流体力学教学大纲
- 格式:doc
- 大小:88.00 KB
- 文档页数:11
《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。
该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。
通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。
二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。
第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。
基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。
重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。
难点:惯性力是质量力,牛顿内摩擦定律的应用计算。
第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。
重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。
难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。
第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。
《流体力学》(I)课程教学大纲(机械大类各专业)一. 课程名称流体力学(I)(Fluid Mechanics(I))二. 学时与学分32(授课)+ 4(实验)学时,2学分。
三. 课程性质本课程是技术基础课,它立足于解决与流动相关的工程实际问题,又具有较系统的理论体系。
本课程将为机械大类各专业学生学习后续专业课程和实现专业发展打下必要的基础。
四. 教学目的通过各个教学环节,使学生掌握流体运动和受力的基本规律,能够运用流体力学的基本原理和基本方法去分析和解决与流动相关的工程实际问题,并且了解和掌握最基本的流体力学实验技能。
五. 先修课程高等数学、大学物理、理论力学。
六. 主要内容1. 导论连续介质模型,流体的密度,流体的粘性及牛顿内摩擦定律,流体中的应力,流体表面张力**。
2.流体静力学静止流体的基本方程,静止流体中的压强分布,压强的测量及液柱测压计,流体作用在平壁面及曲壁面上的压强合力,流体的相对平衡。
3. 理想流体的动力学基础描述流体运动的基本方法,流线、流量,连续性方程及运动方程,伯努利方程及其物理意义,伯努利方程的应用,叶轮机械内相对运动的伯努利方程*,动量方程、动量矩方程及其应用。
4. 不可压缩粘性流体的动力学基础粘性流动的伯努利方程,层流与湍流,湍流切应力及混合长度理论,沿程损失系数,局部损失系数,管道的水力计算,孔口及管嘴出流*,平行平板间缝隙流动*,圆柱环形间缝隙流动**,边界层概念与边界层分离*。
5. 可压缩流体的一元流动绝热流动的能量方程、声速、一元等熵流动的基本关系式,气流在变截面管道中的流动*,收缩喷管和缩放喷管*,有摩擦和热交换的一元流动**。
6. 相似原理和量纲分析单位及量纲,量纲分析法,流动相似原理。
7.不可压缩平面势流**介绍不可压缩流体平面势流*。
七. 实验教学内容量测实验:动量定理验证,雷诺实验,静压强量测*,局部损失系数测定*,文丘里及孔板流量测量实验*,孔口、管嘴出流量测*。
流体力学课程教学大纲(中文版)教学目的与重点:通过课堂讲授,使学生理解《流体力学》的基本概念、理论和基本方程,掌握采用流体力学原理分析实际流动问题的方法。
重点在于培养学生从实际流动问题建立抽象物理和数学模型,并进一步求解的能力。
课程类型:专业基础课教学方式:讲授为主学时:64学时考核方式及成绩评定标准:平时作业20%;期中考试40%;期末考试40%先修要求、适用院系及专业:要求先修《微积分》、《数理方程》、《场论》、《复变函数》适用力学、航空、机械、热能、汽车、核能、工物和环境等专业课程内容简介:流体力学》一门应用面广泛的专业基础课,在航空、航天、能源、动力、机械、化工等领域尤为重要,它同时也是众多后续课程,如空气动力学、粘性流体力学、传热学、计算流体力学等的基础。
本课程为研究生专业基础课,主要介绍《流体力学》的基本概念和观点、理论和方程,分析流体力学问题的常用方法和相关工程应用知识。
培养学生对实际流体力学问题的分析、抽象建模和求解能力,为今后专业课程学习和从事相关的工程技术和科学研究打下坚实基础。
课程讲述主要内容包括:流体及其物理性质、流体运动学、流体动力学基础、理想流体动力学、可压缩流体动力学和粘性流体动力学等。
