图解数学小百科((日)冈部恒治著;周尚文译)思维导图
- 格式:xmin
- 大小:5.06 KB
- 文档页数:1
小学数学思维导图(全)一、数的概念1. 自然数自然数是无限的,可以一直往上数。
自然数是离散的,相邻的自然数之间没有其他数。
自然数是可数的,可以一个一个地数出来。
2. 整数整数是可加的,可以相加得到新的整数。
整数是可减的,可以相减得到新的整数。
整数是可乘的,可以相乘得到新的整数。
整数是可除的,可以相除得到新的整数。
3. 分数分数有分子和分母两部分,分子表示被等分的部分,分母表示等分的总份数。
分数可以相加、相减、相乘、相除。
分数可以化简,即分子和分母同时除以它们的最大公约数。
4. 小数小数有整数部分和小数部分两部分,整数部分表示整体中的整数部分,小数部分表示整体中的小数部分。
小数可以相加、相减、相乘、相除。
小数可以化简,即去掉末尾的0。
二、数的运算1. 加法加法是可交换的,即加数的位置可以交换。
加法是可结合的,即加数可以按照任意顺序相加。
加法的结果是唯一的。
2. 减法减法的结果是唯一的。
减法的结果可以是正数、负数或0。
3. 乘法乘法是可交换的,即乘数的位置可以交换。
乘法是可结合的,即乘数可以按照任意顺序相乘。
乘法的结果是唯一的。
4. 除法除法的结果可以是正数、负数或分数。
除法的结果是唯一的。
三、几何图形1. 线段线段有长度。
线段可以测量。
线段可以比较长度。
2. 角角有大小。
角可以测量。
角可以比较大小。
3. 三角形三角形有面积。
三角形的面积可以用公式计算。
三角形的面积可以比较大小。
4. 四边形四边形有面积。
四边形的面积可以用公式计算。
四边形的面积可以比较大小。
四、数学应用1. 解决实际问题数学可以应用于解决实际问题,例如:计算购物时的找零。
计算路程和时间的关系。
计算物体的面积和体积。
2. 数学游戏数学游戏可以帮助学生提高数学思维能力和兴趣,例如:猜数字游戏。
24点游戏。
数独游戏。
3. 数学竞赛数学竞赛可以激发学生的学习兴趣和竞争意识,例如:数学奥林匹克竞赛。
华罗庚金杯赛。
小学生数学竞赛。
五、数学思维方法1. 归纳法归纳法是一种从具体事例出发,得出一般结论的思维方式。
小学五年级数学思维导图一、数的认识1. 整数自然数:0、1、2、3、4、5、6、7、8、9、10……正整数:1、2、3、4、5、6、7、8、9、10……负整数:1、2、3、4、5、6、7、8、9、10……整数:包括正整数、负整数和02. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘或除以同一个数(0除外),分数的值不变分数的大小比较:同分母分数比较分子,分子大的分数大;同分子分数比较分母,分母小的分数大分数与小数的互化:将分数化成小数,分子除以分母;将小数化成分数,将小数点后的数字作为分子,分母为10的相应次方3. 小数小数的意义:表示整数与整数之间的数小数的性质:小数点后面的数字表示小数的精确度,小数点向右移动一位,数值扩大10倍;向左移动一位,数值缩小10倍小数的大小比较:先比较整数部分,整数部分大的数大;整数部分相同,比较小数点后的数字,从左到右依次比较,直到找到不同的数字,数字大的数大小数的四则运算:加法、减法、乘法、除法二、数的运算1. 加法加法的意义:将两个数合并成一个数加法的性质:交换律、结合律加法的计算方法:将两个数相加2. 减法减法的意义:从一个数中减去另一个数减法的性质:减法是加法的逆运算减法的计算方法:将被减数减去减数3. 乘法乘法的意义:求几个相同加数的和乘法的性质:交换律、结合律、分配律乘法的计算方法:将两个数相乘4. 除法除法的意义:求一个数是另一个数的几倍或几分之几除法的性质:除法是乘法的逆运算除法的计算方法:将被除数除以除数三、几何图形1. 线段、射线、直线线段:有两个端点,长度有限射线:有一个端点,长度无限直线:没有端点,长度无限2. 角角的分类:锐角、直角、钝角、周角角的度量:使用量角器角的计算:角度的加减乘除3. 三角形三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形三角形的性质:三角形的内角和为180度三角形的计算:使用勾股定理、海伦公式等4. 四边形四边形的分类:正方形、长方形、平行四边形、梯形、菱形、矩形四边形的性质:四边形的内角和为360度四边形的计算:周长、面积的计算5. 圆圆的性质:圆的周长、面积的计算公式圆的计算:使用圆的周长、面积公式进行计算四、计量单位1. 长度单位常用长度单位:毫米、厘米、分米、米、千米长度单位之间的换算:1千米=1000米,1米=100厘米,1厘米=10毫米2. 面积单位常用面积单位:平方毫米、平方厘米、平方分米、平方米、平方千米面积单位之间的换算:1平方千米=1000000平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米3. 体积单位常用体积单位:立方毫米、立方厘米、立方分米、立方米、立方千米体积单位之间的换算:1立方千米=1000000000立方米,1立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米4. 时间单位常用时间单位:秒、分、时、天、周、月、年时间单位之间的换算:1年=12个月,1个月=4周,1周=7天,1天=24时,1时=60分,1分=60秒5. 