微生物计数方法
- 格式:doc
- 大小:110.50 KB
- 文档页数:6
微生物菌落计数方法公式
微生物菌落计数方法是一种常用的微生物检测方法,具有快速、简便、实用的特点。
下面我们详细介绍微生物菌落计数方法,并给出具体的
计算公式。
一、微生物菌落计数方法
1. 样品制备:将待检样品用无菌物质稀释到合适的浓度,以便以下操作。
2. 平板涂布:将稀释后的样品倒入培养基中,用无菌铁环平均涂布在
琼脂平板上,使每个平板上菌液涂布均匀。
3. 培养:将涂好的琼脂平板置于恒温恒湿培养箱内,在适宜的培养条
件下进行菌落生长。
4. 计数:菌落生长一定时间后,在合适的光照条件下观察并计数。
二、微生物菌落计数公式
1. 常见单位及定义:
(1)CFU:Colony Forming Unit,即菌落形成单位。
(2)MPN:Most Probable Number,即最可能数量。
2. CFU计算公式:
CFU = (菌落数 / 涂样量)×稀释倍数
3. MPN计算公式:
(1)假定重复涂法:MPN = (a / b)×所需稀释倍数
其中,a为总正涂数,b为总涂数。
(2)浓度穿网法:MPN = 浓度对应格数
对于MPN计算法,还需根据不同的稀释方法,选择相应的查表文献进行计算。
在使用MPN方法时,计算前应根据实际情况,选择合适的稀释倍数。
以上就是微生物菌落计数方法及计算公式的详细介绍。
通过该方法,可以快速、简便、准确地对微生物进行检测,是一种常用的微生物质量控制手段。
微生物的显微直接计数法一、实验目的了解血球计数板的构造、计数原理和计数方法,掌握显微镜下直接计数的技能。
二、实验原理测定微生物细胞数量的方法很多,通常采用的有显微直接计数法和平板计数法。
显微计数法适用于各种含单细胞菌体的纯培养悬浮液,如有杂菌或杂质,常不易分辨。
菌体较大的酵母菌或霉菌孢子可采用血球计数板,一般细菌则采用彼得罗夫·霍泽(Petrof Hausser)细菌计数板。
两种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。
而血球计数板较厚,不能使用油镜,计数板下部的细菌不易看清。
血球计数板是一块特制的厚型载玻片,载玻片上有4条槽而构成3个平台。
中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各有一个计数区(图21-1),计数区的刻度有两种:一种是计数区分为16个大方格(大方格用三线隔开),而每个大方格又分成25个小方格;另一种是一个计数区分成25个大方格(大方格之间用双线分开),而每个大方格又分成16个小方格。
但是不管计数区是哪一种构造,它们都有一个共同特点,即计数区都由400个小方格组成。
计数区边长为1mm,则计数区的面积为l mm2,每个小方格的面积为1/400mm2。
盖上盖玻片后,计数区的高度为0.1mm,所以每个计数区的体积为0.1mm3,每个小方格的体积为1/4000mm3。
使用血球计数板计数时,先要测定每个小方格中微生物的数量,再换算成每毫升菌液(或每克样品)中微生物细胞的数量。
已知:1mm3体积=10 mm×10 mm×10 mm= 1000mm3所以:1mm3体积应含有小方格数为1000mm3/1/4000mm3=4×106个小方格,即系数K=4×106。
因此:每ml菌悬液中含有细胞数= 每个小格中细胞平均数(N)×系数(K)×菌液稀释倍数(d)三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)斜面或培养液。
微生物菌落总数计数方法微生物菌落总数计数方法有很多种,下面列举了其中的50种方法并对其进行详细描述:1. 胶平板法:将微生物样品通过稀释后均匀涂布在富营养培养基上,培养后统计菌落数量。
2. 液体计数法:使用专门的装置进行微生物菌落计数,例如波形计数器。
3. 膜过滤法:将微生物样品通过膜过滤器,然后将膜放到富养分培养基上进行培养和计数。
4. 容积法:将微生物样品通过稀释,然后使用容积计数器对其进行计数。
5. 水平采样法:将微生物样品通过固体培养基,然后根据采样水平进行菌落计数。
6. 微阵列计数法:使用微阵列技术进行微生物菌落计数,高通量,自动化程度高。
7. 波数计数法:通过光学检测装置对微生物样品的波数进行计数。