课程主要教学内容:第一章绪论(2学时)1. 流体力学的研究对象和内容2. 流体力学的发展历史3. 流体力学的研究方法4. 本课程主要内容5. 预备知识第二章流体的物理性质(3学时)1.流体的连续介质模型2.流体的基本性质3.作用在流体上的体积力和表面力4.流体的界面现象和性质第三章流体运动学(9学时)1.描述流体运动的两种方法2.流场的几何描述3.流体微团运动分析4.流场的旋度5.给定流场的散度和旋度求速度场6.第四章流体动力学(10学时)1.流体动力学积分型基本方程2.积分型守恒方程的应用3.流体动力学微分型基本方程4.流体静力学第五章理想流体动力学(12学时)1. 理想流体运动的基本方程和初边值条件2. 理想流体在势力场中运动的主要性质3. 兰姆型方程和理想流体运动的几个积分4. 理想不可压缩无旋流动问题的数学提法和主要性质5. 理想不可压缩无旋流动速度势方程的基本解及叠加法7.不可压缩流体二维流动的流函数及其性质7. 理想不可压缩流体平面无旋流动问题的复变函数方法第六章气体动力学基础(12学时)1.基本方程和基本概念2.完全气体等熵流动的主要性质3.激波理论4.超声速气体绕凸角流动5.完全气体在变截面绝热管内的准一维定常流动第七章粘性流体动力学基础(12学时)1.粘性流体的流动简介2.牛顿流体运动的基本方程及其解法3.粘性流体动力学的相似律4.不可压缩牛顿流体的圆管Poiseuille流动解析解5.平行平板间的库埃特流动、同心圆桶间流动Taylor-Couette流动6.极慢流动7.边界层理论8.湍流概述双语教学课程大纲(英文)1.Introduction & Basic Conceptsa)The concept of a fluid, the fluid as a continuumb)Properties of velocity fields: velocity & thermodynamic, flowanalysis techniquesc)History & scope of fluid mechanics2.Hydrostaticsa)Pressure & its gradientb)Equilibrium of fluid, hydrostatic forces on plane & curvedsurfacesc)Buoyancy & stabilityd)Application to manometry, pressure distribution & measurement3.Basic Integral Relationsa)Basic laws of fluid mechanics, Reynolds transport theoremb)Conservation of mass, linear momentum equation, angularmomentum theorem & energy equationc)The Bernouilli equation & frictionless flow4.Differential Relationsa)Acceleration of a fluidb)Differential equations of mass conservation, linear momentum,angular momentum & energyc)Boundary conditions for basic equationsd)Stream functions & potential functions, frictionless irrotationalflow5.Dimensional Analysis & Similitudea)Principle of dimensional homogeneity, the pi-theoremb)Nondimensionalization of basic equations, modeling and pitfalls6.Viscous Flow in Ductsa)Reynolds number regimes, laminar and turbulent flowb)Head loss, laminar fully developed pipe flowsc)Turbulence modeling, turbulent pipe flowsd)3-types of pipe flow problems, flow in non-circular ducts, minorlosses in pipe system7.Boundary Layer Flowsa)Reynolds number & geometry effects, the concept of boundarylayerb)Momentum integral estimates & boundary layer equationc)The flat plate boundary layerd)Boundary layer with pressure gradient, exp. external flows8.Inviscid Incompressible Flowa)Elementary plane flow solutionsb)Superposition of plane flow solutionsc)Plane flow past closed body shape, the Kutta-Joukowski lifttheoremd)Basic idea of computational fluid dynamicspressible Flowa)Introduction of compressible flow, speed of soundb)Adiabatic & isentropic steady flowc)Isentropic flow with area changes, chockingd)The normal shock wavee)Laval nozzlef)Two-dimensional supersonic flow, Prandtl-Meyer expansionwave。
