苏科版七年级上册数学.初一期中试卷
- 格式:docx
- 大小:148.92 KB
- 文档页数:5
苏科版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,共24.0分)1.下列各式中正确的是( )A. ﹣|5|=|﹣5|B. |﹣5|=5C. |﹣5|=﹣5D. |﹣1.3|<02.在数轴上到原点距离等于3数是( )A. 3B. ﹣3C. 3或﹣3D. 不知道3.下列计算正确的是( )A. 4x﹣x=4B. 2x+3x=5xC 3xy﹣2xy=xy D. x+y=xy4. 实数a、b、c在数轴上的位置如图所示,则下列式子中一定成立的是( )A. a+b+c>0B. |a+b|<cC. |a﹣c|=|a|+cD. |b﹣c|>|c﹣a|5.若|x-2|+|y+6|=0,则x+y的值是()A. 4B. 4C.D. 86.某商场元旦促销,将某种书包每个x元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()A. x﹣0.8x﹣18=102B. 0.08x﹣18=102C. 102﹣0.8x=18D. 0.8x﹣18=1027. 2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A. 0.377×l06B. 3.77×l05C. 3.77×l04D. 377×1038.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是( )A. 36B. 45C. 55D. 66二、填空题(本大题共10小题,共30.0分)9.25-的倒数是_______.10.在下列各式:①π﹣3;②ab=ba;③x;④2m﹣1>0;⑤x yx y-+;⑥8(x2+y2)中,整式有_____.11.绝对值不大于4所有负整数的和是_____________.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.13.若规定[x]表示不超过x的最大整数,如[4.3]=4,[﹣2.6]=﹣3;则[5.9]+[4.9]=_____.14.已知x=1是方程3x﹣m=x+2n的解,则整式m+2n+2008的值等于_____15.下列说法:①﹣a是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数是非负数,其中正确的是_____.16.多项式3x|m|y2+(m+2)x2y-1是四次三项式,则m的值为______.17.已知|a|=1,|b|=2,如果a>b,那么a+b=_____.18.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为______.三、解答题(本大题共10小题,共96.0分)19.把下列各数填入表示它所在的数集的括号里 ﹣(﹣2.3),227,0,﹣42,30%,π,﹣|﹣2013|,﹣512,.0.3 (1)负整数集合[ …] (2)正有理数集合[ …] (3)分数集合[ …] 20.计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(﹣23)﹣(﹣48)÷(﹣8) (3)﹣12×(12﹣34+112)(4)﹣12﹣(1﹣0.5)×13×[3﹣(﹣3)2]. 21.化简:(1)﹣3(2x ﹣3)+7x +8; (2)3(x 2﹣12y 2)﹣12(4x 2﹣3y 2) 22.若3x m +5y 2与x 3y n 的和是单项式,求m n ﹣mn 的值.23.若a 与b 互为相反数b 与c 互为倒数,并且m 的平方等于它本身,试求222a bm +++bc ﹣3m 的值.24.已知A=3b 2﹣2a 2+5ab,B=4ab ﹣2b 2﹣a 2. (1)化简:3A ﹣4B ;(2)当a=1,b=﹣1时,求3A ﹣4B 的值.25.如图两摞规格完全相同的课本整齐地叠放在讲台上请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为 cm .(2)若有一摞上述规格的课本x本整齐地叠放在讲台上请用含x的代数式表示出这摞课本的顶部距离地面的高度;(3)当x=42时,求课本的顶部距离地面的高度.26. 一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据如下表:时间7:008:009:0010:0011:0012:0013:0014:0015:00体温0C(与前升0.2降1.0降0.8降1.0降06升0.4降0.2降0.2降0一次比较)注:病人早晨进院时医生测得病人体温是40.2℃.问:(1)病人什么时候体温达到最高,最高体温是多少?(2)病人中午12点时体温多高?(3)病人几点后体温稳定正常?(正常体温是37℃)27.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.28.对于有理数a,b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.答案与解析一、选择题(本大题共8小题,共24.0分)1.下列各式中正确的是( )A. ﹣|5|=|﹣5|B. |﹣5|=5C. |﹣5|=﹣5D. |﹣1.3|<0 【答案】B【解析】【分析】正数的绝对值等于其本身,负数的绝对值等于其相反数,0的绝对值为0,据此依次判断即可. 【详解】A、∵﹣|5|=-5,|﹣5|=5,∴﹣|5|≠|﹣5|,∴选项A不符合题意;B、∵|﹣5|=5,∴选项B符合题意;B、∵|﹣5|=5,∴选项C不符合题意;D、∵|﹣1.3|=1.3>0,∴选项D不符合题意.故选:B.【点睛】本题主要考查了绝对值的代数意义,熟练掌握相关概念是解题关键.2.在数轴上到原点距离等于3的数是( )A. 3B. ﹣3C. 3或﹣3D. 不知道【答案】C【解析】分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.3.下列计算正确的是( )A. 4x﹣x=4B. 2x+3x=5xC. 3xy﹣2xy=xyD. x+y=xy【答案】C【解析】【分析】合并同类项时,字母不变,系数相加(减),据此依次计算即可.【详解】A:4x2﹣x2=3x2,故A错误;B:2x2+3x2=5x2,故B错误;C: 3xy﹣2xy=xy,故C正确;D:x与y不是同类项,不能合并,故D错误;故选:C.【点睛】本题主要考查了合并同类项,熟练掌握相关法则是解题关键.4. 实数a、b、c在数轴上的位置如图所示,则下列式子中一定成立的是( )A. a+b+c>0B. |a+b|<cC. |a﹣c|=|a|+cD. |b﹣c|>|c﹣a|【答案】C【解析】试题分析:先根据数轴确定a.b,c的取值范围,再逐一对各选项判定,即可解答.解:由数轴可得:a<b<0<c,∴a+b+c<0,故A错误;|a+b|>c,故B错误;|a﹣c|=|a|+c,故C正确;|b﹣c|<|c﹣a|,故D错误;故选:C.考点:数轴.5.若|x-2|+|y+6|=0,则x+y的值是()A. 4B. 4C.D. 8【答案】B【解析】【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【详解】∵|x−2|+|y+6|=0,∴x−2=0,y+6=0,解得x=2,y=−6,则x+y=2−6=−4.故选:B.【点睛】此题考查绝对值,解题关键在于掌握绝对值的非负性.6.某商场元旦促销,将某种书包每个x元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()A. x﹣0.8x﹣18=102B. 0.08x﹣18=102C. 102﹣0.8x=18D. 0.8x﹣18=102【答案】D【解析】【分析】根据等量关系:第一次降价后的价格−第二次降价的18元=最后的售价列出方程即可.【详解】设某种书包每个x元,可得:0.8x﹣18=102,故选:D.【点睛】本题主要考查了一元一次方程的实际运用,准确找出等量关系是解题关键.7. 2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A. 0.377×l06B. 3.77×l05C. 3.77×l04D. 377×103【答案】B【解析】37.7万=377000=3.77×105.故答案为B.8.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是( )A. 36B. 45C. 55D. 66【答案】B【解析】【分析】根据题意可得出(a+b)10的展开式的系数是杨辉三角第11行的数,并且第三项的系数为第十一行的第三个数,从而进一步得出规律求解即可.【详解】依据规律可得到:(a+b)10的展开式的系数是杨辉三角第11行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第11行第三个数为:1+2+3+…+9=()199452+⨯=.故选:B.【点睛】本题主要考查了整式中的规律计算,准确找出相应的规律是解题关键.二、填空题(本大题共10小题,共30.0分)9.25-的倒数是_______.【答案】-5 2【解析】【分析】根据倒数概念求解.【详解】25-的倒数是-52.故答案是:-52.【点睛】考查了求一个数的倒数,解题关键是求一个数的倒数是交换分子和分母的位置即可.10.在下列各式:①π﹣3;②ab=ba;③x;④2m﹣1>0;⑤x yx y-+;⑥8(x2+y2)中,整式有_____.【答案】①、③、⑥.【解析】【分析】单项式与多项式统称为整式,据此依次判断即可. 【详解】①π﹣3,是整式;②ab=ba,不是整式,是等式;③x,是整式;④2m﹣1>0,不是整式,是不等式;⑤x yx y-+,不是整式,是分式;⑥8(x2+y2),是整式∴整式有①、③、⑥.故答案为:①、③、⑥.【点睛】本题主要考查了整式的定义,熟练掌握相关概念是解题关键.11.绝对值不大于4的所有负整数的和是_____________.【答案】-10【解析】试题分析:根据绝对值的定义及有理数的大小比较法则即可得到结果. 绝对值不大于4的所有负整数是-4、-3、-2、-1,它们的和是-10.考点:本题考查的是绝对值,有理数的大小比较点评:本题是基础应用题,只需学生熟练掌握绝对值的定义,即可完成.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x 辆汽车,则根据题意可列出方程为______. 【答案】4516509x x +=- 【解析】 【分析】设有x 辆汽车,根据去郊游的人数不变,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设有x 辆汽车, 根据题意得:4516509x x +=-. 故答案为:4516509x x +=-.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 13.若规定[x ]表示不超过x 的最大整数,如[4.3]=4,[﹣2.6]=﹣3;则[5.9]+[4.9]=_____. 【答案】9. 【解析】 【分析】根据给出的法则先分别确定[5.9]=5,[4.9]=4,再求出它们的和. 【详解】解:[5.9]=5,[4.9]=4, ∴[5.9]+[4.9]=5+4=9. 故答案为:9【点睛】本题主要考查的是比较有理数的大小,掌握[x]的意义是解题的关键. 14.已知x =1是方程3x ﹣m =x +2n 的解,则整式m +2n +2008的值等于_____ 【答案】2010. 【解析】 【分析】将x =1代入方程3x ﹣m =x +2n 后通过变形得出m +2n =2,然后整体代入求解即可. 【详解】把x =1代入3x ﹣m =x +2n 得:3﹣m =1+2n , ∴m +2n =2,∴m +2n +2008=2+2008=2010. 故答案为:2010.【点睛】本题主要考查了方程的解与代数式的求值,整体代入求值是解题关键.15.下列说法:①﹣a是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数是非负数,其中正确的是_____.【答案】④【解析】【分析】负数是比0小的数,带负号不一定是负数;绝对值具有非负性;有理数可分为正数、负数与0;绝对值等于本身的数为0和正数;据此依次判断即可.【详解】①﹣a不一定是负数.故①错误;②一个数的绝对值一定是非负数,故②错误;③一个有理数包括正数、负数、0,故③错误;④绝对值等于本身的数是非负数,故④正确;故答案为:④【点睛】本题主要考查了有理数的相关性质,熟练掌握各自概念是解题关键.16.多项式3x|m|y2+(m+2)x2y-1是四次三项式,则m的值为______.【答案】2【解析】【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为:2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.17.已知|a|=1,|b|=2,如果a>b,那么a+b=_____.【答案】–1或–3【解析】试题分析:根据绝对值的性质可得:a=,b=2,根据a b可得:a=,b=-2,则a+b=1-2=-1或a+b=-1-2=-3.18.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为______.【答案】4【解析】分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:∵第1次输出的数为:100÷2=50,第2次输出的数为:50÷2=25,第3次输出的数为:25+7=32,第4次输出的数为:32÷2=16,第5次输出的数为:16÷2=8,第6次输出的数为:8÷2=4,第7次输出的数为:4÷2=2,第8次输出的数为:2÷2=1,第9次输出的数为:1+7=8,第10次输出的数为:8÷2=4,…,∴从第5次开始,输出的数分别为:8、4、2、1、8、…,每4个数一个循环;∵(2019-4)÷4=503…3,∴第2019次输出的结果为2.故答案为:2.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题(本大题共10小题,共96.0分)19.把下列各数填入表示它所在的数集的括号里﹣(﹣2.3),227,0,﹣42,30%,π,﹣|﹣2013|,﹣512,.0.3(1)负整数集合[…](2)正有理数集合[…](3)分数集合[…]【答案】(1)﹣42,﹣|﹣2013|;(2)﹣(﹣2.3),227,30%,.0.3;(3)﹣(﹣2.3),227,30%,﹣512,.0.3.