3.3 第3课时 利用去分母解一元一次方程
- 格式:ppt
- 大小:1.20 MB
- 文档页数:15
3.3 解一元一次方程(二)第1课时 去括号与去分母(一)教学目标1.掌握去括号解方程的方法.2.会从实际问题中抽象出数学模型,会用一元一次方程解决实际问题.教学重点去括号解方程.教学难点用一元一次方程解决实际问题.教学设计 (设计者: ) 教学过程设计一、创设情境 明确目标某学校七年级(3)班去植树,班级统一规定:每名男生要比女生多植两棵.其中第一组有男生4人,女生2人,他们一共要植20棵.试问男生每人应该植几棵?此问题中所含相等关系为________________________________________________________________________; 如果设男生每人植x 棵,第一组男生共植______棵,第一组女生共植______棵,第一组共植______棵;可列方程为______________________;请同学们观察上述方程和前面我们所学的方程有什么不同?应该怎么解这样的方程呢?二、自主学习 指向目标自学教材第93至94页,完成下列问题:1.去括号的法则:如果括号外的因数是正数,去括号后原括号内__各项__符号与原来的符号__相同__; 如果括号外的因数是负数,去括号后原括号内__各项__符号与原来的符号__相反__. 去括号:(1)-(x -3)=__-x +3__;(2)5(1-15x)=__5-x __; (3)a -(b -c)=__a -b +c __; (4)-3(-3a -2b +2)=__9a +6b -6__.2.“去括号”这一变形是运用了__乘法分配律__.3.解含有括号的一元一次方程的一般步骤:①__去括号__; ②__移项__;③__合并同类项__; ④__系数化为1__.三、合作探究 达成目标探究点一 列一元一次方程解决实际问题活动一:阅读教材第93页问题1,思考:本题的相等关系是什么?所列的方程和前面的方程有什么不同?应该怎样解?【展示点评】最大的不同是本例方程含有括号,求解时,首先应去括号.【小组讨论】本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?去括号的依据是什么?【反思小结】1.本题还可以设上半年平均每月用电量x 千瓦·时:(即一年中每两个月的平均用电量相等).2.“去括号”这一变形的依据是乘法分配律.【针对训练】见“学生用书”.探究点二 解含有括号的一元一次方程活动二:解方程:(1)2x -(x +10)=5x +2(x -1);(2)3x -7(x -1)=3-2(x +3).【展示点评】去括号时注意括号前面是“-”号时,去掉括号,括号里的各项都要变号.【小组讨论】解含有括号的一元一次方程的一般步骤是什么?注意什么问题?【反思小结】解含有括号的一元一次方程有四步:去括号;移项;合并同类项;系数化为1.去括号时要注意:当括号前是“-”号,去括号时括号内各项要变号,括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.【针对训练】见“学生用书”.四、总结梳理 内化目标利用一个法则——去括号法则解一元一次方程;解题时要把握一个原则——细致.五、达标检测 反思目标1.在解方程3(x -1)-2(2x +3)=6时,去括号正确的是:( B )A .3x -1-4x +3=6B .3x -3-4x -6=6C .3x +1-4x -3=6D .3x -3+4x -6=62.当x 为__117__时代数式4x -5与3x -6的值互为相反数.3.将下列方程的括号去掉(不解方程):(1)2(x -2)=-(x +3);(2)2(x -4)+2x =7-(x -1).解:(1)2x -4=-x -3(2)2x -8+2x =7-x +14.解方程:(1)5(x +2)=2(5x -1);解:x =2.4(2)(x +1)-2(x -1)=1-3x.解:x =-15.当y 取何值时,代数式2(3y +4)的值比5(2y -7)的值大3?解:y =10六、布置作业 巩固目标课后作业 见“学生用书”.第2课时去括号与去分母(二)教学目标1.进一步熟悉找相等关系列方程.2.通过运用方程解决实际问题的过程,利用方程的原理,解决“顺逆流问题”.教学重点利用方程的原理,解决“顺逆流问题”.教学难点寻找实际问题中的等量关系,建立数学模型.教学设计(设计者:)教学过程设计一、创设情境明确目标“朝辞白帝彩云间,千里江陵一日还.两岸猿声啼不住,轻舟已过万重山.”这首诗给我们展现了一幅怎样的画卷?你知道船在流水中航行时,速度都和哪些量有关吗?二、自主学习指向目标自学教材第94页,完成下列问题:1.行驶问题中路程、速度、时间之间的关系为__路程=速度×时间__.2.顺逆流问题中顺水速度、逆水速度和静水速度、水流速度之间的关系.顺水速度=__静水速度+水速__逆水速度=__静水速度-水速__3.一艘船在静水中的速度为x km/h,水流速度 3 km/h,则船的顺水航速为__(x+3)__km/h,船的逆水航速为__(x-3)__ km/h.4.