《流体力学》教学大纲一、课程基本信息二、课程概述中文:本课程是工程力学专业的学类核心课程,以高等数学、理论力学、材料力学为前导课程,着重培养学生分析解决实际工程中流体力学问题的能力。
本课程主要包括流体的平衡、流体力学的基本方程、不可压缩无粘流动、涡旋运动、平面势流等,强调应用这些基本概念及定律分析与流体力学相关的工程问题,学生需了解流体力学的发展现状和趋势,理解流体力学中的基本概念、基本理论及基本定律,掌握流体力学的实验、分析与数值计算的基本技能与基本方法,并能灵活运用这些基本概念及定律分析与流体力学相关的工程问题。
通过学习本课程,让学生学会流体力学基本理论,获得解决流体工程问题的基本技能,锻炼和提升对复杂的流体工程问题进行简化,从而建立数学模型并进行求解的能力。
英文:This is a bas ic course for majors of engineering mechanics, aiming at students’ physical concepts and basic principles commonly used to analyze engineering problems related to fluid mechanics, thus laying a solid foundation for their research and design in aerospace, mechanical, civil, chemical, environmental and ocean. Theapplications of the dimensional and order analysis method in engineering are emphasized in this course. The study of this course develops the students’ ability to simplify the complex problems, prese nt and solve the mathematic model of related engineering problems. The main contents of this course are the basic equations of fluid mechanics, incompressible in-viscid flow, the motion of vortex, dimensional analysis, incompressible viscid flow. Prerequisites: Advanced Mathematics, Mathematics Physics Equation, Field Theory,Theoretical Mechanics,Mechanics of Materials.三、课程内容(一)课程教学目标设置本课程是为了让工程力学专业的学生对工程力学专业知识体系的重要组成板块之一的流体力学进行较为系统的学习,并深度掌握与理解,具备应用流体力学的基本知识和基本理论分析解决生产实际工程问题的能力。
《流体力学》教学大纲课程编码:632015课程名称:流体力学英文名称:Fluid Mechanics开课学期:4学时/学分:32/2 (其中实验学时:课内4学时,课外2学时)课程类型:必修课开课专业:建设工程学院勘查工程专业、建筑工程专业、卓越工程师班选用教材:于萍主编.《工程流体力学》,科学出版社2011年3月第二版。
主要参考书:1、张也影主编.《流体力学》,高等教育出版社1998年第二版。
2、孔珑主编.《工程流体力学》,北京大学出版社1982年版。
3、归柯庭等编.工程流体力学科学出版社2()05年版。
4、李诗久:《工程流体力学》,机械工业出版社1989年版。
5.、A. J. Ward-Smith : ^Internal Fluid Flow》,1980 版一、课程性质、目的与任务工程流体力学是动力、能源、航空、环境、暖通、机械、力学、勘探等专业的重要专业基础课。
通过系统学习流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;在实验能力、运算能力和抽象思维能力方面受到进一步严格的训练,培养学生具有对简单流体力学问题的分析和求解能力;掌握一定的实验技能,学会应用基本规律来处理和解决实际问题。
为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。
流体力学学科既是基础学科,又是用途广泛的应用学科,在教学过程中要综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行机械工程技术人员所需的基本训练,为学生进一步学习有关专业课程和有目的从事机械设计工作打下基础。
二、教学基本要求通过本课程的学习,学生应到达以下基本要求:1、掌握流体力学的基本概念、基本规律、基本的计算方法。
2、能推导一些基本公式和方程,明确方程的物理意义。
3、能独立完成基本的实验操作,通过实验,学会熟练运用基本公式。
4、具有分析实验数据和编写实验报告的能力。