【解析】 【分析】(1)负整数是指小于0的整数,据此判断即可; (2)正有理数是指大于0的有理数,据此判断即可;(3)分数包括正分数与负分数,其中有限小数与无限循环小数也是分数,据此判断即可. 【详解】∵﹣(﹣2.3)=2.3,﹣|﹣2013|=﹣2013,∴负整数集合[﹣42,﹣|﹣2013|,…]; 正有理数集合[﹣(﹣2.3),227,30%,.0.3,…];分数集合[﹣(﹣2.3),227,30%,﹣512,.0.3,…].【点睛】本题主要考查了有理数的分类,熟练掌握各类数的定义是解题关键. 20.计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(﹣23)﹣(﹣48)÷(﹣8) (3)﹣12×(12﹣34+112)(4)﹣12﹣(1﹣0.5)×13×[3﹣(﹣3)2]. 【答案】(1)2;(2)﹣38;(3)2;(4)0. 【解析】 【分析】(1)根据有理数加减混合运算法则及顺序计算即可; (2)根据有理数混合运算法则及顺序计算即可; (3)利用乘法分配律计算即可;(4)根据有理数混合运算法则及顺序计算即可. 【详解】(1)原式=0﹣3﹣5+7+3 =﹣8+10 =2;(2)原式=﹣32﹣6 =﹣38;(3)原式=﹣6+9﹣1 =﹣7+9=2;(4)原式=﹣1﹣12×13×(3﹣9)=﹣1﹣12×13×(﹣6)=﹣1+1=0.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.21.化简:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣12y2)﹣12(4x2﹣3y2)【答案】(1)x+17;(2)x2.【解析】【分析】(1)先去括号,然后合并同类项即可;(2)先去括号,然后合并同类项即可. 【详解】(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8=x+17;(2)3(x2﹣12y2)﹣12(4x2﹣3y2)=3x2﹣32y2﹣2x2+32y2=x2.【点睛】本题主要考查了整式的加减混合运算,熟练掌握运算法则是解题关键.22.若3x m+5y2与x3y n和是单项式,求m n﹣mn的值.【答案】m n﹣mn=8.【解析】【分析】根据3x m+5y2与x3y n的和是单项式可得二者是同类项,从而利用同类项性质求出m、n的值代入计算即可. 【详解】∵3x m+5y2与x3y n的和是单项式,∴3x m+5y2与x3y n是同类项.∴m+5=3,n=2.解得m=﹣2.∴当m=﹣2,n=2时,m n﹣mn=(﹣2)2﹣(﹣2)×2=4+4=8.【点睛】本题主要考查了代数式的求值,发现二者之间同类项的关系是解题关键.23.若a与b互为相反数b与c互为倒数,并且m的平方等于它本身,试求222a bm+++bc﹣3m的值.【答案】当m=1时,原式=﹣2;当m=0时,原式=1.【解析】【分析】根据题意可以先得知a+b=0,bc=1,m=1或0,从而进一步分类代入求值即可. 【详解】∵a与b互为相反数b与c互为倒数,并且m的平方等于它本身,∴a+b=0,bc=1,m=1或0;当m=1时,则222a bm+++bc﹣3m=0+1﹣3=﹣2;当m=0时,则222a bm+++bc﹣3m=0+1﹣0=1.【点睛】本题主要考查了代数式的求值,熟练掌握相反数、倒数的性质及乘方运算的特例是解题关键.24.已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2.(1)化简:3A﹣4B;(2)当a=1,b=﹣1时,求3A﹣4B的值.【答案】(1)3A-4B=-2a2+17b2-ab;(2)16.【解析】【分析】(1)将A、B代入求解;(2)将a=1,b=-1代入(1)式求解即可.【详解】解:(1)∵A=3b2-2a2+5ab,B=4ab-2b2-a2,∴3A-4B=3(3b2-2a2+5ab)-4(4ab-2b2-a2)=9b2-6a2+15ab-16ab+8b2+4a2=-2a2+17b2-ab;(2)当a=1,b=-1时,原式=-2+17+1=16.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.25.如图两摞规格完全相同的课本整齐地叠放在讲台上请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上请用含x的代数式表示出这摞课本的顶部距离地面的高度;(3)当x=42时,求课本的顶部距离地面的高度.【答案】(1)0.5;(2)高出地面的距离为(85+0.5x)cm;(3)余下的课本的顶部距离地面的高度106cm.【解析】【分析】(1)根据图中所画可以得出3本课本的高度为(88-86.5)cm,从而进一步求出每本高度即可;(2)首先求出课桌的高度,然后加上x本书的高度0.5xcm即可;(3)将x=42代入(2)中的代数式计算即可.【详解】(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;故答案为:0.5;(2)∵x本书的高度为0.5xcm,课桌的高度为85cm,∴高出地面的距离为(85+0.5x)cm;(3)当x=42时,85+0.5x=106.答:余下的课本的顶部距离地面的高度106cm.【点睛】本题主要考查了代数式的实际运用,准确找出文中各数之间的关系是解题关键.26.一病人发高烧进医院进行治疗,医生给他开了药并挂了水,同时护士每隔1小时对病人测体温,及时了解病人的好转情况,现护士对病人测体温的变化数据如下表:注:病人早晨进院时医生测得病人体温是40.2℃. 问:(1)病人什么时候体温达到最高,最高体温是多少? (2)病人中午12点时体温多高?(3)病人几点后体温稳定正常?(正常体温是37℃)【答案】解:(1)病人7:00时体温达到最高,最高体温是40.40C(2)病人中午12点时体温达到3740C(3)病人14点后体温稳定正常(正常体温是37℃) 【解析】 【分析】此题只要在病人早晨进院时医生测得病人体温40.2℃的基础上根据表格进行加减即可求出. 【详解】(1)早上7:00,最高达40.4℃;(2)病人中午12点时体温为:40.2+0.2−1−0.8−1−0.6+0.4=37.4℃; (3)14:00以后27.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2;(2)-9;(3)8.【解析】【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.【详解】(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题考查整式的加减,解决问题的关键是读懂题意,运用整体思想解题.28.对于有理数a,b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简a⊙b;(3)已知(a⊙a)⊙a=8+a,求a的值.【答案】(1)2⊙(﹣3)=6;(2)a⊙b=﹣2b;(3)当a≥0时, a=83;当a<0时, a=﹣85.【解析】【分析】(1)根据文中的新运算法则将2⊙(﹣3)转化为我们熟悉的计算方式进行计算即可;(2)根据文中的新运算法则将a⊙b转化为|a+b|+|a﹣b|,然后先判断出a+b与a﹣b的正负性,之后利用绝对值代数意义化简即可;(3)先根据文中的新运算法则将(a⊙a)⊙a转化为我们熟悉的计算方式,此时注意对a进行分a≥0、a<0两种情况讨论,然后得出新的方程求解即可.【详解】(1)由题意可得:2⊙(﹣3)=|2﹣3|+|2+3|=6;(2)由数轴可知,a+b<0,a﹣b>0,∴a⊙b=|a+b|+|a﹣b|=﹣a﹣b+a﹣b=﹣2b;(3)当a≥0时,(a⊙a)⊙a=2a⊙a=4a=8+a,∴a=83;当a<0时,(a⊙a)⊙a=(﹣2a)⊙a=﹣4a=8+a,∴a=85 -.综上所述,a的值为83或85-.【点睛】本题主要考查了绝对值的化简与定义新运算的综合运用,根据题意找出正确的新运算的法则是解题关键.。
七年级数学上学期期中试卷(一)(总分:140分;时间:140分钟)第一卷(选择题 共80分)一、选择题(2’ XI0=207 )1、某市2013年元旦的最高气温为2°C,最低气温为-8°C,那么这天的最高气温比最低气温高()A. -10°CB. -6°CC. 6°CD. 10°C2、一6的相反数为( )A. 6B.-C. 一丄D. -6663、•若错误味找到引用源。
是方程2x + m-6 =()的解,则加的值是A. -4B. 4C. —8D. 84、下列计算正确的是( )A. + a = la 1B. 5y-3y = 25、 在数轴上,到表示一1的点的距离等于6的点表示的数是()A 、5B 、-7C 、-5 或 7D 、5 或一76、 已知代数式-5a m -'b 6和丄"加是同类项,则m-n 的值是2A ・ 1 B. — 1 C. —2 D. —3 7、小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售价相同, 但甲店规定:若一次买两套,则其中一套可亨受七折优惠;乙店规定:若一次 买两套,则可按总价的80%收费.下列判断正确的是().A.甲店比乙店优惠 C.甲、乙两店收费相同 8、下列各式成立的是( )9、给出下列判断:①2鼻与扩是同类项;②多项式5a+Z 中,常数项是I ;③宁X(1-+ H 丄都是整式;④儿个数相乘,积的符号一定rh 负因数的个数决定•其屮判断正确的是 2 4 ( )开始的连续自然数组成。
下面所给的判断屮,不正确的是12 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36B 第刀行的第一个数是(n-1尸+1;C. 3x 2y - 2x 2y = x 2yD. 3d + 2b = 5abB.乙店比甲店优惠 D.以上都有可能A 、 a-b+c 二a 一(b-c)C^ 8a 一4 = 4a D^ 一2 (a-b)="2a+bA.①②③B.①③C.①③④D.①②③④10、如下数表是由从1A 表屮第8行的最后一个数是64;C第刀行的最后一个数是r?;D第刀行共有2n个数.二、填空题(2’X7+3' X3二23’ )211、-1-的倒数是____________ 0312、盈利100元记作+100元,那么—50元的意义是___________________________ ・13、若代数式一4fy与是同类项,则常数n的值为__________________ ・14、己知代数式x+2y-l的值是3,则代数式3-兀_2y的值是_______________________________ .15、一个三角形的第一条边为(x+2)cm,第二条边比第一条边长小3cm,第三条边长是第二边长的2倍,用含x的代数式表示这个三角形的周长______16、x表示一个两位数,如果在x左边放一个数字-8,则得到的一个三位数是________________ .17、商家对两种进价不同鞋子售价均为240元,其小一种赚20%,另一种亏20%,则商家卖出这两种鞋子是赚了还是亏了还是不赚不亏呢?答:________________ .18、“24点”是个古老而有趣的数学游戏。
苏科版七年级上学期期中考试数学试题一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( )A. 235a a a +=B. 236a a a ⋅=C. 32a a a ÷=D. ()328=a a 2.如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角3.下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+- C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 4.如图,下列条件不能判定直线a ∥b 的是A. ∠1=∠3B. ∠2=∠4C. ∠2=∠3D. ∠2+∠3=180° 5.下列各式能用平方差公式计算的是( )A. ()()22a b b a +-B. 111122x x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭C. ()()2a b a b +-D. ()()2121x x --+ 6. 多边形剪去一个角后,多边形的外角和将( )A. 减少180ºB. 不变C. 增大180ºD. 以上都有可能 7.若2m a =,3n a =,则m n a +等于( )A. 15B. 6C. 8D. 98.如图,△ABC 中,∠A=60°,点E 、F 在AB 、AC 上,沿EF 向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于 ( )A. 60︒B. 90︒C. 120︒D. 150︒二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式22x x -=____________.10.一种细菌的半径是0.0000076厘米,用科学计数法表示为_____________厘米11.如图,直线a 、b 被直线c 所截,且//a b ,165∠=︒,那么2∠=______º.12.若一个多边形的内角和是900º,则这个多边形是 边形.13.如图,在△ABC 中,BC =5cm ,把△ABC 沿直线BC 的方向平移到△DEF 的位置,若EC =2cm ,则平移的距离为_____cm .14.714139⎛⎫⨯- ⎪⎝⎭= ________ 15.若等腰三角形的两边的长分别是2cm 、5cm,则第三边的长为________cm.16.若多项式216x mx -+能用完全平方公式进行因式分解,则m =_______.17.如图,将一副直角三角板如图所示放置,使含30角的三角板的一条直角边和含45度角的三角板的一条直角边重合,则1∠的度数为________°.18.对于任何实数a ,b ,c ,d ,我们都规定符号的意义是a c b dad bc =-,按照这个规定请你计算:当2310x x -+=时,12x x +-31xx -的值为________.三、解答题: (本大题共4小题,每题各6分,共24分. 解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:()1201220182-⎛⎫--+ ⎪⎝⎭ 20.