8. 流式细胞技术:通过流式细胞仪对微生物样品中的细胞进行计数和分析。
9. PCR技术:通过定量PCR对微生物样品中的特定基因进行定量,从而间接计算出微生物菌落总数。
10. 分光光度计法:通过分光光度计测定微生物样品中生物的光学密度,进而计算其菌落总数。
11. 过膜法:利用薄膜将微生物分布均匀后计数。
12. 电子计数法:通过电子显微镜进行微生物菌落计数。
13. 温度计数法:根据微生物在不同温度下的生长特性进行计数。
14. 荧光法:利用荧光染料对微生物菌落进行标记并计数。
15. 光学显微镜法:利用光学显微镜对微生物进行直接观察和计数。
16. 超声波法:利用超声技术将微生物分散均匀后计数。
17. 图像分析法:对微生物样品在图像上的特征进行分析,并计算菌落总数。
18. 颜色计数法:通过颜色反应对微生物菌落进行计数。
19. 电泳计数法:通过蛋白电泳对微生物进行计数。
20. 微型生物反应器法:利用微型生物反应器的特性对微生物进行计数。
21. 电化学法:通过电化学技术对微生物样品进行计数。
22. 生物传感器法:利用生物传感器对微生物进行快速计数。
23. 感光计数法:利用光敏感材料对微生物进行计数。
24. 气溶胶计数法:利用气溶胶技术对微生物进行计数。
食品中微生物数量的计算方法主要有:
1. 直接计数法(光测定法):这是一种传统的计数方法,它通过显微镜或扫描计数仪来直接计数。
这种方法适用于能被杀死并能通过显微镜或扫描仪观察的微生物,如细菌和酵母。
2. 显微镜检视法:这是一种基于显微镜的计数方法,它可以在显微镜下观察到各种微生物,包括细菌、酵母、霉菌和原生动物。
通过计数每个视野中的微生物数量,可以计算出总体积中的微生物数量。
3. 电子探测器计数法:这是一种基于电子探测器的计数方法,它使用电子探测器来检测微生物的代谢活动或物理特征,如细胞大小、密度或形状。
这种方法适用于各种类型的微生物,包括细菌、酵母和霉菌。
4. 培养基计数法:这是一种基于培养基的计数方法,它通过在培养基中生长微生物来计数。
通过在特定培养基中培养样品,可以观察到微生物的生长和繁殖,并使用显微镜或电子探测器进行计数。
需要注意的是,食品中微生物数量的计算方法取决于所使用的实验室技术和设备,以及所研究的微生物类型和数量。
在进行食品微生物数量计算时,应该遵循相关的实验室操作规程和质量控制措施,以确保结果的准确性和可靠性。
微生物量的测定方法
常见的微生物量测定方法包括:
1. 平皿计数法:将样品按一定稀释倍数加入琼脂平皿中,培养后通过计数器统计微生物在平皿上的数量,以此计算原样品中微生物的数量。
2. 滤膜计数法:将样品过滤后将滤膜放在富含营养的琼脂平板上培养,通过计数器统计滤膜上微生物的数量,以此计算原样品中微生物的数量。
3. 光密度法:利用菌落浑浊作用测定微生物规模大小的方法,称为“比色法”,并以光密度来表示菌落数量的多少。
4. 电极测定法:利用特定的氧化还原反应来测定微生物量,例如,生物化学需氧量(BOD)和化学需氧量(COD)。
5. 溶解氧测定法:利用溶解氧在水中的含量来推算微生物的存在量。
6. 分子生物学方法:利用PCR、DNA芯片等技术检测微生物数量,也可通过它们的遗传物质(如rRNA)来推算微生物的存在量。
微生物计数方法微生物计数是许多领域中重要的分析方法,包括环境科学、食品科学、医学和生物技术。
正确的计数方法能够准确地估计样品中微生物的数量,对于研究和工业应用都是至关重要的。
下面将介绍几种常用的微生物计数方法。
血细胞计数器法是一种使用显微镜进行微生物计数的经典方法。
该方法使用血细胞计数器对微生物样品进行计数,每个格子中的微生物数量被计算出来,然后进行统计分析。
此方法的优点是准确性高,但是耗时长,操作繁琐,需要熟练的操作人员。
流式细胞术是一种使用流式细胞仪进行微生物计数的现代方法。
该方法将微生物样品通过流式细胞仪进行计数和分析,能够快速准确地测定样品中的微生物数量和种类。
此方法的优点是速度快、精度高、可自动化操作,但是设备成本高,维护成本也较高。
自动细胞计数器法是一种使用自动细胞计数仪进行微生物计数的现代方法。
该方法使用自动细胞计数仪对微生物样品进行计数,能够快速准确地测定样品中的微生物数量和种类。
此方法的优点是速度快、精度高、可自动化操作,而且设备相对较为经济实惠,易于推广应用。
平板计数法是一种常用的细菌计数方法。
