个权重w_i,使得求积公式的节点值与权重值之积的和等于被积函数在区间[-1,1]上的积分。
对于一个给定的n,高斯求积公式的节点和权重可以通过一系列的计算得到。
首先,通过求解勒让德多项式的根来得到节点。
勒让德多项式的根是对应于勒让德多项式的零点的x值。
然后,通过求解勒让德多项式的导数来得到权重。
通过这些计算,我们可以得到一组称为高斯节点和权重的数值。
利用高斯节点和权重,我们可以将原始的积分问题转化为一组简单的加权求和问题。
具体地,我们可以将被积函数f(x)展开为勒让德多项式的级数形式,然后将这个级数代入原始积分的公式中,使用高斯节点和权重来计算每一项的值,最后将这些值相加得到积分的数值近似值。
1.高准确性:高斯求积公式可以提供非常精确的数值积分结果。
2.高效性:高斯求积公式可以通过选择适当的节点和权重,使计算量最小化。
高斯-勒让德(gauss-legendre)求积公式的证明高斯-勒让德(Gauss-Legendre)求积公式是一种用于数值积分的方法,通过对积分区间上的权重和节点进行适当选择,可以实现高精度的数值积分。
下面是高斯-勒让德求积公式的概要证明:1.首先,我们需要选择积分区间和节点数。
高斯-勒让德求积公式要求积分区间为[-1, 1],且节点数与权重数相同。
2.接下来,我们需要在[-1, 1]之间确定节点和相应的权重。
节点是使得关联的勒让德多项式在该点上取得零值的点。
权重则反映了在积分计算中节点的重要性。
3.对于高斯-勒让德求积公式的n阶,我们需要找到n个根(即节点)x1, x2, ..., xn,并确定相应的权重w1, w2, ..., wn。
4.使用勒让德多项式进行重写。
勒让德多项式Pn(x)可以表示为(n阶勒让德多项式的归一化形式):Pn(x) = (1 / (2^n * n!)) * d^n/dx^n [(x^2 - 1)^n]5.根据正交性质,勒让德多项式在区间[-1, 1]上相互正交。
即对于i ≠ j,有:∫[-1, 1] P_i(x) * P_j(x) dx = 0根据这一性质,我们可以确定节点和权重。
6.使用节点和权重构建高斯-勒让德求积公式。
积分的近似值可以表示为:∫[a, b] f(x) dx ≈ (b - a) / 2 * ∑[i=1 to n] wi * f((b - a) * xi / 2 + (b + a) /2)其中wi是权重,xi是节点。
7.在实际计算中,节点和权重需要通过数值方法来求解,如Jacobi矩阵或递推关系式等。
一种常用的数值求解方法是利用Jacobi矩阵的特征值与特征向量,通过迭代过程求解。
需要注意的是,上述证明提供了高斯-勒让德求积公式的概要,具体的证明过程可能会涉及更多数学推导和定理。
gauss-legendre求积公式
高斯-勒让德求积公式是指利用勒让德多项式的零点来求解定积分的数值近似方法。
它是一种高精度、高效率的积分数值求解方法。
具体地,用勒让德多项式的根来代替单位区间上的等距节点,再用适当的权系数乘以函数值,然后把结果求和,便得到积分的数值近似值。
高斯-勒让德求积公式可以表示为:
$\int_{-1}^{1}f(x)dx≈\sum_{i=0}^{n}w_if(x_i)$。
其中,$f(x)$为被积函数,$x_i$为勒让德多项式的$n$个零点,$w_i$为相应的权系数。
当$n$越大时,数值近似的精度越高。
高斯-勒让德求积公式的主要优点在于可以在任何有限区间内求解积分。
此外,它还具有收敛速度快、精度高、有理权系数等优点。
但是,它的缺点也是显而易见的,主要在于它只适用于比较光滑的函数,对于函数间断点、壁垒等特殊情况不太适用。
高斯求积公式
高斯求积公式,也称为高斯积分公式,是一个数学上的重要公式,它是由德国数学家卡尔·高斯提出的。
高斯求积公式可以用来计算一个函数在某个区间内的积分值,因此也可以称为“求积公式”。
高斯求积公式的具体形式如下:
∫a^b f(x)dx = (b-a)/2[f(a)+f(b)+2∑f(x_i)]
其中,f(x)是区间[a,b]内的某个函数,x_i是区间[a,b]的某个中间点,i=1,2,…,n。
为了简化计算,一般情况下,n取值为2或3。
高斯求积公式有许多应用,它可以用来解决许多不同类型的积分问题。
它能够求解函数在某个区间内的积分值,也可以用来求解多元函数的最大值或最小值问题。
此外,它还可以用来计算曲线下面积,求解复杂微分方程等。
总之,高斯求积公式是一个非常有用的数学公式,它可以用来解决许多积分问题,因此被广泛应用于科学研究和工程计算中。
高斯—勒让德积分公式摘要:高斯—勒让德积分公式可以用较少节点数得到高精度的计算结果,是现在现实生活中经常运用到的数值积分法。
然而,当积分区间较大时,积分精度并不理想。
T he adva ntage of Gauss-Legendre integral formula is tend to get high-precision calculational result by using fewer Gauss-points, real life is now often applied numerical integration method. But the precision is not good when the length of integral interval is longer.关键字:积分计算,积分公式,高斯—勒让德积分公式,MATLABKeyword:Integral Calculation , Integral formula ,Gauss-Legendre integral formula, Matlab 引言:众所周知,微积分的两大部分是微分与积分。
微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。
所以,微分与积分互为逆运算。
实际上,积分还可以分为两部分。
第一种,是单纯的积分,也就是已知导数求原函数,称为不定积分。
相对而言,另一种就是定积分了,之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。
计算定积分的方法很多,而高斯—勒让德公式就是其中之一。
高斯积分法是精度最高的插值型数值积分,具有2n+1阶精度,并且高斯积分总是稳定。
而高斯求积系数,可以由Lagrange多项式插值系数进行积分得到。
高斯—勒让德求积公式是构造高精度差值积分的最好方法之一。
他是通过让节点和积分系数待定让函数f(x)以此取i=0,1,2....n次多项式使其尽可能多的能够精确成立来求出积分节点和积分系数。