计算:()()()211a a a a -++-21.分解因式: 2961x x -+22.分解因式:3x x -四、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:()()()2353535y y y -+++,其中.0.4y = 24.已知:5,3x y xy +==-,求:(1)22x y +值(2) ()()11x y --的值五、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 的AB 边上的中线CD;(2)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(3)图中AC 与A 1C 1的关系是: ;(4)能使S △ABQ =S △ABC 的格点Q,共有 个,在图中分别用Q 1,Q 2,…表示出来.26.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB的位置关系,并写出合适的理由. 六、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤) 27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”.(1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)七、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知ACD ∠是ΔABC 的一个外角,我们容易证明ACD ∠=A B ∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠ 180A ∠+︒(横线上填 >、< 或=)初步应用:(2)如图3,ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠= . (3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请利用上面的结论直接写出答案 .(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论探究P ∠与A ∠、D ∠的数量关系.图1 图2 图3图4 图5答案与解析一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( )A. 235a a a +=B. 236a a a ⋅=C. 32a a a ÷=D. ()328=a a 【答案】C【解析】【分析】根据合并同类项,同底数幂相乘,底数不变指数相加;同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;对各选项分别计算后利用排除法求解.【详解】A. 2a 与3a 不是同类项,不能合并,故不正确;B. 235a a a ⋅= ,故不正确;C. 32a a a ÷= ,故正确;D. ()326a a =,故不正确;故选C.【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.2.如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角【答案】A【解析】 试题分析:如图,∠ADE 与∠DEC 是AB 、AC 被DE 所截的内错角.故选A .考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.3.下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+- C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.如图,下列条件不能判定直线a ∥b 的是A. ∠1=∠3B. ∠2=∠4 C . ∠2=∠3D. ∠2+∠3=180°【答案】C【解析】【分析】 根据平行线的判定方法逐项分析即可,①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行.【详解】A. ∵ 13∠=∠ ,∴a ∥b (两同位角相等,两直线平行);故A 能;B. ∵24∠=∠,∴a ∥b (两同位角相等,两直线平行);故B 能;C. 由23∠=∠不能判定a ∥b ,故C 不能;D. ∵23180∠+∠=︒.∴a ∥b (同旁内角互补,两直线平行);故D 能;故选C.【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法是解答本题的关键.5.下列各式能用平方差公式计算的是( )A. ()()22a b b a +-B. 111122x x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭C. ()()2a b a b +-D. ()()2121x x --+【答案】B【解析】【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A 中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;B 中12x -是相同的项,互为相反项是1与1-,符合平方差公式的要求,故本选项正确; C 中不存在相反的项,不能用平方差公式计算,故本选项错误 ;D 中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:B .【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.6. 多边形剪去一个角后,多边形的外角和将( )A 减少180ºB. 不变C. 增大180ºD. 以上都有可能【答案】B【解析】试题分析:任何多边形的外角都等于360°.考点:多边形的外角和.7.若2m a =,3n a =,则m n a +等于( )A. 15B. 6C. 8D. 9 【答案】B【解析】【分析】根据同底数幂的乘法法则的逆运算变性后,把2m a =,3n a =代入即可求值.【详解】∵2m a =,3n a =,∴m n a +=·m n a a =2×3=6.故选B. 【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握同底数幂的乘法法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识. 8.如图,△ABC 中,∠A=60°,点E 、F 在AB 、AC 上,沿EF 向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于 ( )A. 60︒B. 90︒C. 120︒D. 150︒ 【答案】C【解析】【分析】先根据三角形内角和定理求出∠AEF +∠AFE 的度数,再由图形翻折变换的性质得出∠AEF =∠DEF ,∠AFE =∠DFE ,进而可得出结论.【详解】∵△AEF 中,∠A =60°,∴∠AEF +∠AFE =180°-60°=120°,∵△DEF 由△AEF 翻折而成,∴∠AEF =∠DEF ,∠AFE =∠DFE , ∴∠1+∠2=360°-2(∠AEF +∠AFE )=360°-2×120°=120°.故选C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式22x x -=____________.【答案】()()211x x +-.【解析】【分析】多项式22x x -有两项,两项都含有相同的因式x,所以提取提取公因式x 即可.【详解】22x x -= x (2x -1).故答案为x (2x -1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.一种细菌的半径是0.0000076厘米,用科学计数法表示为_____________厘米【答案】67.610-⨯【解析】【分析】对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).【详解】0.0000076=7.6×10-6. 故答案为7.6×10-6. 【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a 和n 的值是解答本题的关键.11.如图,直线a 、b 被直线c 所截,且//a b ,165∠=︒,那么2∠=______º.【答案】115°【解析】【分析】根据两直线平行,同旁内角互补可得,∠1+∠2=180°,把165∠=︒代入即可求出∠2的值.【详解】∵//a b ,165∠=︒,∴∠1+∠2=180°,∵165∠=︒,∴∠2=180°-65°=115°.故答案为115°. 【点睛】本题考查了平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.12.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.如图,在△ABC 中,BC =5cm ,把△ABC 沿直线BC 的方向平移到△DEF 的位置,若EC =2cm ,则平移的距离为_____cm .【答案】3【解析】【分析】据平移的性质,结合图形,可知线段BE的长度即是平移的距离.【详解】据图形可得:线段BE的长度即是平移的距离,∵BC=5cm,, EC=2cm,∴BE=5-2=3cm.故答案为:3.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意结合图形解题的思想.14.714139⎛⎫⨯- ⎪⎝⎭= ________【答案】-1【解析】【分析】先根据幂的乘方把314变形为97,然后逆用积的乘方计算即可.【详解】7 141 39⎛⎫⨯-⎪⎝⎭=7 71 99⎛⎫⨯-⎪⎝⎭=7199⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=-1.故答案为-1.【点睛】本题考查了幂的乘方和积的乘方的逆运算,熟练掌握幂的乘方和积的乘方法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.15.若等腰三角形的两边的长分别是2cm、5cm,则第三边的长为________cm.【答案】5【解析】【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】2是腰时,2,2,5不能组成三角形,应舍去;当5是腰时,2,5,5能够组成三角形.则第三边应是5.故答案为5.【点睛】本题考查了等腰三角形的性质及三角形三边关系;三角形任意两边之和大于第三边,任意两边之差小于第三边.16.若多项式216-+能用完全平方公式进行因式分解,则m=_______.x mx±【答案】8【解析】中间一项为加上或减去x和4积的2倍,故m=±8,解得m=±8,故答案为±8.点睛:本题主要考查了完全平方式.先根据两平方项确定出两个数,在根据完全平方公式的乘积的二倍即可确定m的值.根据平方项确定出这两个数是解题的关键,也是难点,书记完全平方公式对解题非常重要. 17.如图,将一副直角三角板如图所示放置,使含30角的三角板的一条直角边和含45度角的三角板的一条∠的度数为________°.直角边重合,则1【答案】75【解析】【详解】如图.∵∠2=60°,∠3=45°,∴∠1=180°-(∠2+∠3)=75°.故答案75.18.对于任何实数a ,b ,c ,d ,我们都规定符号的意义是a c b dad bc =-,按照这个规定请你计算:当2310x x -+=时,12x x +-31x x -的值为________.【答案】1【解析】【分析】 先解2310x x -+=变形为231x x -=-,再根据a c b d ad bc =-,把12x x +- 31x x -转化为普通运算,然后把231x x -=-代入计算即可.【详解】∵2310x x -+=,∴231x x -=-, ∵a c b dad bc =-, ∴12x x +- 31xx - =(x +1)(x -1)-3x (x -2)= x 2-1-3x 2+6x=-2x 2+6x -1=-2(x 2-3x )-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,三、解答题: (本大题共4小题,每题各6分,共24分. 解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:()1201220182-⎛⎫--+ ⎪⎝⎭ 【答案】3【解析】【分析】根据乘方的意义,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1,逐项化简,然后再按有理数的加减法则计算.【详解】()1201220182-⎛⎫--+ ⎪⎝⎭ 421=+-3=【点睛】本题考查了有理数的运算,熟练掌握乘方的意义、负整数指数幂和零指数幂是解答本题的关键. 20.计算:()()()211a a a a -++-【答案】21a -【解析】【分析】先根据单项与多项式的乘法和平方差公式计算,再合并同类项即可.【详解】()()()211a a a a -++-=2221a a a -+-=21a -【点睛】本题考查了整式的混合运算,熟练掌握单项与多项式的乘法和平方差公式是解答本题的关键. 21.分解因式: 2961x x -+【答案】()231x -【解析】【分析】 2961x x -+可变形为()232?3?11x x -+,显然有两个平方项,并且中间一项是首尾积的两倍,所以可用完全平方公式分解.【详解】2961x x -+=()232?3?11x x -+=()231x -【点睛】本题考查了用完全平方公式分解因式,熟练掌握完全平方公式的特点是解答本题的关键. 22.分解因式:3x x -【答案】()()11x x x +-【解析】【分析】先提公因式x ,再把剩下的因式x 2-1用平方差公式继续分解.【详解】3x x -=()21x x -=()()11x x x +-【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止. 四、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:()()()2353535y y y -+++,其中.0.4y = 【答案】30【解析】【分析】先根据平方差公式和完全平方公式计算,然后合并同类项,再把0.4y =代入计算即可.