该方法将微生物样品涂布在平板上,培养后计算菌落数量,从而得出样品中的细菌数量。
此方法的优点是简单易行、成本低,但是结果受培养条件和操作者技能水平的影响,准确性相对较低。
不同的微生物计数方法具有不同的优缺点,应根据具体的研究目标和实际情况选择合适的方法。
为了提高计数的准确性,需要注意样品的采集、保存、制备和处理等方面的问题,确保样品的质量和代表性。
微生物的分离与计数是微生物学中重要的实验技术之一。
通过分离和计数,我们可以获得微生物群体的相关信息,如种类、数量、生长状况等,对于微生物学研究、应用以及工业生产等领域都具有重要的意义。
选择合适的培养基:根据目标微生物的种类和生长需求,选择适合的培养基。
培养基应具有营养丰富、透明度高、易于观察等特点。
制备样品:从目标环境中采集样品,如土壤、水、食品等,并进行预处理,以去除不需要的杂质和大型生物。
微生物的计数方法1.血细胞计数法将稀释的菌液样品滴在血细胞计数板上,在显微镜下计算4~5个中格的细菌数,并求出每个小格所含细菌的平均数,再以此为依据,估算总菌数。
①此法的缺点是不能区分死菌和活菌。
②对压在小方格界线上的细菌,应当取平均值计数。
③此法可用于测定培养液中酵母菌种群数量的变化2.稀释涂布平板法原理:每个活细菌在适宜的培养基和良好的生长条件下可以通过生长形成菌落。
培养基表面生长的一个菌落,来源于样品稀释液中的一个活菌。
①这一方法常用来统计样品中活菌的数目②统计的菌落数往往比活菌的实际数目低,原因是当两个活多个细胞连在一起时,平板上观察到的只是一个菌落。
因此统计结果一般用菌落数而不是用活菌数来表示。
③土壤、水、牛奶、食品和其他材料中所含细菌、酵母、芽孢与孢子等的数量均可用此法测定。
但不适于测定样品中丝状体微生物,例如放线菌或丝状真菌或丝状蓝细菌等的营养体等。
④此法若不培养成菌落,可通过将一定量的菌液均匀地涂布在玻片上的一定面积上,经固定染色后在显微镜下计数,这样又称涂片计数法。
染色可用台盼蓝,台盼蓝能使死细胞染成蓝色,可分别计数死细胞和活细胞。
3.滤膜法滤膜法是当样品中菌数很低时,可将一定体积的湖水、海水或饮用水灯样品通过膜过滤器。
然后将滤膜干燥、染色,并经处理使膜透明,再在显微镜下计算膜上(或一定面积上)的细菌数。
此法也可以通过培养观察形成的菌落数来推算样品中的菌数。
例如测定饮用水中大肠杆菌的数目:将已知体积的水过滤后,将滤膜放在伊红美蓝培养基上培养。
在该培养基上大肠杆菌的菌落呈现黑色,可根据培养基上黑色菌落的数目,计算出水样中大肠杆菌的数目。
此法也是统计样品中活菌的数目。
4.比浊法原理是在一定范围内,菌是悬液中细胞浓度与混浊度成正比,即与光密度成正比,菌越多,光密度越大。
因此可借助与分光光度计,在一定波长下,测定菌悬液的光密度,以光密度表示菌量。
实验测量时一定要控制在菌浓度与光密度成正比的线性范围内,否则不准确。
微生物数量的测定方法微生物数量的测定方法微生物是一类微小的生物体,包括细菌、真菌、病毒等。
它们广泛存在于自然界中的土壤、水体、空气中,也存在于人体内外。
了解微生物的数量对于环境监测、食品安全、医学诊断等领域具有重要意义。
本文将介绍几种常用的微生物数量测定方法。
1. 直接计数法直接计数法是最直接、最常用的微生物数量测定方法之一。
它通过显微镜观察和计数来确定微生物的数量。
首先,将待测样品制备成适当的悬浮液,然后在显微镜下观察,并使用计数器进行计数。
这种方法适用于细菌和酵母等较大的微生物。
但是,由于显微镜观察需要较高的技术水平和时间,所以无法快速测量大量样品。
2. 培养法培养法是一种常用的微生物数量测定方法,它通过培养微生物并计数生长的菌落来确定数量。
首先,将待测样品制备成适当的培养基,然后在恰当的温度和湿度条件下培养一段时间。
培养基中的微生物会形成可见的菌落,通过计数菌落的数量来确定微生物的数量。
这种方法适用于大部分微生物,但是它需要一定的培养时间,并且某些微生物可能无法在常规培养基上生长。
3. 膜过滤法膜过滤法是一种常用的微生物数量测定方法,它通过将待测样品过滤到膜上,并将膜培养在适当的培养基上来确定数量。
首先,将待测样品通过特定孔径的过滤器过滤,然后将过滤后的膜放置在培养基上培养。
培养基中的微生物会在膜上形成可见的菌落,通过计数菌落的数量来确定微生物的数量。
这种方法适用于水样、空气样等液态和气态样品。