5、通过研究型实验工程,使学生初步具有一定的创新能力。
流体力学实验教学大纲流体力学实验教学大纲引言:流体力学是研究流体运动和流体力学性质的学科,对于工程领域的学生来说,掌握流体力学的基本理论和实验技能至关重要。
为了培养学生的实践能力和科学思维,流体力学实验教学是不可或缺的一部分。
本文将介绍一份流体力学实验教学大纲,旨在帮助学生全面掌握流体力学实验的基本内容和方法。
一、实验目的流体力学实验旨在帮助学生:1. 理解流体的基本性质和运动规律;2. 掌握流体力学实验的基本操作技能;3. 培养科学实验的观察、分析和判断能力;4. 培养团队合作和沟通能力。
二、实验内容1. 流体的基本性质实验a. 测量液体的密度和表面张力;b. 研究流体的压强和压力分布;c. 探究流体的黏性和黏度。
2. 流体静力学实验a. 研究流体的静压力和压力分布;b. 探究浮力和浮力原理;c. 测量流体的压力中心和压力力矩。
3. 流体动力学实验a. 研究流体的速度和流量;b. 探究流体的雷诺数和流动稳定性;c. 测量流体的流速分布和流体动量。
4. 流体实验的数据处理和分析a. 使用实验数据进行曲线拟合和误差分析;b. 运用统计方法对实验结果进行处理;c. 利用图表和报告呈现实验结果。
三、实验要求1. 实验前的准备a. 提前阅读实验教材和实验指导书;b. 学习相关实验操作技巧;c. 熟悉实验仪器和设备的使用方法。
2. 实验过程中的注意事项a. 严格遵守实验室安全规定;b. 注意实验操作的准确性和稳定性;c. 记录实验数据和观察结果。
3. 实验后的总结与报告a. 对实验结果进行分析和总结;b. 撰写实验报告,包括实验目的、方法、结果和分析;c. 参与实验小组的讨论和交流。
四、实验评价1. 实验报告的评分标准a. 实验目的和方法的描述准确性;b. 实验数据的收集和处理能力;c. 实验结果的分析和结论的合理性;d. 实验报告的格式和语言表达。
2. 实验操作的评分标准a. 实验操作的准确性和技巧;b. 实验数据的准确性和稳定性;c. 实验仪器和设备的使用方法。
《流体力学》教学大纲课程名称:流体力学英文名称: Fluid Mechanics一、本课程的地位、作用与任务《流体力学》是机械工程专业的一门技术基础课程,是研究流体静止和运动的力学规律,以及在工程中的应用。
课程着重阐明流体力学的基本物理现象、基本概念、基本原理和规律,及这些规律在工程实际问题中的应用,同时培养学生分析、解决问题的能力。
通过本课程的学习,为学生今后从事机械工程领域的科研工作奠定基础。
二、课程内容与基本要求(一)绪论1.学习内容:流体的主要力学性质,作用在流体上的力,流体的力学模型。
2.学习重点和难点:重点是流体的主要力学性质中的粘性;难点是应用牛顿内摩擦定律求解粘性切应力。
3.学习目的和要求:通过本章的学习,必须了解流体力学研究的内容,流体的压缩性和热胀性的计算公式,粘性及粘性力,流体的表面张力。
掌握用牛顿内摩擦定律求解在不同条件下粘性切应力的方法。
(二)流体静力学1.学习内容:流体静压强及其特性、分布规律,压强的计算基准和量度单位,作用于平面、曲面的液体压力,流体平衡微分方程,流体的相对平衡。
2.学习重点和难点:重点是流体压强的分布公式,作用于平面、曲面液体压力的计算公式及方法,以及流体处于相对平衡时流体压强的分布规律;难点是流体作用于平面时压力作用点的位置计算,作用于曲面时压力体的计算,处于相对静止时流体压强分布规律的计算。
3.学习目的和要求:通过本章的学习,掌握静止流体的压强计算,掌握计算静止流体在平面上的压力大小、方向及作用点的方法,掌握计算静止流体在曲面上作用力的水平分量、竖直分量、合压力的作用方向。
了解利用流体的平衡微分方程,对处于相对平衡状态下流体的压力分布公式进行推导。
(三)流体运动学基础1.学习内容:描述流体运动的两种方法,流体动力学的基本概念、连续性方程。
2.学习重点与难点:重点是流体质点加速度的计算公式,流线和迹线的异同,定常流和非定常流、均匀流、渐变流、急变流的定义;难点是连续性方程的公式推导及应用。
流体⼒学课程教学⼤纲《流体⼒学》课程教学⼤纲⼀、课程基本信息1、课程代码:03300102、课程名称(中/英⽂):流体⼒学/Fluid Dynamics3、学时/学分:48/64、先修课程:⾼等数学 (上、下)、理论⼒学,1110011/1110012/06100405、⾯向对象:热能与动⼒⼯程专业和机械设计制造及其⾃动化专业的本科⽣6、开课院(系):航海学院机械⼯程与⾃动控制系7、教材、教学参考书:教材:《流体⼒学》、景思睿张鸣远编著、西安交通⼤学出版社、2001年7⽉;教学参考书:《⼯程流体⼒学》、归柯庭等编著、科学出版社、2003年7⽉;《流体⼒学》、吴望⼀主著、北京⼤学出版社、1983年3⽉。
⼆、课程性质和任务《流体⼒学》为⾮流体⼒学专业的机械制造、动⼒⼯程、能源、环境与化学⼯程等类专业的重要技术基础课。
通过本课程讲述将使学⽣掌握基础的流体⼒学知识,并对后续专业课程的学习及相关专业⼯作的开展奠定初步的流体⼒学理论基础。
三、教学内容和基本要求《流体⼒学》课程在内容设置上既着眼于本科⽣未来⼯作和⾼技术发展的需要,也兼顾到本科⽣急需掌握的基础理论和基础专业知识。
主要讲述内容包括:流体及其物理性质,流体静⼒学、流体运动⼒学基础、流体动⼒学基础、相似原理与量纲分析、理想不可压缩流体的定常流动、通道内的粘性流动、粘性不可压流体绕物体流动等。