【详解】原式=2292593025y y y -+++=3018y +当0.4y =时原式=300.418⨯+=30【点睛】本题考查了整式的化简求值,熟练掌握平方差公式和完全平方公式是解答本题的关键.24.已知:5,3x y xy +==-,求:(1)22x y +的值(2) ()()11x y --的值【答案】(1)31(2)-7【解析】【分析】(1)把22x y +变形为(x +y )2-2xy ,然后把5,3x y xy +==-代入计算;(2)先把()()11x y --按照多项式的乘法计算,然后把5,3x y xy +==-代入计算.【详解】(1)原式=()22x y xy +-当5,3x y xy +==-时原式=()2523-⨯- =31(2)原式=1y x xy --+=()1x y xy -++当5,3x y xy +==-时原式=()153-+-=7-【点睛】本题考查了整式的化简求值,熟练掌握完全平方公式的变形是解答(1)的关键,掌握多项式的乘法法则是解(2)的关键.五、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 的AB 边上的中线CD;(2)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(3)图中AC 与A 1C 1的关系是: ;(4)能使S △ABQ =S △ABC 的格点Q,共有 个,在图中分别用Q 1,Q 2,…表示出来.【答案】(1)见解析;(2)见解析:(3)平行且相等;(4)4个,图见解析.【解析】【分析】(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;(2)平移A,B,C各点,得出各对应点,连接得出△A1B1C1;(3)利用平移的性质得出AC与A1C1的关系;(4)首先求出S△ABC的面积,进而得出Q点的个数.【详解】解:(1)如图所示:取AB的中点D,连接CD;CD就是△ABC的AB边上的中线;(2)如图所示:将A,B,C各点向右平移四个单位,得出各对应点,然后顺次连接;(3)根据平行的性质可得:AC与A1C1的关系为:平行且相等;(4)如图所示,S △ABQ=S △ABC的格点Q,共有4个【点睛】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC的面积进而得出Q点位置是解题关键.∠=∠∠=∠⊥于,猜想CD与AB的位置关系,并写出合适的理由. 26.如图:已知12,3,B FG AB G⊥【答案】CD AB【解析】【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.⊥【详解】CD AB∠=∠.∵3B∴DE BC,∠=∠,∴14∠=∠,又∵12∠=∠,∴24∴GF CD,∠=∠,∴CDB BGF⊥,又∵FG AB∴90BGF ∠=︒,90CDB ∴∠=︒,即CD AB ⊥.【点睛】本题考查了平行线的判定和性质,证明GF CD 是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.六、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”.(1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)【答案】(1)()()22a b a b -+(2)2700【解析】【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.七、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤) 28.如图1,已知ACD ∠是ΔABC 的一个外角,我们容易证明ACD ∠=A B ∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠ 180A ∠+︒(横线上填 >、< 或=)初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠= . (3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请利用上面的结论直接写出答案 .(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论探究P ∠与A ∠、D ∠的数量关系.图1 图2 图3图4 图5【答案】(1)=;(2)45°;(3)1902P A∠=︒-∠;(4)()11802P A D∠=︒-∠+∠.【解析】【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)如图,延长BA,CD相交于H,然后利用(1)和(3)的结论求解即可.【详解】解:(1)∠DBC+∠ECB-∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2-∠C=45°.理由是:∵∠2+∠1-∠C=180°,∠1=135°,∴∠2-∠C+135°=180°,∴∠2-∠C=45°.故答案为:45°;(3)∠P=90°-12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°-12(180°+∠A )=90°-12∠A . 故答案为:∠P=90°-12∠A , (4)()11802P A D ∠=︒-∠+∠. 如图,延长BA,CD 相交于H ,由(3)得1902P H ∠=︒-∠, 2180P H ∴∠=︒-∠,1802H P ∴∠=︒-∠,由(1)得180BAD ADC H ∠+∠=+∠, 当1802H P ∴∠=︒-∠,∴ 1801802BAD ADC P ∠+∠=︒+︒-,∴ 3602BAD ADC P ∠+∠=︒-,()11802P BAD ADC ∴∠=︒-∠+∠, 即原图中()11802P A D ∠=︒-∠+∠. 【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).1.3-的倒数是( ) A. 3B.13C. 13-D. 3-2.下列式子,符合代数式书写格式的是( ) A. a÷3 B. 123xC. a×3D.a b3.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A. 1个B. 2个C. 3个D. 4个4.用代数式表示“m 的3 倍与n 的差的平方”,正确的是( ) A. 3m ﹣n 2B. (m ﹣3n)2C. (3m ﹣n)2D. 3(m ﹣n)2 5.有理数(-1)2,(-1)3,-12,|-1|,11--,(1)--中,其中等于1的个数是( ). A. 3个B. 4个C. 5个D. 6个 6.甲、乙两运输队,甲队32人,乙队28人,若从乙队调走x 人到甲队,此时甲队人数为乙队的2倍,依题意可列方程( ) A. 32-x=28⨯2B. 32⨯2=28-xC. 32=2(28-x)D. 32+x=2(28-x) 7.若21x y -=-,则342x y +-的值是( ) A. 5B. -5C. 1D. -1 8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A. 0b a ->B. 0a b ->C. 0ab >D. 0a b +>二、填空题(请将答案填写在答题纸的横线上.共8题,每题3分,共24分.)9.火星和地球距离约为34000000千米,这个数用科学记数法可表示为 千米.10.3225x yz -的系数是______. 11.张亮同学的身份证号码为:320723************,则他的出生时的月份为_____. 12.在数﹣5,4,﹣3,6,﹣2中任取三个数相乘,其中最大的积是_____. 13.如果单项式﹣x 3y m﹣2与x 3y的差仍然是一个单项式,则m=____.14.若|x+2|+(y-3)2=0,则2x y +的值为____________.15.在数轴上点A 表示-3,点B 与点A 的距离为2,则点B 在数轴上表示数为_________.16.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为131,则满足条件的x 的值是___.三、解答题:(72分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1) 2611|5|22⎛⎫---+⨯- ⎪⎝⎭(2) 5÷(-35)×5318.解方程: (1)5x ﹣(2﹣x )=1 (2)2135134x x --=+ 19.化简:(1)()223()a b b a -+- (2)()()2235221x yx y----20.先化简,再求值:()()22225343a b ababa b ---+,其中12a =,13b =-.21.已知关于x 的方程332xa x -=+的解为x=2,求代数式(-a)2-2a+1的值? 22.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如下: 星期一 星期二 星期三 星期四 星期五 ﹣5 +3+8a+14(1)上星期三借出图书多少册?(2)上星期五比上星期四多借出图书24册,求a 的值. (3)在(2)条件下上星期共借出图书多少册? 23.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题: (1)第6个图中共有 根火柴;(2)第n 个图形中共有 根火柴(用含n 的式子表示) (3)第2017个图形中共有多少根火柴?24.某种T 型零件尺寸如图所示(左右宽度相同),求: (1)阴影部分的周长是多少?(用含x ,y 的代数式表示) (2)阴影部分的面积是多少?(用含x ,y 的代数式表示) (3)x =2,y =3.5时,计算阴影部分的面积.25.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆22b ab ab a =-+.如:1☆231321314=⨯-⨯⨯+=. (1)求(﹣2)☆5的值. (2)若12a +☆3=8,求a 的值. 26.阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a-b ∣;当A 、B 两点都不在原点时,如图2,点A 、B 都在原点的右边∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b a -=∣a-b ∣;如图3,当点A 、B 都在原点的左边,∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=()b a ---=∣a-b ∣;如图4,当点A 、B 在原点的两边,∣AB ∣=∣OB ∣+∣OA ∣=∣a ∣+∣b ∣=()a b +-=∣a-b ∣. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是______. (2)数轴上若点A 表示的数是x ,点B 表示的数是-2,则点A 和B 之间的距离是_____,若∣AB ∣=2,那么x 为______.(3)当x 是_____时,代数式|2||1|5x x ++-=.(4)若点A 表示的数是-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒12个单位长度,求运动几秒后,点P 与点Q 之间的距离为5个单位长度 ?(请写出必要的求解过程)答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).1.3-的倒数是()A. 3B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.下列式子,符合代数式书写格式的是()A. a÷3B.123x C. a×3 D.ab【答案】D【解析】试题解析:A. a÷3应写为.3aB.123a应写为7.3aC. a×3应写为3a,D. ab正确,故选D.3.在-227,-π,0,3.14,0.1010010001,-313中,无理数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个. 故选A .【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.用代数式表示“m 的3 倍与n 的差的平方”,正确的是( ) A. 3m ﹣n 2 B. (m ﹣3n)2 C. (3m ﹣n)2 D. 3(m ﹣n)2【答案】C 【解析】 【分析】要明确给出文字语言中的运算关系,先表示出m 的3倍,再表示出与n 的差,最后表示出平方即可. 【详解】m 的3倍与n 的差的平方表示为:(3m ﹣n )2. 故选C .【点睛】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”、“平方”等,从而明确其中的运算关系,正确地列出代数式. 5.有理数(-1)2,(-1)3,-12,|-1|,11--,(1)--中,其中等于1的个数是( ). A. 3个 B. 4个C. 5个D. 6个【答案】B 【解析】 【分析】先计算每个数,再进行判断即可. 【详解】()211-=,()311-=-,211-=-,11-=,111-=-, (1)1--=,∴等于1的数一共有4个 故选B.【点睛】本题主要考查有理数的运算,熟练掌握运算法则是关键.6.甲、乙两运输队,甲队32人,乙队28人,若从乙队调走x 人到甲队,此时甲队人数为乙队的2倍,依题意可列方程( ) A. 32-x=28⨯2 B. 32⨯2=28-xC. 32=2(28-x)D. 32+x=2(28-x)【答案】D 【解析】 【分析】设从乙队调走x 人,根据调走后甲队人数恰好是乙队人数的2倍,得出方程即可. 【详解】∵从乙队调走x 人到甲队, ∴此时甲队有(32+x)人,乙队有(28-x)人, ∵此时甲队人数为乙队的2倍, ∴32+x=2(28-x). 故选D【点睛】本题考查了由实际问题抽象出一元一次方程,仔细审题,设出未知数,找出等量关系建立方程是解题关键.7.若21x y -=-,则342x y +-的值是( ) A. 5 B. -5C. 1D. -1【答案】C 【解析】 【分析】由21x y -=-可得4x-2y=-2,代入求值即可. 【详解】∵21x y -=-,∴4x-2y=-2,∴342x y +-=3+(4x-2y)=3+(-2)=1. 