在甲处劳动的有29人,在乙处劳动的有17人,现要赶工期,总公司另调20人前来支援,使甲处的人数是乙处的人数的2倍,应分别调往甲处,乙处各多少人?(1)本题中等量关系是__甲处的人数=2×乙处的人数__;(2)若设调往甲处的人数为x人,在甲处劳动的有__(29+x)__人,在乙处劳动的有__(20-x+17)__人;(3)列方程为:__29+x=2(20-x+17)__.三、合作探究达成目标探究点一去括号的简单应用活动一:当x=________时,2x+2与x-1的差为1.【展示点评】实际上也可以看成“若2x+2与x-1的差为1,求x的值.”【小组讨论】此题中的条件是什么?要求什么?探究点二用一元一次方程解决“顺逆流问题”活动二:阅读教材第94页例2,思考:本题是关于什么的问题?基本公式是什么?相等的关系是什么?【展示点评】对于顺、逆流航行问题,注意教材中“分析”所示的相等关系的理解和应用.【小组讨论】利用方程解决顺、逆流问题时,相等关系是什么?【反思小结】应用一元一次方程解决行程问题中的顺流逆流问题,多数情况应该以往返路程相等建立方程.这类问题中不变的量是静水(风)速度和往返的路程.【针对训练】见“学生用书”.四、总结梳理 内化目标1.用一元一次方程解决顺水逆水航行等问题.2.这些问题中的相等关系的特点.五、达标检测 反思目标1.飞机在AB 两城之间飞行,顺风速度是每小时a km ,逆风速度是每小时b km ,则风的速度是__a b 2__. 2.一艘船在水中航行,水流速度是2 km/h ,若船在静水中的平均速度为x km/h ,则船顺流2 h 航行__2(x +3)__ km ,逆流2.5 h 航行__2.5(x -2)__ km.3.一船由A 地开往B 地,顺水航行用4 h ,逆水航行比顺水航行多用30 min ,已知船在静水中的速度为16 km/h ,求水流速度.解:设水流速度为x km/h ,由题意得:4(16+x )=4.5(16-x ),解得x =1617. 六、布置作业 巩固目标课后作业 见“学生用书”.第3课时 去括号与去分母(三)教学目标1.掌握含分母的一元一次方程的解法.2.会运用方程解决实际问题.3.通过列方程解决实际问题,建立方程思想;通过去分母解方程,了解数学中的“化归”思想.教学重点掌握含分母的一元一次方程的解法.教学难点运用方程解决实际问题.教学设计 (设计者: ) 教学过程设计一、创设情境 明确目标英国伦敦博物馆保存着一部极其珍贵的文物——纸草书.现存世界上最古老的方程就出现在这部英国考古学家兰德1858年找到的纸草书上.经破译,上面都是一些方程,共85个问题.其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数为几何?1.如何列方程?分哪些步骤?2.怎样解这个方程?如何将这个方程转化为x =a 的形式?二、自主学习 指向目标自学教材第95至98页,完成下列问题:1.解含有分母的一元一次方程的步骤及具体做法.2.在解方程x 3-x 2=1时,去分母得2x -3x =6,则去分母的依据是__等式的性质2__. 三、合作探究 达成目标探究点一 解含分母的一元一次方程活动一:例1 解方程3x +12-2=3x -210-2x +35【展示点评】在方程两边乘以什么样的数才能把每一个分母都约去呢?步骤 理论依据解:去分母,得:______________( )去括号,得:______________( )移项,得:______________( )合并同类项,得:______________( )系数化为1,得:______________( )【小组讨论】用去分母解一元一次方程的关键是什么?当分子是多项式时,去分母要注意什么?【反思小结】去分母时须注意:(1)确定各分母的最小公倍数;(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体.例2 解方程:(1)x +12-1=2+2-x 2; (2)3x +x -12=3-2x -13. 解答过程见教材第97页例3的解答过程.【小组讨论】解含有分母的一元一次方程的一般步骤.【反思小结】解含有分母的一元一次方程有五步:去分母;去括号;移项;合并同类项;系数化为1.解方程要先观察方程的特点,选取恰当的、简便的方法.【针对训练】见“学生用书”.探究点二 去分母解一元一次方程的简单应用活动二:例3 当x 等于什么数时,x -x -13的值与7-x +35的值相等? 【展示点评】令两代数式相等,列得方程,然后去分母解之即得x.【小组讨论】本题是一元一次方程的应用吗?这和上面的例2有何联系?【反思小结】本例实际上是一元一次方程在数学内部的应用,如同例2那样,就是解含有分母的一元一次方程.【针对训练】见“学生用书”.四、总结梳理 内化目标1.去分母的依据.2.解含有分母的一元一次方程的一般步骤.五、达标检测 反思目标1.在解方程x -12-2x +33=1时,去分母正确的是( B ) A .3(x -1)-2(2+3x)=1B .3(x -1)-2(2x +3)=6C .3x -1-4x +3=1D .3x -1-4x +3=62.方程5-x 2-4+x 3=1,去分母可变形为__3(5-x )=2(4+x )=6__. 3.代数式5m +14与5(m -14)的值互为相反数,则m 的值等于__110__. 4.解方程:(1)3y -14-1=5y -76; (2)5y +43+y -14=2-5y -512. 解:(1)y =-1 (2)y =47六、布置作业 巩固目标课后作业 见“学生用书”.。