本课程讲述总计需48学时,具体教学内容和基本要求如下: 第⼀章流体及其主要物理性质(4)主要内容:1、流体与连续介质模型;2、流体的黏性;3、流体的可压缩性;4、作⽤在流体上的⼒。
基本要求:掌握流体的基本物理性质;理解连续介质模型的含义。
第⼆章流体静⼒学(6)主要内容:1、流体静压强及其特性;2、静⽌流体平衡微分⽅程式;3、重⼒场中静⽌流体内的压强分布及压强测量;4、作⽤在平⾯上的流体静压⼒;5、作⽤在曲⾯上的流体静压⼒及浮⼒。
基本要求:掌握流体静压强的基本特性;掌握流体静⼒学的基本原理;了解压强常⽤的测量⽅法;掌握平⾯及曲⾯上流体静压⼒的计算。
教学大纲-流体力学《流体力学》教学大纲课程编号:081082A课程类型:专业基础课总学时:32 讲课学时:32 实验(上机)学时:0学分:2适用对象:安全工程先修课程:高等数学、大学物理、工程力学一、课程的教学目标通过本课程的教学与实践,使学生具备下列能力:目标1:掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法,并能在工程应用中熟练适用。
目标2:掌握流体静力学、流体动力学的基本原理和基本方程,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。
二、课程教学与毕业要求的对应关系2、课程教学过程与毕业要求的对应关系四、教学内容第一章绪论(1.2、2.1)1.1 概述流体力学定义、任务、研究方法;学习流体力学的意义;流体力学的发展简史1.2 流体的连续介质模型1.3 流体的主要物理性质惯性、重力特性、粘性、压缩性。
液体表面张力;表面张力系数,量纲,单位;毛细现象1.4作用在液体上的力课程的考核要求:了解流体力学研究任务、研究方法,理解连续介质假设,熟悉流体的主要物理属性,掌握流体力学对力的分类方法。
教学重点、难点:教学重点内容包括连续介质假设的内容,引入假设的优点;流体的粘性及牛顿内摩擦定律;作用于流体上的力。
第二章流体静力学(1.2、2.1)2.1 静止流体的应力特征压强定义;静止流体压强特性2.2静止流体的平衡微分方程欧拉平衡微分方程;欧拉平衡微分方程综合表达式;等压面2.3重力作用下的液体的压强分布水静力学基本方程;有关压强的基本概念2.4作用于平面上的静水总压力大小;方向;压力中心2.5作用于曲面上的静水总压力水平分力;铅垂分力,压力体;总压力;压力中心课程的考核要求:熟悉静水压强的两个特征;熟悉相对压强、绝对压强、真空压强的定义与相互关系;熟悉等压面的概念及等压面的特性;灵活运用水静力学基本方程及等压面概念求解静止流体中任一点的压强;会画静水压强分布图及压力体图;掌握平面及曲面静水总压力的计算方法教学重点、难点:静水压强分布图的绘制;平面上静水总压力的计算;曲面静水总压力的水平分力的压强分布图画法及其计算;曲面静水总压力的铅垂分力的压力体图画法及其计算。
《流体力学》教学大纲第一章绪论了解流体力学的任务、与科学及工程技术的关系、在推动社会发展中的作用;了解流体力学的研究方法。
第二章流体及其物理性质理解质点、质元概念和连续介质假设;理解流体的主要物理性质,特别是易变形性和粘性;掌握牛顿粘性定律和粘度计算;了解无粘性流体与粘性流体、可压缩流体与不可压缩流体分类。
第三章流动分析基础理解描述流体运动的数学方法,理解描述流体运动的几何方法;掌握流线和迹线方程;掌握流体质点导数表达式;了解流体的变形特性;理解流体分类,掌握层流和湍流判别。
第四章微分形式的基本方程理解微分形式的连续性方程;理解作用在流体之上的力;理解N-S 方程及其意义;掌握静止重力流体中的压强分布规律及计算;了解运动流体中的压强分布特点。
第五章积分形式的基本方程掌握积分形式的连续性方程及其应用;掌握伯努利方程及其应用;掌握积分形式的动量方程及其应用;了解动量矩方程和能量方程。
第六章量纲分析与相似原理掌握量纲分析法及其应用;理解相似概念和相似原理;掌握重要的相似准则数及应用。
第七章流体的平衡掌握流体静力学基本方程;了解相对平衡问题;掌握静止流体对平壁和曲壁总压力计算;了解浮力和稳定性。
第八章不可压缩粘性流体平面势流了解无粘性流体无旋流动一般概念;掌握速度势、流函数概念和计算;理解平面势流和基本解;了解绕机翼和叶栅的平面势流。
第九章不可压缩粘性流体内流了解管道入口段流动;理解二元平板间粘性流动;掌握圆管泊肃叶公式及其应用;了解湍流概念;掌握圆管沿程损失计算;理解局部损失概念;了解明渠均匀流。
第十章不可压缩粘性流体外流理解边界层概念和普朗特边界层方程;掌握边界层厚度计算;掌握无压强梯度平板边界层近似计算;理解边界层分离概念;理解绕流物体阻力;了解自由湍流射流。
第十一章可压缩流体流动基础理解声速、马赫锥与激波概念;掌握等熵流伯努利方程和气动函数计算;理解一维变截面管定常等熵流动;了解摩擦与热交换等截面管道流;掌握正激波气动函数计算;了解二维超声速流动。
《流体力学》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:本课程是一门重要的基础理论课程,同时也是机械工程等相关专业的专业技能基础课。
通过学习本课程,学生将能够正确理解和掌握流体力学的基本概念、基本理论和基本方法。
这将有助于培养学生独立地分析和解决从工程实践中简化出来的流体力学问题的能力,为进一步学习专业课程、从事技术工作、拓展新知识、进行涉及流体的科学研究以及解决机械领域复杂工程问题奠定坚实的基础。