故选C.【点睛】主要考查了代数式求值,正确变形,利用“整体代入法”求值是解题关键. 8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A. 0b a ->B. 0a b ->C. 0ab >D. 0a b +>【答案】A 【解析】试题分析:根据所给的数轴可知:a <-1<0<b <1,且a b >,所以b -a>0,a -b <0,ab <0,a +b <0,所以A 正确,B 、C 、D 错误,故选A . 考点:数轴与数.二、填空题(请将答案填写在答题纸的横线上.共8题,每题3分,共24分.)9.火星和地球的距离约为34000000千米,这个数用科学记数法可表示为 千米. 【答案】【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此34000000=3.4×107. 考点:科学记数法10.3225x yz -的系数是______. 【答案】2-5【解析】 【分析】系数即为该式子字母前面的数.【详解】系数为2-5,所以答案填写2-5. 【点睛】本题考查了系数,掌握概念是解决本题的关键.11.张亮同学的身份证号码为:320723************,则他的出生时的月份为_____. 【答案】8月 【解析】 【分析】直接利用身份证号中数字所代表的意义分析得出答案.【详解】解:张亮同学的身份证号码为:320723************,则他的出生日期为2012年8月3日,所以出生时的月份为:8月. 故答案为8月.【点睛】本题考查了身份证号中数字所代表的意义,掌握其意义是解题的关键. 12.在数﹣5,4,﹣3,6,﹣2中任取三个数相乘,其中最大的积是_____. 【答案】90 【解析】分析:依据有理数的乘法法则进行计算即可. 详解:最大的积=-5×6×(-3)=90. 故答案为90.点睛:本题主要考查的是有理数的乘法,熟练掌握有理数的乘法法则是解题的关键.13.如果单项式﹣x 3y m ﹣2与x 3y 的差仍然是一个单项式,则m=____.【答案】3 【解析】试题分析:∵单项式-x 3y m -2与x 3y 的差仍然是一个单项式, ∴m -2=1, 解得:m =3. 故答案为3.点睛:此题考查了同类项的概念,熟练掌握同类项所含字母相同,相同字母的指数相等是解本题的关键. 14.若|x+2|+(y-3)2=0,则2x y 的值为____________.【答案】4【解析】【分析】根据绝对值和平方的非负数性质可求出x、y的值,代入求值即可.【详解】∵|x+2|+(y-3)2=0,∴x+2=0,y-3=0,∴x=-2,y=3,∴x+2y=-2+2×3=4.故答案为4【点睛】本题考查非负数性质及有理数的运算,熟练掌握绝对值和平方的非负数性质及有理数混合运算法则是解题关键.15.在数轴上点A表示-3,点B与点A的距离为2,则点B在数轴上表示数为_________.【答案】-1或-5【解析】【分析】设点B表示的数为x,再由数轴上两点间的距离公式即可得出结论.【详解】设点B表示的数为x,∵点B与点A的距离为2,∴|x-(-3)|=2,∴x+3=2或x+3=-2,解得x=-1或x=-5.故答案为-1或-5.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为131,则满足条件的x的值是___.【答案】26或5或4 5【解析】【分析】根据最后输出的结果,对题中的程序框图逆向运算确定出满足题意的x的值即可.【详解】解:若5x+1=131,则x=26,若5x+1=26,则:x=5,若5x+1=5,则:x=45,故满足条件的x的值是26或5或45,故答案为26或5或4 5 .【点睛】本题主要考查了解方程的能力,注意理解题意与逆向思维的应用是解题的关键.三、解答题:(72分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)2 61 1|5|22⎛⎫---+⨯-⎪⎝⎭(2)5÷(-35)×53【答案】(1)-5.5(2)-125 9【解析】【分析】(1)先算乘方,再算乘法,最后算加减;(2)根据有理数乘除法则进行计算.【详解】解:(1)原式1115215 5.542=--+⨯=--+=-;(2)原式55125 5339 =-⨯⨯=-.【点睛】本题考查了有理数的混合运算,熟练掌握运算顺序和运算法则是解题关键.18.解方程:(1)5x﹣(2﹣x)=1(2)21351 34x x--=+【答案】(1)x=12;(2)x=-1. 【解析】【分析】 (1)去括号,移项,合并同类项,系数化为1即可得答案;(2)先去分母、去括号再移项,合并同类项,系数化为1即可得答案.【详解】(1)5x ﹣(2﹣x )=1去括号得:5x-2+x=1,移项、合并得:6x=3,系数化为1得:x=12. (2)2135134x x --=+ 去分母得:4(2x-1)=3(3x-5)+12,去括号得:8x-4=9x-15+12,移项得:8x-9x=-15+12+4,合并得:-x=1,系数化为1得:x=-1.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解;熟练掌握解一元一次方程的步骤是解题关键.19.化简:(1)()223()a b b a -+-(2)()()2235221x y x y ----【答案】(1)- a-b ;(2)21351x y -+【解析】【分析】(1)去括号,合并同类项即可;(2)去括号,合并同类项即可.【详解】解:(1)原式2433a b b a a b =-+-=--;(2)原式222156211135x y x y x y +=-+=-+-.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键.20.先化简,再求值:()()22225343a b abab a b ---+,其中12a =,13b =-. 【答案】223a b ab -,1136-【解析】【分析】原式去括号合并同类项得到最简结果,把a 与b 的值代入计算即可求出值.【详解】()()22225343a b ab ab a b ---+,=2222155412a b ab ab a b -+-=223a b ab -; 当12a =,13b =-时,原式=22111111113()()()232341836⨯⨯--⨯-=--=-. 【点睛】此题考查了整式的加减----化简求值,熟练掌握运算法则是解本题的关键. 21.已知关于x 的方程332x a x -=+的解为x=2,求代数式(-a)2-2a+1的值? 【答案】1.【解析】【分析】把x=2代入方程332x a x -=+可得关于a 的一元一次方程,解方程可求出a 值,代入代数式即可得答案. 【详解】∵关于x 方程332x a x -=+的解为x=2, ∴3a-2=22+3, 解得:a=2,∴(-a)2-2a+1=(-2)2-2×2+1=1. 【点睛】此题考查方程解的意义及代数式的求值.使等式两边成立的未知数的值叫做方程的解;根据方程的解的意义求出a 值是解题关键.22.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五﹣5 +3 +8 a +14(1)上星期三借出图书多少册?(2)上星期五比上星期四多借出图书24册,求a的值.(3)在(2)条件下上星期共借出图书多少册?【答案】(1)58册;(2)a=-10;(3)260册.【解析】【分析】(1)由记录可知星期三借出图书比平均每天的借书数多8,即可得答案;(2)由上星期五记录为+14,上星期五比上星期四多借出图书24册,利用有理数减法即可得答案;(3)根据记录可求出实际借书数与平均借书数的差,加上平均一周的借书数即可得实际上星期共借出图书数.【详解】(1)∵超出50册记为“正”,少于50册记为“负”,∴星期三借出图书50+8=58(册)答:上星期三借出图书58册.(2)∵星期五记录为+14,上星期五比上星期四多借出图书24册,∴+14-a=24,解得:a=-10.(3)50×5+(-5+3+8-10+14)=260(册)答:在(2)条件下上星期共借出图书260册.【点睛】本题考查了正数和负数的定义及有理数加减法的运算,熟练掌握有理数加减法法则是解题关键.23.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第6个图中共有根火柴;(2)第n个图形中共有根火柴(用含n的式子表示)(3)第2017个图形中共有多少根火柴?【答案】(1)19;(2)3n+1;(3)6052.【解析】【分析】探究规律、利用规律即可解决问题.【详解】第1个图形中,火柴棒的根数是4;第2个图形中,火柴棒的根数是4+3=7;第3个图形中,火柴棒的根数是4+3×2=10;…6个图形中,火柴棒的根数是4+3×5=19;第n个图形中,火柴棒的根数是4+3(n﹣1)=3n+1.n=2017时,火柴棒的根数是3×2017+1=6052 故答案为(1)19,(2)3n+1.(3)6052.【点睛】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律即可.24.某种T型零件尺寸如图所示(左右宽度相同),求:(1)阴影部分的周长是多少?(用含x,y的代数式表示)(2)阴影部分的面积是多少?(用含x,y的代数式表示)(3)x=2,y=3.5时,计算阴影部分的面积.【答案】(1)5x +8y;(2)4xy;(3)38.【解析】【分析】(1)直接利用已知图形得出阴影部分周长;(2)直接利用已知图形得出阴影部分的面积;(3)直接将x,y的值代入求出答案.【详解】(1)周长:2y+2×3y+2(2x+0.5x)=5x +8y;(2)面积:(2x +0.5x )y+3y×0.5x =4xy ; (3)当x =2,y =2.5时,面积=5x +8y =38.25.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆22b ab ab a =-+.如:1☆231321314=⨯-⨯⨯+=(1)求(﹣2)☆5的值.(2)若12a +☆3=8,求a 的值. 【答案】(1)-32;(2)a=3.【解析】【分析】(1)根据新运算的规定列式,根据有理数混合运算法则计算即可得答案;(2)根据新运算规定列式,可得关于a 的一元一次方程,解方程求出a 值即可.【详解】(1)∵a ☆22b ab ab a =-+,∴(﹣2)☆5=(-2)×52-2×(-2)×5+(-2) =-50+20-2=-32.(2)∵12a +☆3=8, ∴12a +×32-2×12a +×3+12a +=8 4×12a +=8 2(a+1)=8a+1=4a=3.【点睛】本题考查有理数的混合运算,理解新运算的规定并熟练掌握有理数混合运算法则是解决问题的关键.26.阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a-b ∣;当A 、B 两点都不在原点时,如图2,点A 、B 都在原点的右边∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b a -=∣a-b ∣;如图3,当点A 、B 都在原点的左边,∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=()b a ---=∣a-b ∣;如图4,当点A 、B 在原点的两边,∣AB ∣=∣OB ∣+∣OA ∣=∣a ∣+∣b ∣=()a b +-=∣a-b ∣.回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是______.(2)数轴上若点A 表示的数是x ,点B 表示的数是-2,则点A 和B 之间的距离是_____,若∣AB ∣=2,那么x 为______.(3)当x 是_____时,代数式|2||1|5x x ++-=.(4)若点A 表示的数是-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒12个单位长度,求运动几秒后,点P 与点Q 之间的距离为5个单位长度 ?(请写出必要的求解过程)【答案】(1)3,4;(2)2x +,0或-4;(3)-3或2;(4)运动2秒或6秒时,点P 与点Q 之间的距离为5个单位长度.【解析】【分析】(1)根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)根据数轴上A 、B 两点之间的距离|AB|=|a-b|即可得答案;(3)分别讨论x<-2,-2≤x<1,x≥1时,根据绝对值的性质去掉绝对值,解关于x 的一元一次方程即可求出x 的值;(4)分点P 追上点Q 前和点P 追上点Q 后两点相距5个单位长度两种情况,根据距离=速度×时间,分别求出时间即可.【详解】(1)∵数轴上A 、B 两点之间的距离|AB|=|a-b|,∴表示2和5的两点之间的距离是25-=3,表示1和-3的两点之间的距离是1(3)--=4.故答案为3,4(2)∵数轴上A 、B 两点之间的距离|AB|=|a-b|,∴数轴上x 和-2之间的距离是(2)x --=2x +,∵∣AB ∣=2, ∴2x +=2,x+2=2或x+2=-2,解得:x=0或x=-4, 故答案为2x +,0或-4(3)|2||1|5x x ++-=,①当x<-2时,-(x+2)-(x-1)=5,解得:x=-3②当-2≤x<1时,x+2-(x-1)=5,1=5,不符合实际,x 不存在,③当x≥1时,x+2+x-1=5,解得:x=2,综上所述:x=-3或x=2时,|2||1|5x x ++-=,故答案为-3或2(4)设运动t 秒后,点P 与点Q 之间的距离为5个单位长度,①当点P 追上点Q 前两点相距5个单位长度时, 10+12t-3t=5, 解得:t=2,②当点P 追上点Q 后两点相距5个单位长度时, 3t-(10+12t)=5, 解得:t=6.答:运动2秒或6秒时,点P 与点Q 之间的距离为5个单位长度.【点睛】此题综合考查了数轴、绝对值的有关内容及解一元一次方程,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.熟练掌握解一元一次方程的方法及讨论讨论的思想是解题关键.。