4. 分子生物学方法分子生物学方法是一种新兴且快速发展的微生物数量测定方法。
它通过检测和分析微生物DNA或RNA来确定数量。
常用的分子生物学方法包括聚合酶链反应(PCR)、实时荧光定量PCR(qPCR)等。
这些方法可以快速、准确地测定微生物的数量,并且可以检测到少量微生物。
但是,分子生物学方法需要一定的实验设备和技术,并且对样品预处理要求较高。
总结起来,微生物数量的测定方法有直接计数法、培养法、膜过滤法和分子生物学方法等。
微生物限度计数方法微生物限度计数方法是微生物学研究中常用的一种实验方法,它通过将样品中的微生物进行定量计数,从而评估样品的微生物污染程度。
本文将对微生物限度计数方法进行详细介绍,希望能为微生物研究提供有指导意义的参考。
微生物限度计数方法通常包括以下几个步骤:1. 样品制备:首先,需要将待测样品制备成适当的形式,以便于对微生物进行计数。
例如,对于液态样品,可以采用稀释平板法或过滤法进行计数;对于固体样品,可以使用剁碎法或振荡法等方法进行处理。
2. 稀释平板法:稀释平板法是一种常用的微生物计数方法。
该方法的基本原理是将不同稀释倍数的样品溶液分别加到含有培养基的平板上,经过培养后,可以根据每个平板上微生物的生长数量来计算样品中微生物的含量。
这种方法要求制备一系列稀释液,将样品进行逐步稀释,并接种到含有培养基的平板上。
3. 过滤法:过滤法适用于液态样品的微生物计数,尤其是样品中微生物数量较高的情况。
该方法的原理是通过滤膜,将微生物过滤出来并附着在膜上,然后将滤膜放置在培养基上进行培养。
培养后,可以通过计数膜上微生物的数量来评估样品中微生物的含量。
过滤法具有操作简便、有效快速等优点,适用于大量样品的计数。
4. 其他方法:除了稀释平板法和过滤法,还有一些其他常用的微生物计数方法,如MPN法、薄膜法、电子计数法等。
这些方法各有特点,可根据实际研究需要选择合适的方法进行微生物计数。
微生物限度计数方法在微生物学研究中具有重要意义。
通过对样品中微生物的计数,可以评估其污染程度,为食品安全、医药生产、环境监测等领域提供可靠的数据依据。
同时,微生物限度计数方法也有助于监控微生物的生长趋势,预测潜在的微生物污染风险,并采取相应的控制措施。
总之,微生物限度计数方法是微生物学研究中必不可少的一部分。
通过了解和掌握不同的计数方法,科研人员可以准确评估样品中微生物的含量,并及时采取措施来控制微生物的污染传播。
相信本文的内容能够为微生物研究者提供有用的指导意义。
微生物计数法1)血球计数板法:血球计数板是一种有特别结构刻度和厚度的厚玻璃片,玻片上有四条沟和两条嵴,中央有一短横沟和两个平台,两嵴的表比两平台的表面高0.1mm,每个平台上刻有不同规格的格网,中央0.1mm2面积上刻有400个小方格。
通过油镜观察,统计一定大格内微生物的数量,即可算出1毫升菌液中所含的菌体数。
这种方法简便,直观,快捷,但只适宜于单细胞状态的微生物或丝状微生物所产生的孢子进行计数,并且所得结果是包括死细胞在内的总菌数。
2)染色计数法:为了弥补一些微生物在油镜下不易观察计数,而直接用血球计数板法又无法区分死细胞和活细胞的不足,人们发明了染色计数法。
借助不同的染料对菌体进行适当的染色,可以更方便的在显微镜下进行活菌计数。
如酵母活细胞计数可用美蓝染色液,染色后在显微镜下观察,活细胞为无色,而死细胞为蓝色。
3)比例计数法:将已知颗粒(如霉菌孢子或红细胞)浓度的液体与一待测细胞浓度的菌液按一定比例均匀混合,在显微镜视野中数出各自的数目,即可得未知菌液的细胞浓度。
这种计数方法比较粗放。
并且需要配制已知颗粒浓度的悬液做标准。
4)液体稀释法:对未知菌样做连续十倍系列稀释,根据估计数,从最适宜的三个连续的10倍稀释液中各取5毫升试样,接种1毫升到3组共15只装培养液的试管中,经培养后记录每个稀释度出现生长的试管数,然后查最大或然数表MPN(most probablynumber)得出菌样的含菌数,根据样品稀释倍数计算出活菌含量。
该法常用于食品中微生物的检测,例如饮用水和牛奶的微生物限量检查。
5)平板菌落计数法:这是一种最常用的活菌计数法。
将待测菌液进行梯度稀释,取一定体积的稀释菌液与合适的固体培养基在凝固前均匀混合,或将菌液涂布于已凝固的固体培养基平板上。
保温培养后,用平板上出现的菌落数乘以菌液稀释度,即可算出原菌液的含菌数。