质量单位常用质量单位:克、千克、吨质量单位之间的换算:1吨=1000千克,1千克=1000克五、统计与概率1. 统计数据的收集:调查、观察、实验等方法数据的整理:表格、图表等方法数据的分析:平均数、中位数、众数、方差等2. 概率概率的定义:事件发生的可能性概率的计算:使用公式、实验等方法概率的性质:概率的范围在0到1之间,包括0和1六、方程与不等式1. 方程方程的定义:含有未知数的等式方程的解:使方程成立的未知数的值方程的求解:使用代数方法求解方程,如移项、合并同类项、化简等2. 不等式不等式的定义:表示两个数之间大小关系的式子不等式的解集:满足不等式的所有解的集合不等式的求解:使用代数方法求解不等式,如移项、合并同类项、化简等七、数学应用1. 解决实际问题应用数学知识解决生活中的问题,如购物、测量、分配等使用数学方法分析问题,如比例、百分比、统计等2. 数学建模将实际问题转化为数学模型,如线性方程、不等式、函数等使用数学模型解决问题,如优化问题、预测问题等八、数学思维1. 逻辑思维通过逻辑推理得出结论,如归纳推理、演绎推理等分析问题,找出问题的因果关系,如因果推理2. 创新思维运用创造性思维解决问题,如逆向思维、类比思维等提出新的观点和方法,如创新算法、创新模型等九、数学学习策略1. 复习与预习复习已学知识,巩固记忆预习新知识,提前了解学习内容2. 做题与练习通过做题巩固所学知识通过练习提高解题能力3. 交流与合作与同学、老师交流学习心得,分享学习经验与同学合作完成学习任务,共同进步十、数学文化1. 数学历史了解数学的发展历程,如古代数学、现代数学等学习数学家的故事,如欧几里得、毕达哥拉斯、阿基米德等2. 数学趣闻探索数学的趣味知识,如数学谜题、数学游戏等了解数学在生活中的应用,如数学与艺术、数学与音乐等十一、数学竞赛1. 竞赛内容参加数学竞赛,如数学奥林匹克、数学联赛等学习竞赛技巧,如解题策略、时间管理等2. 竞赛准备备赛阶段,系统复习数学知识模拟竞赛,熟悉竞赛题型和时间分配十二、数学实验1. 实验目的通过实验加深对数学概念的理解培养学生的动手能力和观察能力2. 实验内容进行几何图形的拼装、测量等实验进行数学模型的制作、验证等实验十三、数学与科技1. 数学在科技中的应用学习数学与科技相关的知识,如算法、编程、数据分析等2. 科技对数学的影响探讨科技对数学发展的影响,如计算工具、计算方法等了解科技与数学的交叉领域,如信息论、密码学等十四、数学与艺术1. 数学在艺术中的应用了解数学在艺术领域的作用,如建筑设计、音乐创作等学习数学与艺术相关的知识,如黄金分割、对称性等2. 艺术对数学的影响探讨艺术对数学发展的影响,如艺术作品中的数学元素了解艺术与数学的交叉领域,如艺术史、艺术批评等。
人教版五年级上册数学全册思维导图一、数与代数1. 整数的认识自然数、整数、正数、负数、绝对值、相反数、倒数2. 分数的认识分数、真分数、假分数、带分数、分数的基本性质、约分、通分3. 小数的认识小数、小数点、小数的基本性质、小数的加减乘除、小数的四则混合运算4. 比较大小整数、分数、小数的大小比较5. 数的估算整数、分数、小数的估算方法二、空间与图形1. 图形的认识点、线、面、体、平面图形、立体图形2. 图形的周长和面积线段、角的周长,正方形、长方形、平行四边形、梯形的面积,圆的周长和面积3. 图形的变换平移、旋转、对称、相似、放大与缩小4. 三角形三角形的定义、性质、分类、内角和、外角和、三角形的稳定性5. 四边形四边形的定义、性质、分类、平行四边形、矩形、菱形、正方形的性质和判定三、统计与概率1. 数据的收集与整理调查问卷、统计表、统计图(条形图、折线图、扇形图)2. 数据的分析与处理平均数、中位数、众数、方差、标准差3. 概率事件、必然事件、不可能事件、随机事件、概率的计算方法四、解决问题1. 问题解决的基本步骤提出问题、分析问题、制定计划、解决问题、回顾与反思2. 解决问题的策略图形法、列表法、树状图法、表格法、枚举法、方程法、逻辑推理法3. 解决问题的应用实际问题、数学问题、逻辑问题、趣味问题人教版五年级上册数学全册思维导图五、数学实践活动1. 数学实验通过实际操作,验证数学规律,如利用图形拼摆验证勾股定理、利用实验数据验证概率等2. 数学游戏设计与数学相关的游戏,如24点游戏、数独、数学谜题等,培养数学兴趣和思维3. 数学故事通过讲述数学故事,激发学生对数学的兴趣,如数学家的故事、数学趣闻等4. 数学竞赛组织数学竞赛,提高学生的数学素养和竞争意识,如口算比赛、解题比赛等六、数学文化1. 数学史了解数学发展的历史,如古代数学、现代数学、数学家的贡献等2. 数学名人认识数学领域的杰出人物,如欧几里得、阿基米德、高斯等3. 数学趣闻学习数学趣闻,如数学笑话、数学谜语、数学趣题等,增加学生对数学的了解和兴趣4. 数学与生活探讨数学在生活中的应用,如购物、旅游、理财等,让学生体会到数学的实用性七、数学与科技1. 数学与计算机了解计算机科学中的数学原理,如算法、数据结构、编程语言等2. 数学与物理探讨数学在物理学中的应用,如牛顿力学、电磁学、量子力学等3. 数学与生物了解数学在生物学中的应用,如遗传学、生态学、生物信息学等4. 数学与经济探讨数学在经济领域中的应用,如统计学、运筹学、博弈论等八、数学与艺术1. 数学与音乐了解音乐中的数学原理,如音阶、节奏、和声等2. 数学与绘画探讨绘画中的数学元素,如黄金分割、透视法、几何图形等3. 数学与建筑了解建筑中的数学原理,如比例、对称、结构稳定性等4. 数学与雕塑探讨雕塑中的数学元素,如几何形状、比例、空间关系等人教版五年级上册数学全册思维导图九、数学学习策略1. 