(第6题)cB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克B .95010⨯千克C .9510⨯千克D . 10510⨯千克.3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--; (3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.①苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分24.(1)(a b +)2;222a ab b ++ ……………………………………………2分(2)(a b +)2=222a ab b ++ ……………………………………………4分(3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
一、选择题1.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100 2.下列式子:222,32,,4,,,22abx yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个3.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .10094.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- 5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 6.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差 7.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样8.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .49.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105 B .15×103 C .1.5×104 D .1.5×10510.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a 11.若a ,b 互为相反数,则下面四个等式中一定成立的是( ) A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0 12.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3 B .﹣13 C .0 D .﹣3二、填空题13.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 14.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 16.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.17.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.18.数轴上表示 1 的点和表示﹣2 的点的距离是_____.19.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 20.一个数的25是165-,则这个数是______. 三、解答题21.计算:2334[28(2)]--⨯-÷-22.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 23.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦24.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?25.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?26.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.2.A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式. 3.C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.4.A解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A.【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环.5.C解析:C【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.6.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab-的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.7.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.8.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.9.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000用科学记数法表示是1.5×104.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.11.A解析:A【解析】a,b互为相反数0a b⇔+=,易选B.12.D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.二、填空题13.【解析】试题解析:50 101【解析】试题1111++++ 133********⨯⨯⨯⨯=11111111111 1)()()() 23235257299101 -+-+-++-(=11111111 1++) 23355799101 ---++-(=11 1) 2101-(=1100 2101⨯=50101. 14.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.15.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 16.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.17.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.18.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.19.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n ,其中1≤a <10,n 为正整数.20.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】 (165-)÷25=−8. 故答案为−8.【点睛】 此题考查有理数的除法,解题关键在于这个数看成单位“1”三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.23.(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.24.(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.25.1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.26.(1) x<5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x.解答:解:(1)由折纸过程可知0<5x<26,∴0<x<5.2.(2)∵图④为轴对称图形,∴AM=2652x+x=13-1.5x,即点M与点A的距离是(13-1.5x)cm.点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度.。
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 2. 下列各组数中两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab 4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃ 5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1 C -(a+b)-2c=-a-b+2c D. m 2+(-1-2m)=m 2-1+2m6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 1947. 某顾客以8折优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A 5次 B. 6次 C. 7次 D. 8次二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 12. “比x 的4倍大3的数”用代数式表示是_____.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.17. 如图所示是计算机程序计算,若开始输入x=-1,则最后输出的结果是_____.18. 有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____. 三、解答题(本大题共有8题,共96分)19. 计算:(1)7-(-3)+(-2);(2)(-12)÷2×12; (3)(131346-+)×(-12) (4)-1+(-2)×14-1. 20. 化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+; 21. (1)先化简,再求值:3(x-y )-2(x+y )+2,其中x=-1,y=2.(2)已知x+y=15,xy=-12,求代数式(x+3y-3xy )-2(xy-2x-y )的值. 22. 某辆公交车上原来有(8a-6b )人,中途下去一半,又上来若干人,使车上共有乘客(10a-6b )人.(1)求中途上来了多少乘客?(用含a 、b 的式子表示,结果要化简)(2)当a=4,b=3时,中途上车的乘客是多少人?23. 小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m 为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):(1)星期三小明跑了 m ;(2)他跑得最多的一天比最少的一天多跑了 m ;(3)若他跑步的平均速度为200m/min ,求这周他跑步的时间.24. 某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费:超过10吨的部分按2.5元/吨收费.(1)若王老师家5月份用水8吨,问应交水费多少元?(2)若王老师家6月份交水费25元,问黄老师家6月份用水多少吨?(3)若王者师家7月份用水a 吨,问应交水费多少元?(用a 的代数式表示)25. 对于实数x 、y 我们定义一种新运算L(x ,y) =ax+by ,(其中a 、b 均为非零常数)等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x、y叫做线性数的一个数对,若实数x、y都取正整数,我们称这样的线性数为正格线性数,这时的x、y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(3,1)= ,L(43,13)= .(2)已知L(x,y)=3x+by,L(2,1)=4,若正格线性数L(x,kx)=6,(其中k为整数).问是否有满足这样条件的正格数对?若有,请回答;若没有,请说明理由.26. 已知a是单项式-2xy2的系数,b是绝对值最小的有理数,c是多项式x2y2+4y3的次数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)a= ,b= ,c= .(2)若动点P从点A出发沿数轴正方向运动,动点Q从点C出发沿数轴负方向运动,点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,两点同时开始出发,求当运动5秒时,点P与点Q之间距离? (3)在数轴上找一点M使点M到A,B,C三点的距离之和等于7,请直接写出所有点M对应的数.答案与解析一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面的数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 【答案】A【解析】∵-2+2=0,故选A.2. 下列各组数中的两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 【答案】B【解析】【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3-=-9,不是互为倒数; B 、3×13=1,是互为倒数;C 、-3×13=-1,不是互为倒数;D 、13×13⎛⎫- ⎪⎝⎭=-19,不是互为倒数; 故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab【答案】D【解析】【分析】根据合并同类项的法则逐一进行判断即可.【详解】A ,323a a a -=≠,故错误;B ,2,a b 不是同类型,不能合并,故错误;C ,2232a a a a +=≠,故错误;D ,2ab ab ab -+=,故正确,故选:D .【点睛】本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃【答案】C【解析】 试题分析:A .午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B .中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C .考点:1.有理数的减法;2.