(二)课程目标:课程目标1:1.掌握流体在静止状态下的力学分析方法,了解流体与固体之间的相互作用力,熟悉流体运动的数学描述和几何表示方法。
培养学生对流体微团运动变形的分析能力,熟练运用连续方程求解简易模型的流体特性。
具备在机械设计领域建立数学模型并求解的能力。
1.2 掌握雷诺运输公式,根据质量、动量和能量守恒原理,推导连续方程、能量方程和动量方程的微分和积分形式;熟悉理想流体运动欧拉方程、伯努利方程及其积分和微分形式。
通过这些知识,培养学生在机械设计和测控方面的实际技能,确保他们能够运用流体力学知识建立数学模型并解决复杂的工程问题。
课程目标2:2.1 熟悉流体力学中的量纲分析方法和动力相似分析方法,了解通过实验和理论相结合的方式来探索流动过程规律。
培养学生运用量纲分析和动力相似理论解决简单流动问题的能力;并能运用流体力学原理,识别和提炼机械产品设计方面的复杂工程问题。
2.2掌握不可压缩粘性流体的N-S方程,明确湍流的概念;掌握圆管湍流运动特性和管道阻力的计算,以及流体的阻力和阻力系数的计算;借助流体力学实验,具备机械工程中测控领域复杂工程问题的提炼和解决能力。
课程目标3:掌握流体力学相关实验,了解现代流体力学模拟技术的最新动态,了解主流计算流体力学(CFD)工业领域的应用;能针对具体的机械工程专业中的流体力学问题,开发或选用合适的计算软件、仿真软件等进行模拟和预测。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表三、教学内容(四号黑体)(具体描述各章节教学目标、教学内容等。
《流体⼒学》教学⼤纲《流体⼒学》教学⼤纲⼀、基本信息⼆、教学⽬标及任务“流体⼒学”作为环境⼯程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。
学⽣通过该课程的学习,掌握流体的基本性质,流体静⽌与运动的规律及流体与边界的相互作⽤、明渠流、管流、堰流等知识,具备流体计算(⽔⼒计算)的基本技能,为解决环境⼯程专业中的相关流体⼒学问题奠定基础。
本课程⽀撑环境⼯程专业毕业要求、、、、和。
三、学时分配教学课时分配四、教学内容及教学要求绪论第⼀节流体⼒学的任务和发展简史第⼆节连续介质假定与流体的主要物理性质. 连续介质假设.流体的主要物理性质习题要点:⽜顿内摩擦定律的理解与应⽤第三节作⽤在流体上的⼒习题要点:质量⼒与表⾯⼒的概念第四节流体⼒学的研究⽅法本章重点、难点:黏性、⽜顿内摩擦定律、质量⼒、表⾯⼒、连续介质概念。
本章教学要求:了解流体⼒学的发展简史,了解本课程在专业及⼯程中的应⽤;掌握流体主要物理性质,特别是黏性和⽜顿内摩擦定律;理解作⽤在流体上的⼒;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的⼀般⽅法。
第⼀章流体静⼒学第⼀节流体静压强特性第⼆节流体平衡微分⽅程. 流体平衡微分⽅程. 流体平衡微分⽅程的积分. 等压⾯习题要点:流体平衡微分⽅程的推导第三节流体静⼒学基本⽅程. 流体静⼒学基本⽅程. 压强的表⽰⽅法3.测压计习题要点:流体静⼒学基本⽅程的应⽤,压强表⽰与计算第四节液体的相对平衡. 液体的相对平衡. 液体的相对平衡在⽣产中的应⽤习题要点:等压⾯⽅程,压强分布规律第五节作⽤在平⾯上的液体总压⼒. 图解法. 解析法习题要点:平⾯静⽔总压⼒的计算第六节作⽤在曲⾯上的液体总压⼒习题要点:曲⾯静⽔总压⼒的计算本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压⼒体图,作⽤于平⾯壁和曲⾯壁上的液体总压⼒,流体平衡微分⽅程的建⽴与应⽤。
本章教学要求:理解流体静压强的概念;掌握静⽔压强的特性,压强的表⽰⽅法及计量单位;掌握流体微分⽅程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算⽅法;掌握作⽤于平⾯壁和曲⾯壁上的液体总压⼒的计算。
流体力学实验教学大纲01.教学单位名称:机械科学与工程学院02.实验中心名称:机械电子工程实验室03.课程名称:流体力学04.课程代码:41212105.课程类别:学科基础课06.课程性质:必修07.课程学时:70学时,其中含实验6学时。
08.课程学分:409.面向专业:工程力学10 .实验课程的教学任务、要求和教学目的流体力学作为工程力学专业的一门学科基础课,流体力学实验是流体力学课程中一个重要的教学环节。
流体力学理论通过实验得以验证和检验,使学生掌握流体力学的基本概念、基本理论和解决流体力学问题的基本方法,具备一定的实脸技能,培养分析和解决工程实际中有关流体力学问题的能力。
本实验课的目的是使学生在实验中观察水流现象,增强感性认识,巩固理论知识的学习;通过量测实验验证所学流体力学原理,提高理论分析的能力;学会和使用基本仪器的方法,掌握一定的实验技能,了解现代测量技术;培养分析实验数据、整理实验成果和编写实验报告的能力。
11 .学生应掌握的实验技术及实验能力(1) 了解流体的一些性质,如易流性、压缩性、粘性等。
(2)掌握描述流体运动的两种方法:欧拉法和拉格朗日法,并熟悉两种方法之间的转换。
(3)掌握流体动力学积分形式的控制方程及应用。
(4)掌握流体动力学微分形式的控制方程;定常流中的几个常用公式;定常流体控制体积分型守恒方程的应用。