一般以直径9cm的平板上出现50-500个菌落为宜。
但方法比较麻烦,操作者需有熟练的技术。
微生物计数方法有哪些
微生物计数方法有以下几种:
1. 平板法:将微生物样本或其稀释液均匀涂布在专用培养基的平板上,培养一定时间后,根据形成的菌落数量进行计数。
2. 液体计数法:使用计数室和显微镜,在显微镜下直接观察并计数液体中的微生物数量。
3. MPN法:根据微生物在一系列稀释液的阳性和阴性反应,根据统计学原理计算出微生物数量。
4. 过滤法:通过将微生物样本过滤到培养基上,可以将微生物固定在培养基表面上,以便进行计数。
5. 流式细胞仪:利用细胞在流体中流动的特性,利用光散射、荧光等技术进行微生物计数。
除了以上几种常用的计数方法,还有一些其他的方法用于微生物计数,如近红外光谱法、PCR法、逆转录-聚合酶链反应等。
这些方法可以根据实际需要进行选择和应用。
引言概述:微生物计数是一种常用的实验方法,用于确定给定样品中微生物的数量。
微生物包括细菌、真菌、病毒等,在环境、食品、医疗和制药等领域具有广泛的应用。
微生物计数可以帮助我们了解样品中的微生物污染程度,从而采取相应的控制措施。
本文将从样品采集、培养基选择、培养方法、计数方法和数据分析等方面进行详细阐述。
正文内容:一、样品采集1.选择合适的采样工具,如无菌棉签、采样棒等。
2.选择适当的采样位置,例如环境中的空气、地表、水体等,食品中的表面、内部等。
3.采样前要对采样工具进行灭菌处理,以避免污染。
二、培养基选择1.根据微生物的需求选择适当的培养基,如营养琼脂、作用琼脂等。
2.营养琼脂适用于大多数微生物的生长,而作用琼脂则会选择性地促进某些微生物的生长。
3.考虑到培养基的成本和专业性,可以选择购买市售的培养基或根据需要自制。
三、培养方法1.无菌技术是进行微生物培养的关键,包括消毒台、无菌器材的使用等。
2.根据微生物特性选择适当的培养条件,包括温度、湿度、pH 值等。
3.培养时间的确定需要参考微生物生长特性,一般应根据标准方法进行培养。
四、计数方法1.直接计数法可以直接观察显微镜下的微生物数量,适用于样品中微生物数量较少的情况。
2.布斯计数法通过在琼脂平板上进行培养,根据菌落的数量来估算微生物的数量。
3.膜过滤法适用于微生物数量较多的情况,将样品过滤到膜上,再将膜放在琼脂平板上培养。
4.测定浓度的方法有直接读数法、稀释法和纷悬液法等,根据实际情况选择合适的方法。
五、数据分析1.进行数据统计,计算平均值、标准差等统计指标。
2.结合样品来源、培养条件等因素进行数据分析,寻找异常情况或抗原菌的存在。
3.统计分析结果,对不同样品进行对比,评估微生物污染程度。
总结:微生物计数是一种重要的实验方法,可以用于确定样品中微生物的数量。
在进行微生物计数时,需要注意样品采集、培养基选择、培养方法、计数方法和数据分析等因素。
合理操作和准确的数据分析可以提高微生物计数的准确性和可靠性,为环境控制和品质监测等方面提供参考依据。
微⽣物计数⽅法1.操作⽅法:以⽆菌操作取检样25g(或25ml),放于225mL灭菌⽣理盐⽔或其他稀释液的灭菌玻璃瓶内(瓶内预置适当数量的玻璃珠)或灭菌乳钵内,经充分振摇或研磨制成1:10的均匀稀释液。
固体检样在加⼊稀释液后,最好置灭菌均质器中以8000~10000r/min的速度处理1min,制成1:10的均匀稀释液。
⽤1ml灭菌吸管吸取1:10稀释液1ml,沿管壁徐徐注⼊含有9ml灭菌⽣理盐⽔或其他稀释液的试管内,振摇试管混合均匀,制成1:100的稀释液。
另取1ml灭菌吸管,按上项操作顺序,制10倍递增稀释液,如此每递增稀释⼀次即换⽤1⽀1ml灭菌吸管。
2.⽆菌操作:操作中必须有“⽆菌操作”的概念,所⽤玻璃器⽫必须是完全灭菌的,不得残留有细菌或抑菌物质。
所⽤剪⼑、镊⼦等器具也必须进⾏消毒处理。
样品如果有包装,应⽤75%⼄醇在包装开⼝处擦拭后取样。
操作应当在超净⼯作台或经过消毒处理的⽆菌室进⾏。
琼脂平板在⼯作台暴露15分钟,每个平板不得超过15个菌落。
3.采样的代表性:如系固体样品,取样时不应集中⼀点,宜多采⼏个部位。
固体样品必须经过均质或研磨,液体样品须经过振摇,以获得均匀稀释液。
4.样品稀释误差:为减少样品稀释误差,在连续递次稀释时,每⼀稀释液应充分振摇,使其均匀,同时每⼀稀释度应更换⼀⽀吸管。