解一元一次方程课题: 3.3 解一元一次方程(去括号)课时1课时教学设计课标要求能解一元一次方程教材及学情分析本节课是人教版七年级上册第三章第三节《解一元一次方程——去括号》,去括号这一节是学生在学习了去括号法则和移项之后,进一步系统学习解一元一次方程的有关知识。
它既是第三章知识的深化,又为我们以后学习一元一次方程的应用提供研究和学习的方法,同时也为含有分母的一元一次方程的计算做好准备,具体的说,本节课就是要通过对去括号的掌握和理解,让学生形成系统的解一元一次方程的知识结构,学会解一元一次方程的方法,因此本节课的重要性是不言而喻的。
本节课的教材所具有的特点是所涉及到的方法和性质比较多,并且都是以题目的形式给出的,这就要求我们必须从学生的认知规律出发去暴露学生知识的发生和发展过程。
学生在第二章《整式》中“整式的加减”的第二课时已经接触并掌握了去括号法则,故本节课只是去括号法则运用在一元一次方程中的延伸,针对学生而言,本节课的掌握并不难。
再者,七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在课时教学目标1、了解去括号是解一元一次方程的重要步骤。
2、准确而熟练的运用去括号法则解带有括号的方程。
重点准确而熟练的运用去括号法则解带有括号的方程。
难点如果括号外的因数是负数时,去括号后,原括号内各项的符号要改变符号;乘数与括号内多项式相乘时,乘数应乘括号内的每一项,不要漏乘。
提炼课题探究去括号的方法解一元一次方程教法学法指导探究思考法、讲练结合法教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课一、知识回顾:一、复习回顾:1、解方程 9-3x=-5x+52、去括号回顾移项、合并同类项、系数化为一、去括号的法则复习旧知识,为本节课的学习打基础教学过程二、去括号解一元一次方程(一)问题:(二)去括号解一元一次方程方程的步骤二、去括号解一元一次方程1、问题分析:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?分析:若设上半年每月平均用电x度,则下半年每月平均用电度,半年共用电度,下半年共用电度。
3.3 解一元一次方程—去括号与去分母(第3课
时)
一、教学目标
知识与技能
1、了解一元一次方程解法的一般步骤。
2、掌握解一元一次方程中“去分母”的方法。
过程与方法
1、通过去分母,体会化归的数学思想方法。
2、经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题,解决问题的能力。
情感态度与价值观
1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望。
2、通过埃及古题的情景感受数学文明。
二、重点难点
重点
通过“去分母”解一元一次方程。
难点
探究通过“去分母”的方法解一元一次方程。
三、学情分析
学生在前面已经学习了解一元一次方程的基本方法,本节课是在学生已经掌握了合并同类项与移项的基础上来学习这节课的。
第3课时解含有分母的一元一次方程【知识与技能】1.掌握解一元一次方程中“去分母”的方法,并能解此类型的方程.2.了解一元一次方程解法的一般步骤.【过程与方法】经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题的能力.【情感态度】通过具体情境引入新问题(如何去分母),激发学生的探究欲望.【教学重点】通过“去分母”的方法解一元一次方程.【教学难点】探究通过“去分母”的方法解一元一次方程.一、情景导入,初步认知1.判断.(1)若a=b,则ac=bc()(2)若a=b则a÷2=b÷2( )2.求下列几组数的最小公倍数.(1)2,3;(2)2,3,6解:(1)最小公倍数是6.(2)最小公倍数是6.3.解方程:2x=3(x-1)解:2x=3x-33=x即x=3【教学说明】通过复习以前学过的知识,为本节课做好铺垫.二、思考探究,获取新知1.刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成,现在甲先单独绣1天,接着乙又绣4天,剩下的工作由甲、乙两人合绣,问再绣多少天可以完成这件作品?师生互动:学生审题后,教师提问:(1)题中涉及哪些相等关系?(2)应怎样设未知数?如何根据相等关系列出方程?教师展示问题,让学生思考,独立完成.分析并列方程解:设再绣x天可以完成.1 15(x+1)+112(x+4)=1【教学说明】由实际问题引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.同时利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.2.