(5)掌握流体静力学的基本方程和积分及其应用。
(6)掌握理想流体运动学的理论分析方法和计算方法以及理想流体的性质。
(7)掌握不可压缩流体的平面和轴对称无旋运动的基本方法和理论。
(8)能进行液流有关参量测试,具有分析实验数据和编写实验报告的能力。
12.开设实验项目[1]王辉等编.工程流体力学实验指导书自编200001[2].毛根海等.流体力学实验CA1浙江大学14.考核要求、考核方式及成绩评定标准本课程共70学时,其中实验6学时,占总学时的8.5%。
教学成绩占本课程总成绩90%。
《流体力学》教学大纲一、基本信息二、教学目标及任务“流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。
学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。
本课程支撑环境工程专业毕业要求1、2、3、4、5和6。
三、学时分配教学课时分配四、教学内容及教学要求绪论第一节流体力学的任务和发展简史第二节连续介质假定与流体的主要物理性质1. 连续介质假设2. 流体的主要物理性质习题要点:牛顿内摩擦定律的理解与应用第三节作用在流体上的力习题要点:质量力与表面力的概念第四节流体力学的研究方法本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。
本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。
第一章流体静力学第一节流体静压强特性第二节流体平衡微分方程1. 流体平衡微分方程2. 流体平衡微分方程的积分3. 等压面习题要点:流体平衡微分方程的推导第三节流体静力学基本方程1. 流体静力学基本方程2. 压强的表示方法3.测压计习题要点:流体静力学基本方程的应用,压强表示与计算第四节液体的相对平衡1. 液体的相对平衡2. 液体的相对平衡在生产中的应用习题要点:等压面方程,压强分布规律第五节作用在平面上的液体总压力1. 图解法2. 解析法习题要点:平面静水总压力的计算第六节作用在曲面上的液体总压力习题要点:曲面静水总压力的计算本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。
本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。
第二章流体动力学基础第一节描述流体运动的二种方法1. 拉格朗日法2. 欧拉法3. 流线迹线脉线习题要点:流线与迹线方程求解第二节描述流体运动的概念习题要点:掌握流体运动的概念第三节流体运动的类型习题要点:掌握流体运动类型及其特性第四节流体运动的连续性方程1. 流体运动的连续性微分方程2. 总流的连续性方程3. 流体流量的测量习题要点:连续性方程推导与应用;流量计的类型及原理第五节流体微元运动的基本形式1. 流体微元运动形式的分析2. 速度分解定理习题要点:流动线变率、角变率、角转速计算第六节无涡流和有涡流习题要点:流动无涡与有涡的判别第七节理想流体运动微分方程1. 欧拉运动微分方程2. 葛罗米柯(兰姆)运动微分方程习题要点:运动微分方程的推导第八节理想流体元流能量方程1. 理想流体运动微分方程的积分. 元流的伯努利方程2. 功能原理推导理想流体元流伯努利方程3. 理想流体元流伯努利方程的物理意义和几何意义4. 皮托管习题要点:皮托管的应用第九节实际流体的运动微分方程1. 以应力表示的实际流体的运动微分方程2. 流体质点的应力状态3. 实际流体的运动微分方程-纳维-斯托克斯方程习题要点:运动微分方程的推导第十节实际流体总流的伯努利方程1. 渐变流过水断面上动水压强的分布规律2. 恒定总流能量方程3. 总流能量方程的应用条件和应用方法4. 文丘里管习题要点:总流能量方程的应用第十一节总流的动量方程1. 总流的动量方程2. 总流动量方程的应用条件和应用方法习题要点:总流动量方程的应用本章重点、难点:迹线与流线,流体流动的基本概念,无旋流与有旋流,连续性方程、伯努利方程、动量方程及其应用。
本章教学要求:了解描述流体运动的两种方法,建立以流场为对象的描述流体运动的概念;了解流体微团运动的基本形式,理解有势流动和有旋流动,能判别有涡流与无涡流;了解流体运动的微元分析法;掌握理想流体运动微分方程及其伯努利积分;了解纳维—斯托克斯方程及其各项的物理意义;掌握流体运动的总流分析法,能综合运用连续性方程、总流能量方程和动量方程计算总流问题。
第三章量纲分析与相似原理第一节量纲分析1. 量纲和单位2. 量纲和谐原理3. 瑞利法4. π定理习题要点:π定理的应用第二节流动相似的概念1. 几何相似2. 运动相似3. 动力相似4. 初始条件与边界条件相似5. 牛顿一般相似原理习题要点:相似概念的理解第三节相似准则1. 重力相似准则2. 粘滞力相似准则3. 压力相似准则4. 相似准则5. 表面张力相似准则习题要点:相似准则的应用第四节准数方程习题要点:准数方程概念理解第五节模型试验1. 雷诺模型2. 弗劳德模型习题要点:原型与模型的转换本章重点、难点:量纲分析法,相似原理,相似准则。
本章教学要求:理解相似的概念、相似准则和对实验的指导意义;掌握量纲分析方法及其初步运用;了解模型实验方法及内容。
