8-电阻电路的一般分析方法
- 格式:ppt
- 大小:670.00 KB
- 文档页数:32
第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。
3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。
第3章电阻电路的一般分析3.1 复习笔记一、电路图论的基本概念1.图(G)图(G)是具有给定连接关系的结点和支路的集合,其中每条支路的两端都连到相应的结点上,允许孤立结点的存在,没有结点的支路不能称为图。
路径:从G的一个结点出发,依次通过图的支路和结点(每一支路和结点只通过一次),到达另一个结点(或回到原出发点),这种子图称为路径。
连通图:当G的任意两结点都是连通的,称G为连通图。
有向图:赋予支路方向的图称为有向图。
2.树(T)满足下列三个条件的子图,称为G的一棵树:①连通的;②包含G的全部结点;③本身没有回路。
树支与连支:属于树的支路称为树支;不属于树的支路称为连支。
基本回路:对于G的任意一个树,有且只有一条连支回路,这种回路称为单连支回路或基本回路。
树支数:对于有n个结点,b条支路的连通图,树支数=n-1。
推论:连枝数=b-n+1;基本回路数=连支数=b-n+1。
二、KCL和KVL的独立方程数KCL的独立方程数:对一个具有n个结点的电路而言,其中任意的(n-1)个结点的KCL方程是独立的。
KVL的独立方程数:对一个具有n个结点和b条支路的电路而言,其KVL的独立方程数为(b-n+1)。
三、电路的分析方法1.支路电流法(1)支路电流法是以b个支路电流为变量列写b个方程,并直接求解。
其方程的一般形式为(2)支路电流法解题步骤①标出各支路电流的方向;②依据KCL列写(n-1)个独立的结点方程;③选取(b-n+1)个独立回路,标出回路绕行方向,列写KVL方程。
注:①独立结点选择方法:n个结点中去掉一个,其余结点都是独立的;②独立回路选择方法:先确定一个树,再确定单连支回路(基本回路),仅含唯一的连支,其余为树支。
2.网孔电流法(1)网孔是最简单的回路,即不含任何支路的回路。
网孔数=独立回路数=b-n+1。
网孔电流法是以网孔电流为未知量,根据KVL对全部网孔列出方程求解。
(2)网孔电流法解题步骤①局部调整电路,当电路中含有电流源和电阻的并联组合时,可转化为电压源和电阻的串联组合;②选取网孔电流,指定网孔电流的参考方向;③依据KVL列写网孔电流方程,自阻总为正,互阻视流过的网孔电流方向而定,两电路同向取“+”,异向取“-”。
第二章 电阻电路分析的基本方法本章以直流电路为研究对象,讨论电路的几种普遍的分析、计算方法。
包括等效变换、支路电流法、结点电位法、叠加原理和戴维南定理等。
这些方法可统称为网络方程法;它是以电路元件的伏安关系和基尔霍夫定律为基础的,选择适当的未知变量,建立一组独立的网络方程,并求解方程组;最后得出所需要的支路电流或支路电压或其他变量。
这些电阻电路的分析计算方法只要稍加扩展,即可用于交流电路的分析计算,所以本章是分析、计算电路的基础。
§2-1 等效电阻和等效二端网络通常,工程中所接触的电路形状复杂如网,故电路又称为网络。
(a)(b)图2-1 二端网络如果电路只有一个输入端口或输出端口,则这个电路称为单口网络或二端网络。
若二端网络内部含有电源,则称为有源二端网络。
若内部不含电源,则称为无源二端网络。
如图2-1(a )所示为一个有源二端网络,a 、b 为此网络的输出端点。
图2-1(b )所示为一个无源二端网络。
无源二端网络是由电阻元件组成的。
在它内部,电阻的连接可能很复杂,但对外部电路来说,可以用一个等效电阻来代替它。