在进⾏连续稀释时,应将吸管内液体沿管壁流⼊,勿使吸管尖端伸⼊稀释液内,以免吸管外部粘附的检液溶于其内。
为减少稀释误差,SN标准采⽤取10mL稀释液,注⼊90mL缓冲液中。
5.稀释液:样品稀释液主要是灭菌⽣理盐⽔,有的采⽤磷酸盐缓冲液(或0.1%蛋⽩胨⽔),后者对⾷品中已受损伤的细菌细胞有⼀定的保护作⽤。
如对含盐量较⾼的⾷品(如酱油)进⾏稀释,可以采⽤灭菌蒸馏⽔。
倾注培养1.操作⽅法:根据标准要求或对污染情况的估计,选择2~3个适宜稀释度,分别在制10倍递增稀释的同时,以吸取该稀释度的吸管移取1ml稀释液于灭菌平⽫中,每个稀释度做两个平⽫。
引言概述:微生物计数是一种用于确定水、食品、药物、环境等中微生物数量的常用方法。
通过准确计算微生物的数量,可以评估其对人类健康和环境的影响,并采取相应的控制措施。
本文将对常用的微生物计数方法进行汇总,包括传统培养法、分子生物学方法、流式细胞术和显微分析等。
正文内容:1.传统培养法1.1常用菌落计数法1.1.1平板计数法1.1.2液体计数法1.1.3膜过滤计数法1.2确定菌落形成单位(CFU)1.2.1CFU的计算方法1.2.2CFU与微生物数量的关系1.3常用培养基和培养条件1.3.1非性别细菌培养基1.3.2好氧和厌氧条件的培养基1.3.3具有特定功能的培养基1.4培养法的优缺点1.4.1优点1.4.2缺点1.5常见的微生物计数错误和解决方法1.5.1误差来源1.5.2解决方法2.分子生物学方法2.1PCR技术2.1.1原理2.1.2应用领域2.2实时荧光定量PCR技术2.2.1原理2.2.2应用领域2.3DNA微阵列技术2.3.1原理2.3.2应用领域2.4优点和局限性2.4.1优点2.4.2局限性3.流式细胞术3.1原理3.2鉴别和定量微生物种群3.3应用领域3.4优点和局限性4.显微分析法4.1直接显微镜计数法4.1.1复式显微计数法4.1.2平行法显微计数法4.2涂片显微法4.2.1移动计数法4.2.2固定计数法4.2.3确定营养级别4.3优点和局限性4.3.1优点4.3.2局限性5.其他新兴方法5.1基于纳米技术的微生物计数方法5.2光学技术和化学分析方法5.3微生物计数自动化设备5.4应用领域和趋势总结:微生物计数是一项重要且复杂的工作,可通过传统培养法、分子生物学方法、流式细胞术和显微分析法等多种方法进行。
每种方法都有其优缺点,应根据具体需求选择适合的计数方法。
随着技术的不断进步和新兴方法的应用,微生物计数方法将更加准确、高效,并在各个领域得到广泛应用。
微生物的显微直接计数法一、实验目的了解血球计数板的构造、计数原理和计数方法,掌握显微镜下直接计数的技能。
二、实验原理测定微生物细胞数量的方法很多,通常采用的有显微直接计数法和平板计数法。
显微计数法适用于各种含单细胞菌体的纯培养悬浮液,如有杂菌或杂质,常不易分辨。
菌体较大的酵母菌或霉菌孢子可采用血球计数板,一般细菌则采用彼得罗夫·霍泽(Petrof Hausser)细菌计数板。
两种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。
而血球计数板较厚,不能使用油镜,计数板下部的细菌不易看清。
血球计数板是一块特制的厚型载玻片,载玻片上有4条槽而构成3个平台。
中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各有一个计数区(图21-1),计数区的刻度有两种:一种是计数区分为16个大方格(大方格用三线隔开),而每个大方格又分成25个小方格;另一种是一个计数区分成25个大方格(大方格之间用双线分开),而每个大方格又分成16个小方格。
但是不管计数区是哪一种构造,它们都有一个共同特点,即计数区都由400个小方格组成。
计数区边长为1mm,则计数区的面积为l mm2,每个小方格的面积为1/400mm2。
盖上盖玻片后,计数区的高度为0.1mm,所以每个计数区的体积为0.1mm3,每个小方格的体积为1/4000mm3。
使用血球计数板计数时,先要测定每个小方格中微生物的数量,再换算成每毫升菌液(或每克样品)中微生物细胞的数量。
已知:1mm3体积=10 mm×10 mm×10 mm= 1000mm3所以:1mm3体积应含有小方格数为1000mm3/1/4000mm3=4×106个小方格,即系数K=4×106。