第四章流动阻力和能量损失第一节流动的2种流动形态—层流和湍流1. 雷诺实验—层流和湍流2. 流态的判别准则—临界雷诺数习题要点:流态的判别第二节恒定均匀流基本方程—沿程损失的表示式1. 均匀流基本方程2. 沿程损失的普遍表示式习题要点:均匀流基本方程推导,切应力分布第三节层流沿程损失的分析和计算习题要点:沿程阻力损失的计算第四节湍流理论基础1. 层流向湍流的转变2. 湍流的脉动与时均法3. 湍流的基本方程—雷诺方程4. 湍流的半经验理论5. 粘性底层.光滑壁面.粗糙壁面习题要点:湍流理论理解第五节湍流沿程损失的分析和计算1. 尼古拉兹实验2. 湍流光滑区沿程阻力系数的确定3. 湍流粗糙区沿程阻力系数的确定4. 实用管道沿程阻力系数的确定5. 非圆形管道沿程损失的计算6. 计算沿程损失的经验公式习题要点:沿程损失的计算第六节局部损失的分析和计算1. 局部损失的分析2. 局部损失的计算习题要点:局部损失的计算本章重点、难点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。
本章教学要求:了解流动阻力和水头损失的分类;雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;了解沿程水头损失与切应力的关系;掌握圆管过流断面上的流速分布、水头损失与平均流速的关系,沿程阻力系数与雷诺数的关系;了解紊流脉动与时均化,紊动附加切应力,混合长度理论;掌握阻力系数的确定方法;掌握管路沿程损失和局部损失的计算;了解边界层概念,边界层的分离,绕流阻力。
第五章有压管流第一节简单短管中的恒定有压流1. 自由出流2. 淹没出流3. 简单短管中有压流计算的基本问题和方法习题要点:简单短管恒定有压流的计算第二节简单长管中的恒定有压流习题要点:简单长管恒定有压流的计算第三节复杂长管中的恒定有压流1. 串联管道2. 并联管道习题要点:复杂长管恒定有压流的计算第四节沿程均匀泄流管道中的恒定有压流1. 沿程连续均匀泄流2. 沿程多孔口等间距等流量出流习题要点:沿程均匀泄流管道计算第五节管网中的恒定有压流计算基础1. 枝状管网2. 环状管网习题要点:枝状管网计算、环状管网平差计算本章重点、难点:重点:短管、长管水力计算。
本章教学要求:掌握短管(虹吸管、水泵吸水管、有压涵管等)的水力计算、简单长管、串联并联长管、沿程泄流、枝状管网的水力计算,理解环状管网的水力计算的原理与方法,了解有压管路中水击产生的原因及危害预防。
第六章孔口、管嘴、闸孔出流和堰流第一节恒定薄壁孔口出流1. 孔口出流分类2. 薄壁小孔口自由出流3. 薄壁大孔口自由出流4. 薄壁孔口淹没出流习题要点:孔口出流计算第二节管嘴出流1. 圆柱形外管嘴出流2. 其他类型管嘴的出流习题要点:管嘴出流流量计算第三节闸孔出流1. 无底坎闸孔出流流动现象的分析2. 无底坎闸孔自由出流的基本公式3. 无底坎闸孔淹没出流的基本公式习题要点:闸孔流量的计算第四节堰流1. 薄壁堰溢流2. 实用堰溢流3. 宽顶堰溢流习题要点:堰流流量计算第五节水工建筑物下游的水流衔接与消能1. 底流衔接的形式2. 底流衔接的基本关系式3. 消力池简介习题要点:衔接方式的判别第六节小桥孔径的水力计算习题要点:小桥孔径的水力计算本章重点、难点:实际流体三大方程的应用与各种流动情况下的边界条件。
本章教学要求:掌握孔口、管嘴的基本公式及其应用;掌握闸孔出流、堰流的基本计算方法。
第七章明渠流第一节恒定明渠均匀流1. 明渠均匀流的特性与其发生条件2. 明渠均匀流基本公式3. 明渠的水力最优断面和允许流速4. 明渠均匀流水力计算的基本问题和方法习题要点:明渠均匀流水力计算第二节恒定明渠流的流动型态和若干基本概念1. 缓流和急流2. 微波的波速.弗劳德数3. 断面单位能量.临界水深.临界底坡习题要点:流动形态的判别,概念理解第三节恒定明渠流流态转换时的局部水力现象—水跃和跌水1. 水跃2. 跌水习题要点:水跃能量损失和水跃长度计算本章重点、难点:明渠的分类,水力计算的内容与方法,均匀流特征,水力最优断面。
本章教学要求:了解明渠流动的特点;掌握水力最优断面和允许流速的概念,掌握明渠均匀流各类问题的水力计算方法及复式断面、无压圆管的水力计算;了解明渠流动状态;了解水跃和跌水。
第八章渗流第一节渗流模型习题要点:渗流模型概念理解第二节渗流基本定律—达西定律1. 达西定律2. 达西定律的适用范围3. 渗透系数及其确定方法习题要点:达西定律的应用本章重点、难点:达西定律、恒定渐变渗流的裘皮依公式。
本章教学要求:了解渗流现象、渗流模型,理解渗流达西定律;理解均匀渐变渗流断面流速均匀分布,了解渐变渗流基本微分方程及浸润面的概念;掌握地下水渐变渗流的裘皮依公式;掌握井的渗流计算;了解渗流对建筑物安全稳定的影响。
五、考核方式及要求期末闭卷考试(55-60%)、与平时考核(40-45%)相结合。
平时成绩包括课后作业、课堂讨论、出勤等。
作业内容以教材中的课后习题为主,通过习题练习,逐步加深对课程中各种概念的理解、熟悉分析和计算方法,达到掌握课程主要内容的目的。
期末闭卷考试题型以计算题为主,均为各章应知应会的基本知识点。
六、推荐教材及教学参考书教材:《工程流体力学》,闻德荪等编著,高等教育出版社,2004年第2版,标准书号:ISBN7-04-013084-X。
参考书:《流体力学》,刘鹤年主编,中国建筑工业出版社,2004年第2版,标准书号:ISBN9787112060573。
《水力学》,吴持恭编著,高等教育出版社,2008年第4版,标准书号:ISBN978704022677。