这个电阻就称为这一无源二端网络的等效电阻。
这里,“等效”是对外部电路来说。
如图2-1(b )中虚线框内的四个电阻,可以用一个等效电阻来代替它们,只要端口上的U 、I 不变,则对虚线以外的电路来说是等效的,因为它不影响虚线以外的任何电路。
但对虚线框内部,也就是说对无源二端网络内部并不等效。
电路原是四个电阻组成,现只有一个电阻,电路的结构、参数完全不同,不可能等效。
所以说,等效是一个相对的概念。
一、电阻的串联与分压(一)串联电阻的等效化简所谓串联就是两个或多个元件首尾相联接流过同一电流。
如图2-2(a )所示为两个电阻R 1、R 2串联,可以用等效电阻R 代替它们,如图2-2(b )所示,只要R 满足如下关系即可:R = R 1+R 2 (2-1)若由n 个电阻串联,则其等效电阻为R = R 1 + R 2 + … + R n =∑=ni iR1(2-2)上式表明,串联电阻的等效电阻值总是大于其中任一个电阻阻值的。
电阻电路的一般分析回路电流法术语支路每一个二端元件称为一条支路多个二端元件串联可视为一条支路结点支路与支路的连接点称为结点多个等电位的结点可视为一个结点路径从一个结点到另一个结点所经过的支路集合回路从起点出发,终点又回到起点,所形成的闭合路径称为回路。
要求中间经过的结点只能经过一次。
网孔不包含支路的回路称为网孔网孔数量 = KVL 独立方程数回路电流法本质上是 KVL 方程,以回路电流为独立变量,列写独立回路 KVL 方程,共有n个独立方程,称为回路电流方程,n是网孔的数量。
即有几个网孔,就有几个独立方程,也可以以一个回路列写方程,但是一般用网孔列回路电流方程。
回路电流方程(对于一个网孔而言)自阻*当前网孔电流 + Σ(互阻*对应网孔电流) = 电源电压自阻项:是当前回路的所有电阻之和,前永远取正互阻项:是当前回路与其他回路共同所有的电阻当前回路电流与相邻回路电流在互阻上的方向与相同,则前取正相反则前取负电源电压项电源电压与当前回路电流关联前则取正非关联则取负网孔电流法和回路电流法的关系网孔电流法就是采用网孔作为独立回路的回路电流法网孔电流法是回路电流法的一个特例例题普通回路含受控电压源回路通过u1 = R1i1,又变为了两个方程、两个未知数含独立电流源回路解法一:因为回路电流法本质上是 KVL 方程,又因为电流源的电压尤其外电路决定,因此可以将电流源先当作电压源看待,即引入了一个未知量:电流源的电压u。
但是根据电流源的电流列出第四个方程,变为了四个方程、四个未知数,问题可解解法二含受控电流源回路选取和附加方程回路一般选取网孔列方程方程列举个数如果既没有受控源,也没有电流源,那么有多少个独立回路就列多少个回路电流方程独立回路:选一系列回路,每一次选择的回路中都有一条原先选择的回路所没有的新支路,那么这一系列回路叫独立回路每多一个受控电压源就增加一个方程关于独立电流源和受控电流源采用方法1:含独立电流源需附加一个方程;含受控电流源需附加2个方程采用方法2:含独立电流源不需附加方程;含受控电流源需附加1个方程电路图的基本概念连通图:任意两个结点之间至少存在一条路径树:包含所有结点,但不包含任何回路的连通图树支数所包含的支路树支数 = 结点数 - 1连支树所不包含的支路数连支数 = 总支路数 - 树支数每增加一个连支,形成一个独立回路,因此 KVL 独立方程数 = 连支数平面图:能令所有支路的交点均为结点,反之为非平面图网孔:能令平面图回路中不另外含有支路的回路,网孔概念不适用于非平面图电路对于平面图而言,KVL独立方程数=网孔数,所以数一数即可!结点电压法本质上是 KCL 方程,以结点电压为独立变量,列写独立节点的 KCL 方程,共有(n-1)个独立方程,称为结点电压方程。