预习与复习通过预习了解新知识,复习巩固已学知识,形成完整的知识体系2. 课堂笔记记录关键知识点、解题思路、易错点等,便于课后复习和查阅3. 作业与练习认真完成作业,及时巩固所学知识,通过练习提高解题能力4. 课外阅读阅读数学课外书籍、杂志、网络资源等,拓宽数学视野,增加知识储备5. 小组讨论与合作学习与同学一起讨论问题,分享学习心得,互相学习、互相帮助十、数学与思维1. 逻辑思维通过数学学习,培养逻辑思维能力,如归纳、演绎、推理等2. 空间想象通过几何图形的学习,培养空间想象力,如三维图形的构造、空间位置关系等3. 创新思维鼓励学生从不同角度思考问题,提出新颖的解题方法,培养创新意识4. 解决问题的能力通过数学问题的解决,提高学生分析问题、解决问题的能力5. 数学建模学习将实际问题转化为数学模型,培养学生的建模能力人教版五年级上册数学全册思维导图一、认识数学数学是研究数量、结构、变化以及空间等概念的学科。
初一数学思维导图之巴公井开创作
刚刚步入初一的学习和生活,你会发现与小学有了很年夜的分歧,科目繁多,知识面拓宽.特别是数学,更是从具体发展到笼统.学好数学,有一个好老师固然重要,但好的学习方法和良好的学习习惯更为重要.利用初一数学思维导图来总结一些好的学习方法和良好的学习习惯!
做好预习:单位预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课.坚持预习,找到疑点,变主动学习为主动学习,能年夜年夜提高学习效率噢,兴趣是最好的老师嘛.认真听课:听课应包括听、思、记三个方面.听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结.思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,年夜胆猜想.记,固然是指课堂笔记了,不是记很多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法、记技巧、记疑点、记要求、记注意点,记住课后一定要整理笔记.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容、加深理解、强化记忆很重要.学会总结:年夜人们常说,数学是一环扣一环,这意思是
说知识间是紧密相关的,阶段性总结,不单能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,需要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能驾轻就熟,即举一反三.。
初中数学知识点框架图18311(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一部分《数与式》知识点2a a π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式()01;;(),();();1;mm n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧==⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题 第三部分《函数与图象》知识点O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性: 若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,)⑤最值:当a >0时,x=-,y =;a <0时,x=-,y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值...⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):④比较函数的大小第四部分《图形与几何》知识要点0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:, ;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos30223cos454512210cos60,tan3022R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在tABC 中,sin =,cos =,tan =斜边斜边的邻边sin ,三角函数特殊三角函数值sin45;sin6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+r ),内切(d=R-r )相交:R-r <d <R+r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:P第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=, 相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩ 则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩A第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)。