因此:每ml菌悬液中含有细胞数= 每个小格中细胞平均数(N)×系数(K)×菌液稀释倍数(d)三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)斜面或培养液。
2.器材:显微镜、血球计数板、盖玻片(22mm×22mm)、吸水纸、计数器、滴管、擦镜纸。
四、实验方法1.视待测菌悬液浓度,加无菌水适当稀释(斜面一般稀释到10-2),以每小格的菌数可数为度。
2.取洁净的血球计数板一块,在计数区上盖上一块盖玻片。
3.将酵母菌悬液摇匀,用滴管吸取少许,从计数板中间平台两侧的沟槽内沿盖玻片的下边缘摘入一小滴(不宜过多),让菌悬液利用液体的表面张力充满计数区,勿使气泡产生,并用吸水纸吸去沟槽中流出的多余菌悬液。
也可以将菌悬液直接滴加在计数区上,不要使计数区两边平台沾上菌悬液,以免加盖盖玻片后,造成计数区深度的升高。
然后加盖盖玻片(勿使产生气泡)。
4.静置片刻,将血球计数板置载物台上夹稳,先在低倍镜下找到计数区后,再转换高倍镜观察并计数。
由于生活细胞的折光率和水的折光率相近,观察时应减弱光照的强度。
5.计数时若计数区是由16个大方格组成,按对角线方位,数左上、左下、右上、右下的4个大方格(即100小格)的菌数。
如果是25个大方格组成的计数区,除数上述四个大方格外,还需数中央l个大方格的菌数(即80个小格)。
如菌体位于大方格的双线上,计数时则数上线不数下线,数左线不数右线,以减少误差。
6.对于出芽的酵母菌,芽体达到母细胞大小一半时,即可作为两个菌体计算。
每个样品重复计数2—3次(每次数值不应相差过大,否则应重新操作),求出每一个小格中细胞平均数(N),按公式计算出每ml(g)菌悬液所含酵母菌细胞数量。
7.测数完毕,取下盖玻片,用水将血球计数板冲洗干净,切勿用硬物洗刷或抹擦,以免损坏网格刻度。
洗净后自行晾干或用吹风机吹干,放入盒内保存。
五、实验作业:将实验结果填入下表中:稀释平板测数法一、实验目的了解稀释平板计数的原理,掌握涂抹平板培养法和混合平板培养法,认识细菌、放线菌、霉菌的菌落特征。
二、实验原理稀释平板计数是根据微生物在固体培养基上所形成的单个菌落,即是由一个单细胞繁殖而成这一培养特征设计的计数方法,即一个菌落代表一个单细胞。
计数时,首先将待测样品制成均匀的系列稀释液,尽量使样品中的微生物细胞分散开,使成单个细胞存在(否则一个菌落就不只是代表一个细胞),再取一定稀释度、一定量的稀释液接种到平板中,使其均匀分布于平板中的培养基内。
经培养后,由单个细胞生长繁殖形成菌落,统计菌落数目,即可计算出样品中的含菌数。
此法所计算的菌数是培养基上长出来的菌落数,故又称活菌计数。
一般用于某些成品检定(如杀虫菌剂等)、生物制品检验、土壤含菌量测定及食品、水源的污染程度的检验。
三、实验器材1.活材料:苏云金芽孢杆菌(Bacillus thuringiensis)菌剂。
2.培养基:牛肉膏蛋白胨琼脂培养基(附录三、1)3.器材:90ml无菌水、9ml无菌水、无菌平皿、lml无菌吸管、天平、称样瓶、记号笔、玻璃刮铲等。
四、实验方法1.样品稀释液的制备准确称取待测样品l0g,放入装有90ml无菌水并放有小玻璃珠的250ml三角瓶中,用手或置摇床上振荡20 min,使微生物细胞分散,静置20-30s,即成10-1稀释液;再用1ml无菌吸管,吸取10-1稀释液lml,移入装有9ml无菌水的试管中,吹吸3次,让菌液混合均匀,即成10-2稀释液;再换一支无菌吸管吸取10-2稀释液1 ml,移入装有9ml无菌水的试管中,也吹吸三次,即成l0-3稀释液;以此类推,连续稀释,制成10-4、10-5、10-6、10-7、10-8、10-9等一系列稀释菌液(图22-1)。
图22-1 平板计数法中样品的稀释和稀释液的取样培养用稀释平板计数时,待测菌稀释度的选择应根据样品确定。
样品中所含待测菌的数量多时,稀释度应高,反之则低。
通常测定细菌菌剂含菌数时,采用10-7、10-8、10-9稀释度,测定土壤细菌数量时,采用10-4、10-5、10-6稀释度,测定放线菌数量时,采用l0-3、10-4、10-5稀释度,测定真菌数量时,采用10-2、10-3、10-4稀释度。
2.平板接种培养平板接种培养有混合平板培养法和涂抹平板培养法两种方法。