数轴.5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1C. -(a+b)-2c=-a-b+2cD. m 2+(-1-2m)=m 2-1+2m【答案】B【解析】【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 194【答案】A【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.94a =,194亿=19400000000,整数位数是11位,所以10n =∴194亿=19400000000=101.9410⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.7. 某顾客以8折的优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 【答案】D【解析】【分析】设标价为x,则8折优惠后的价钱为0.8x,列出一元一次方程,求出标价,在减去40,即可求出实际花的钱,即可解决.【详解】解:设标价为x,则8折优惠后的价钱为0.8xx-0.8x=40x=200200-40=160(元)故选D.【点睛】本题主要考查了一元一次方程的应用,熟练标价乘折扣等于售价以及准确列出方程是解决本题的关键.8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )A. 5次B. 6次C. 7次D. 8次【答案】C【解析】【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.【答案】2【解析】【分析】根据绝对值的意义即可得出答案.详解】()222-+=-=,故答案为:2.【点睛】本题主要考查绝对值,掌握绝对值的意义是解题的关键.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)【答案】符合【解析】【分析】根据题意求出标准质量的范围,然后再根据范围判断.【详解】解:∵10+0.03=10.03,10−0.03=9.97,∴标准质量是9.97千克~10.03千克,∵9.98千克在此范围内,∴这箱苹果的质量符合标准.故答案为:符合.【点睛】本题考查了正、负数的意义,懂得质量书写的含义,求出标准质量的范围是解题的关键. 11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 【答案】4【解析】【分析】根据单项式和多项式统称为整式,进而判断得出即可.【详解】解:根据整式的定义可知:x 2+2,237ab ,-5x ,0是整式,共4个, 故答案为4.【点睛】此题主要考查了整式的概念,正确把握定义是解题关键.12. “比x 的4倍大3的数”用代数式表示是_____.【答案】4x+3【解析】【分析】根据题意先求倍数,再求和,进而列出代数式.【详解】∵x 的4倍是4x,∴比4x 大3的数是4x+3.故答案为4x+3.【点睛】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“小”等,从而明确其中的运算关系,正确地列出代数式.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.【答案】±2【解析】【分析】设A 点表示的数为x ,再根据数轴上各点到原点距离的定义解答即可.【详解】解:设A 点表示的数为x ,则|x|=2,解得x=±2.故答案为±2.【点睛】本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.【答案】2022【解析】【分析】把1m n -=代入()33201932019m n m n -+=-+计算即可.【详解】解:∵1m n -=,∴332019m n -+()32019m n =-+312019=⨯+2022=,故答案为:2022.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 【答案】-1【解析】【分析】根据单项式的和是单项式,可得312a x y 与22b x y -是同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:由题意,得312a x y 与22b x y -是同类项, 所以b=3,a=2.a−b=2−3=−1,故答案为:−1.【点睛】本题考查了合并同类项,利用同类项的定义得出a ,b 的值是解题关键.16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.【答案】-12【解析】【分析】根据a ⊗b=a-a b ,可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊗b=a-a b ,∴-3⊗2=-3-(-3)2=-3-9=-12,故答案为:-12.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.17. 如图所示是计算机程序计算,若开始输入x=-1,则最后输出的结果是_____.【答案】-11【解析】【分析】根据程序框图的顺序计算即可得出答案.【详解】根据题意有,()()1414135-⨯--=-+=->-,()341121115-⨯--=-+=-<-,∴最后输出的结果是-11,故答案为:-11.【点睛】本题主要考查有理数的混合运算,读懂程序框图是解题的关键.18. 有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.【答案】-2【解析】【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==-- 411123a ==+ ……所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共有8题,共96分)19. 计算:(1)7-(-3)+(-2);(2)(-12)÷2×12; (3)(131346-+)×(-12) (4)-1+(-2)×14-1. 【答案】(1)8;(2)1-8;(3)3;(4)-4. 【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用除法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)7-(-3)+(-2)=7+3-2=8;(2)(-12)÷2×12=-12×2×12= 1-8; (3)(131346-+)×(-12)=131(12)(12)(12)4923346⨯--⨯-+⨯-=-+-=; (4)-1+(-2)×14-1=-1+(-8) ×14-1=-1-2-1=-4. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.20. 化简:(1)3232235x x x x --+-;(2)221622(3)2a ab a ab --+;【答案】(1)25x -;(2)3ab -.【解析】【分析】(1)根据合并同类项的法则计算即可;(2)根据去括号,合并同类项的法则计算即可.【详解】(1)原式=3322325x x x x -+--25x =-;(2)原式=22626a ab a ab ---22662a a ab ab =---3ab =- .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.21. (1)先化简,再求值:3(x-y )-2(x+y )+2,其中x=-1,y=2.(2)已知x+y=15,xy=-12,求代数式(x+3y-3xy )-2(xy-2x-y )的值. 【答案】(1)52x y -+,-9;(2)()55x y xy +-,72. 【解析】【分析】 (1)根据去括号,合并同类项的法则进行化简,然后将x ,y 的值代入计算即可;(2)根据去括号,合并同类项的法则进行化简,然后将x y +和的值整体代入即可得出答案.【详解】(1)原式=()33222x y x y --++33222x y x y =---+52x y =-+当1,2x y =-=时,原式=15229--⨯+=-;(2)原式=()33242x y xy xy x y +----33242x y xy xy x y =+--++()55x y xy =+-当11,52x y xy+==-时,原式=11575515222⎛⎫⨯-⨯-=+=⎪⎝⎭.【点睛】本题主要考查整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.22. 某辆公交车上原来有(8a-6b)人,中途下去一半,又上来若干人,使车上共有乘客(10a-6b)人.(1)求中途上来了多少乘客?(用含a、b的式子表示,结果要化简)(2)当a=4,b=3时,中途上车的乘客是多少人?【答案】(1)6a - 3b;(2)中途上车的乘客是15人.【解析】【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把a与b的值代入计算即可求出值.【详解】解:(1)根据题意得:(10a-6b)- 12(8a-6b)=10a-6b-4a+3b=6a-3b(人),则上车的乘客是(6a-3b)人;(2)把a=4,b=3代入得:原式=24-9=15(人),则上车的乘客是15人.【点睛】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.23. 小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):(1)星期三小明跑了m;(2)他跑得最多的一天比最少的一天多跑了m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.【答案】(1)1900;(2)530;(3)这周他跑步的时间73 min.【解析】【分析】(1)利用2000米减去100米即可;(2)最大值与最小值的差就是跑得最多的一天减去最少的一天的距离;(3)利用总路程除以速度即可求解.【详解】解:(1)2000-100=1900(m),故答案为1900;(2)跑得最多的一天比最少的一天多跑了320-(-210)=530(m);故答案为530;(3)310+320-100+130-210+0+150+2000×7=14600(m),14600÷200=73(min)答:这周他跑步的时间为73min.【点睛】本题考查了正数与负数的意义,正确理解正数与负数的意义是解题的关键.24. 某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费:超过10吨的部分按2.5元/吨收费.(1)若王老师家5月份用水8吨,问应交水费多少元?(2)若王老师家6月份交水费25元,问黄老师家6月份用水多少吨?(3)若王者师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)【答案】(1)应交水费16元;(2)黄老师家6月份用水12吨;(3)当a≤10,应交水费2a元,当a>10,应交水费(2.5a-5)元.【解析】【分析】(1)直接根据题意列式计算即可;(2)首先判断出黄老师家6月份用水量的范围,设黄老师家6月份用水x吨,根据题意列出方程,解方程即可;(3)根据题意分两种情况:每月每户不超过10吨时和超过10吨,分别进行讨论即可.⨯=(吨),【详解】(1)8216∴王老师家5月份用水8吨,应交水费16元;>⨯,(2)25102∴黄老师家6月份用水超过了10吨,设黄老师家6月份用水x吨,根据题意得,()⨯+-⨯=,10210 2.525xx=,解得12∴黄老师家6月份用水12吨;(3)当10a ≤时,应交水费2a 元;若10a >时, ()10210 2.5 2.55a a ⨯+-⨯=- ,∴应交水费()2.55a -元.【点睛】本题主要考查代数式的应用以及一元一次方程的应用,读懂题意是解题的关键.25. 对于实数x 、y 我们定义一种新运算L(x ,y) =ax+by ,(其中a 、b 均为非零常数)等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x 、y 叫做线性数的一个数对,若实数x 、y 都取正整数,我们称这样的线性数为正格线性数,这时的x 、y 叫做正格线性数的正格数对.(1)若L(x ,y)=x+3y ,则L(3,1)= ,L (43,13)= . (2)已知L(x ,y)=3x+by ,L(2,1)=4,若正格线性数L(x,kx)=6,(其中k 为整数).问是否有满足这样条件的正格数对?若有,请回答;若没有,请说明理由.【答案】(1)6,73;(2)有,6、6是满足这样条件的正格数对. 【解析】【分析】(1)利用题意计算进而求得答案;(2)根据线性数的定义求得2b =-,故(),326L x kx x kx =-=,再根据x 为正整数,k 为整数,kx 取正整数即可求解.【详解】解:(1)∵(),3L x y x y =+,∴()3,13316L =+⨯=,41417,333333L ⎛⎫=+⨯= ⎪⎝⎭, 故答案为:6,73; (2)∵(),3L x y x by =+,∴()2,1324L b =⨯+=,解得2b =-,∴(),326L x kx x kx =-=,即632x k=-, ∵x 为正整数,kx 为正整数, ∴60326032k k k ⎧>⎪⎪-⎨⎪>⎪-⎩,解得302k <<, ∵k 为整数,∴当1k =时,6x =符合题意,∴6、6是满足这样条件的正格数对.【点睛】此题主要考查了一元一次不等式的应用,以及新定义,根据题意得出正确等式是解题关键. 26. 已知a 是单项式-2xy 2的系数,b 是绝对值最小的有理数,c 是多项式x 2y 2+4y 3的次数,且a ,b ,c 分别是点A,B,C 在数轴上对应的数.(1)a= ,b= ,c= .(2)若动点P 从点A 出发沿数轴正方向运动,动点Q 从点C 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,两点同时开始出发,求当运动5秒时,点P 与点Q 之间距离?(3)在数轴上找一点M 使点M 到A ,B ,C 三点的距离之和等于7,请直接写出所有点M 对应的数.【答案】(1) -2 , 0 ,4;(2)点P 与点Q 之间距离9;(3)所有点M 对应数±1. 【解析】【分析】(1)根据单项式系数的概念,绝对值的意义,多项式次数的概念即可得出答案;(2)首先根据题意求出点P ,Q5秒后运动到什么位置,然后再求距离即可;(3)分四种情况:点MA 点左侧,点M 在A ,B 之间,点M 在B ,C 之间,点M 在C 点右侧,分别进行讨论即可.