这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?3.教师出示问题,学生思考、回答,学生代表将不同的解法在黑板上展示交流(用通分合并同类项,用去分母方法解).【教学说明】学生在已有经验基础上,努力尝试新的方法.4.不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?【教学说明】通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.5.学生讨论之后,教师通过以下问题明确去分母的方法和依据:(1)怎样去分母呢?(2)去分母的依据是什么?【归纳结论】去分母的方法:在方程两边同乘各分母的最小公倍数可以去分母.6.结合上两节课所学的内容,你能归纳解一元一次方程的步骤吗?【归纳结论】解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.【教学说明】学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.三、运用新知,深化理解1.教材P94例3.2.将方程x2-24x-=1去分母,得( A )A.2x-(x-2)=4B.2x-x-2=4C.2x-x+2=1D.2x-(x-2)=13.方程213x+-12x-=1去分母正确的是( D )A.2(2x+1)-3(x-1)=1B.6(2x+1)-6(x-1)=1C.2x+1-(x-1)=6D.2(2x+1)-3(x-1)=64.当3x-2与13互为倒数时,x 的值为( B ) A.13B.53 C.3 D.355.下面的方程变形中:①2x+6=-3变形为2x=-3+6; ②33x +-12x +=1变形为2x+6-3x+3=6; ③25x-23x=13变形为6x-10x=5; ④35x=2(x-1)+1变形为3x=10(x-1)+1. 正确的是 ③ (只填代号). 6.已知2是关于x 的方程32x-2a =0的一个解,则2a-1的值是 2 . 7.一队学生从学校出发去部队军训,以每小时5km 的速度行进4.5km 时,一名通讯员以每小时14km 的速度从学校出发追赶队伍,他在离部队6km 处追上了队伍,设学校到部队的距离是x km ,则可列方程6 4.55x --=614x -求x. 8.解方程:(1)3(m+3)=22.52m -10(m-7), (2)6x +30004x -=10×60. 解:(1)去分母,得6(m+3)=22.5m-20(m-7),去括号,得6m+18=22.5m-20m+140,移项,得6m-22.5m+20m =140-18,合并同类项,得3.5m =122,系数化1,得m=-2447. (2)去分母,得2x+3(3000-x)=10×60×12.去括号,得2x+9000-3x=7200,移项,得2x-3x=7200-9000,合并同类项,得-x=-1800,化系数为1,得x=1800.9.解方程:19112468753x ⎧⎫⎡+⎤⎛⎫+++⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=1. 解:方程两边同乘以9,得112468753x ⎡+⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=9, 移项合并,得11246753x ⎡+⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦=1, 方程两边同乘以7,得12453x +⎛⎫+⎪⎝⎭+6=7, 移项合并,得12453x +⎛⎫+ ⎪⎝⎭=1, 方程两边同乘以5,得243x ++=5, 移项合并,得23x +=1, 去分母,得x+2=3,即x=1.10.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75km/h ”小明又继续走了20分钟就遇到了这辆自行车,小明估计自己步行的速度是3km/h ,这样小明就算出了这辆自行车的速度.自行车的速度是多少?解:设自行车的速度是x千米/小时,由题意得12x+13×3=75×16,解之得x=23.答:自行车的速度是23千米/小时.【教学说明】及时巩固所学知识.让学生理解解方程的步骤不是固定不变的,而是可以根据一元一次方程的不同形式灵活改变解题顺序的.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第3、4、8题.通过本节课的教学我认识到一定要把更多的学习、探究机会给学生,学生能解决的老师绝不代办,充分体现学生的主体地位,还有课堂上必须给学生安排足够的练习巩固的时间,一方面:学生可以查漏补缺,另一方面:老师可以有效地把握学生的学习效果,以便进行因材施教.8.1二元一次方程组教材分析本节课是在学生对一元一次方程已有认识的基础上,学习二元一次方程与二元一次方程组的相关概念.由于求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具,因此有必要研究未知数多于一个的方程或方程组。