(1)混合平板培养法将无菌平板编上10-7、10-8、10-9号码,每一号码设置三个重复,用无菌吸管按无菌操作要求吸取10-9稀释液各1ml放入编号10-9的3个平板中,同法吸取10-8稀释液各lml放入编号10-8的3个平板中,再吸取10-7稀释液各lml放入编号10-7的3个平板中(由低浓度向高浓度时,吸管可不必更换)。
然后在9个平板中分别倒入已融化并冷却至45—50℃的细菌培养基(图22-2),轻轻转动平板,使菌液与培养基混合均匀,冷疑后倒置,适温培养。
至长出菌落后即可计数。
(2)涂抹平板计数法涂抹平板计数法与混合法基本相同,所不同的是先将培养基熔化后趁热倒入无菌平板中,待凝固后编号,然后用无菌吸管吸取0.1ml菌液对号接种在不同稀释度编号的琼脂平板上(每个编号设三个重复)。
再用无菌刮铲将菌液在平板上涂抹均匀(图22-3),每个稀释度用一个灭菌刮铲,更换稀释度时需将刮铲灼烧灭菌。
在由低浓度向高浓度涂抹时,也可以不更换刮铲。
将涂抹好的平板平放于桌上20—30min,使菌液渗透入培养基内,然后将平板倒转,保温培养,至长出菌落后即可计数。
五、实验作业:将实验结果填入下表中计算结果时,常按下列标准从接种后的3个稀释度中选择一个合适的稀释度,求出每克菌剂中的含菌数。
(1)同一稀释度各个重复的菌数相差不太悬殊。
(2)细菌、放线菌、酵母菌以每皿30—300个菌落为宜,霉菌以每皿10—100个菌落为宜。
选择好计数的稀释度后,即可统计在平板上长出的菌落数,统计结果按下式计算。
混合平板计数法:每克样品的菌数=同一稀释度几次重复的菌落平均数×稀释倍数涂抹平板计效法:每克样品的菌数=同一稀释度几次重复的菌落平均数×10×稀释倍数稀释培养测数法(MPN)一、实验目的通过对好气性自生固氮菌的计数,了解稀释培养计数(MPN)的原理和方法。
二、实验原理最大或然数(most probable number,MPN)计数又称稀释培养计数,适用于测定在一个混杂的微生物群落中虽不占优势,但却具有特殊生理功能的类群。
其特点是利用待测微生物的特殊生理功能的选择性来摆脱其他微生物类群的干扰,并通过该生理功能的表现来判断该类群微生物的存在和丰度。
本法特别适合于测定土壤微生物中的特定生理群(如氨化、硝化、纤维素分解、固氮、硫化和反硫化细菌等。
见附表23-1)的数量和检测污水、牛奶及其他食品中特殊微生物类群(如大肠菌群)的数量,缺点是只适于进行特殊生理类群的测定,结果也较粗放,只有在因某种原因不能使用平板计数时才采用。
MPN计数是将待测样品作一系列稀释,一直稀释到将少量(如lm1)的稀释液接种到新鲜培养基中没有或极少出现生长繁殖。
根据没有生长的最低稀释度与出现生长的最高稀释度,采用“最大或然数”理论,可以计算出样品单位体积中细菌数的近似值。
具体地说,菌液经多次10倍稀释后,一定量菌液中细菌可以极少或无菌,然后每个稀释度取3—5次重复接种于适宜的液体培养基中。
培养后,将有菌液生长的最后3个稀释度(即临界级数)中出现细菌生长的管数作为数量指标,由最大或然数表(见附录九)上查出近似值,再乘以数量指标第一位数的稀释倍数,即为原菌液中的含菌数。
如某一细菌在稀释法中的生长情况如下;稀释度 lO-3 10-4 10-5 lO-6 10-7 10-8重复数 5 5 5 5 5 5出现生长的管数 5 5 5 4 1 0根据以上结果,在接种lO-3—10-5稀释液的试管中5个重复都有生长,在接种lO-6稀释液的试管中有4个重复生长,在接种10-7稀释液的试管中只有1个生长,而接种10-8稀释液的试管全无生长。
由此可得出其数量指标为“541”,查最大或然数表得近似值17,然后乘以第一位数的稀释倍数(10-5的稀释倍数为100 000)。
那么,1ml原菌液中的活菌数=17×100 000 = 17×105。
即每毫升原菌液含活菌数为l700000个。
在确定数量指标时,不管重复次数如何,都是3位数字,第一位数字必须是所有试管都生长微生物的某一稀释度的培养试管,后两位数字依次为以下两个稀释度的生长管数,如果再往下的稀释仍有生长管数,则可将此数加到前面相邻的第三位数上即可。
如某一微生物生理群稀释培养记录为:稀释度 lO-1 10-2 10-3 lO-4 10-5 10-6重复数 4 4 4 4 4 4出现生长的管数 4 4 3 2 1 0以上情况,可将最后一个数字加到前一个数字上,即数量指标为“433”,查表得近似值为30,则每毫升原菌液中含活菌30×102个。