【详解】(1)∵a 是单项式-2xy 2的系数,b 是绝对值最小的有理数,c 是多项式x 2y 2+4y 3的次数,∴2,0,4a b c =-==;(2)∵点P 从点A 出发沿数轴正方向运动,动点Q 从点C 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,∴5秒后P,Q 点所在的位置分别是2153,4256-+⨯=-⨯=-,∴点P 与点Q 之间距离为()369--=;(3)若点M 在A 点左侧,即2x <-时,设点M 对应的数为x ,根据题意有()()247x x x ---+-=, 解得53x =-, 因为523->-,不符合题意,故舍去; 若点M 在A ,B 点之间,即20x -<<时,设点M 对应的数为x ,根据题意有()()247x x x +-+-=,解得1x =- ;若点M 在B ,C 点之间,即04x <<时,设点M 对应的数为x ,根据题意有()()247x x x +++-=,解得1x =;若点M 在C 点右侧,即4x >时,设点M 对应数为x ,根据题意有()()247x x x -++-= , 解得133x =, 因为1343<,不符合题意,故舍去; 综上所述,点M 对应的数为1或-1.【点睛】本题主要考查数轴与有理数,运用方程的思想并分情况讨论是解题的关键.答案与解析一、选择题(本大题共8小题,每小题3分,总分24分)1. 下面的数中,与﹣2的和为0的是( )A. 2B. ﹣2C. 12D. 12- 【答案】A【解析】∵-2+2=0,故选A.2. 下列各组数中的两个数,互为倒数的是( )A. 3和-3B. 3和13C. -3和13D. 13和13- 【答案】B【解析】【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3-=-9,不是互为倒数; B 、3×13=1,是互为倒数;C 、-3×13=-1,不是互为倒数;D 、13×13⎛⎫- ⎪⎝⎭=-19,不是互为倒数; 故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).3. 下列各式计算正确的是( )A. 3a-a=3B. 2a+b=2abC. 2a+a=22aD. –ab+2ab=ab 【答案】D【解析】【分析】根据合并同类项的法则逐一进行判断即可.【详解】A ,323a a a -=≠,故错误;B ,2,a b 不是同类型,不能合并,故错误;C ,2232a a a a +=≠,故错误;D ,2ab ab ab -+=,故正确,故选:D .【点睛】本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.4. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃【答案】C【解析】 试题分析:A .午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B .中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D .中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C .考点:1.有理数的减法;2.数轴.5. 下列去括号中,正确的是 ( )A. -(1-3m)=-1-3mB. 3x-(2y-1)=3x-2y+1C. -(a+b)-2c=-a-b+2cD. m 2+(-1-2m)=m 2-1+2m【答案】B【解析】【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.6. 在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为( )A. 1.94×1010B. 19.4×910C. 194×810D. 194【答案】A【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 1.94a =,194亿=19400000000,整数位数是11位,所以10n =∴194亿=19400000000=101.9410⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.7. 某顾客以8折的优惠价买了一件商品,比标价少付了40元,那么他购买这件商品花了( )A. 80元B. 100元C. 140元D. 160元 【答案】D【解析】【分析】设标价为x,则8折优惠后的价钱为0.8x,列出一元一次方程,求出标价,在减去40,即可求出实际花的钱,即可解决.【详解】解:设标价为x,则8折优惠后的价钱为0.8xx-0.8x=40x=200200-40=160(元)故选D.【点睛】本题主要考查了一元一次方程的应用,熟练标价乘折扣等于售价以及准确列出方程是解决本题的关键.8. .如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为( )A. 5次B. 6次C. 7次D. 8次【答案】C【解析】【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、填空题(本大题共10小题,每题3分,共30分)9. -(+2)的绝对值是_____.【答案】2【解析】【分析】根据绝对值的意义即可得出答案.详解】()222-+=-=,故答案为:2.【点睛】本题主要考查绝对值,掌握绝对值的意义是解题的关键.10. 某生态园区生产的苹果包装纸箱上标明苹果的质量为100.030.03+-千克,如果这箱苹果重9.98千克,那么这箱苹果的质量______标准.(填“符合”或“不符合”)【答案】符合【解析】【分析】根据题意求出标准质量的范围,然后再根据范围判断.【详解】解:∵10+0.03=10.03,10−0.03=9.97,∴标准质量是9.97千克~10.03千克,∵9.98千克在此范围内,∴这箱苹果的质量符合标准.故答案为:符合.【点睛】本题考查了正、负数的意义,懂得质量书写的含义,求出标准质量的范围是解题的关键. 11. 在2x +2,1a +4,237ab ,ab c ,-5x ,0中,整式有_____个. 【答案】4【解析】【分析】根据单项式和多项式统称为整式,进而判断得出即可.【详解】解:根据整式的定义可知:x 2+2,237ab ,-5x ,0是整式,共4个, 故答案为4.【点睛】此题主要考查了整式的概念,正确把握定义是解题关键.12. “比x 的4倍大3的数”用代数式表示是_____.【答案】4x+3【解析】【分析】根据题意先求倍数,再求和,进而列出代数式.【详解】∵x 的4倍是4x,∴比4x 大3的数是4x+3.故答案为4x+3.【点睛】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“小”等,从而明确其中的运算关系,正确地列出代数式.13. 蚂蚁从数轴上A 出发爬了2个单位到了原点,则点A 所表示的数是____.【答案】±2【解析】【分析】设A 点表示的数为x ,再根据数轴上各点到原点距离的定义解答即可.【详解】解:设A 点表示的数为x ,则|x|=2,解得x=±2.故答案为±2.【点睛】本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.14. 已知代数式m-n 的值是1,则代数式3m-3n+2019的值是______.【答案】2022【解析】【分析】把1m n -=代入()33201932019m n m n -+=-+计算即可.【详解】解:∵1m n -=,∴332019m n -+()32019m n =-+312019=⨯+2022=,故答案为:2022.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.15. 若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 【答案】-1【解析】【分析】根据单项式的和是单项式,可得312a x y 与22b x y -是同类项,根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:由题意,得312a x y 与22b x y -是同类项, 所以b=3,a=2.a−b=2−3=−1,故答案为:−1.【点睛】本题考查了合并同类项,利用同类项的定义得出a ,b 的值是解题关键.16. 定义新运算“※”,规定a ※b=a-b a ,则-3※2=_____.【答案】-12【解析】【分析】根据a ⊗b=a-a b ,可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊗b=a-a b ,∴-3⊗2=-3-(-3)2=-3-9=-12,故答案为:-12.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(每小题2分,共16分)1.0.5-的倒数是( )A. 0.5B. 2C. -2D. 12-2.下列各题中合并同类项,结果正确的是( ) A 222347a a a += B. 222236a a a +=C. 532xy xy -=D. 336235a a a +=3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( )A. 4B. 3C. 2D. 14.若代数式a 2+2b 的值为4,则代数式3a 2+6b-3的值为( ) A. 3B. -9C. -3D. 95.我市某文具店进行促销活动,决定将单价为a 元的笔记本降价10%销售,降价后的销售价为( ) A. 10%aB. a -10%C. (1-10%)aD. (1+10%)a6.a ,b 是有理数,且|a |=-a ,|b |=b ,|a |>|b |,用数轴上的点来表示a ,b ,正确的是( ) A.B.C.D.7.无论a 取什么值,下列哪个代数式的值一定是正的?( ) A. 21a +B. 8a +C. 2(3)a +D. 3100a +8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b ),如果以每包2a b+元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了B. 赔了C. 不赔不赚D. 不能确定赚或赔二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______. 10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________. 11.比较大小,用“<”“>”或“=”连接: (1)-|23-| ___-(34-); (2)-3.14___-|-π|.12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________.13.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克) 代号 ① ② ③ ④ ⑤ 质量 -2+4-1+5-6其中,质量最接近标准的是__________号(填写序号).14.定义一种新的运算“*”,并且规定:a*b =a 2-2b .则(-3)*(-1)=_______. 15.如图,用代数式表示图中阴影部分的面积为___________________.16.已知x =5,y =4,且x >y ,则x -y =_________. 17.已知2a +b =23,a +2b =25,则代数式a +b =________.18.如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.三、计算题(每小题4分,共16分)19.(1)14―25+12―17; (2)113()(60)234--+⨯-;(3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+; (2)4(32)3(52)x y y x ----.21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b ,第三条边比第二条边短a -b .(1)求第二条边长; (2)求这个三角形的周长.23.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形; 第(4)个图形有25小正方形; ……(1)根据上面发现我们可以猜想:1+3+5+7+...+(2n -1)的结果(用含n 的代数式表示); (2)请根据你的发现计算:① 1+3+5+7+...+99; ② 101+103+105+ (199)24.某市为鼓励居民节约用水,采用分段计费方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案与解析一、选择题(每小题2分,共16分)1.0.5-的倒数是( ) A. 0.5 B. 2C. -2D. 12-【答案】C 【解析】 【分析】根据倒数的定义解答即可. 【详解】∵-0.5×(-2)=1, ∴0.5-的倒数是是-2. 故选C.【点睛】本题考查了倒数的定义,熟知乘积是1 的两个数互为倒数是解题的关键. 2.下列各题中合并同类项,结果正确的是( ) A. 222347a a a += B. 222236a a a +=C. 532xy xy -=D. 336235a a a +=【答案】A 【解析】 【分析】原式各项合并得到结果,即可做出判断. 【详解】A 、3a 2+4a 2=7a 2,正确; B 、2a 2+3a 2=5a 2,错误; C 、5xy-3xy=2xy ,错误; D 、原式不能合并,错误, 故选A .【点睛】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键. 3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( )A. 4B. 3C. 2D. 1【答案】B 【解析】【分析】根据有理数的定义、无理数的定义进行判断即可得解.【详解】在23,0,2,1.3,-1.212212221…(两个1之间依次多一个2)中,有理数有23,0,1.3,有理数的个数是3个.故选B.【点睛】本题考查了实数,主要利用了有理数和无理数定义,熟记概念是解题的关键.4.若代数式a2+2b的值为4,则代数式3a2+6b-3的值为()A. 3B. -9C. -3D. 9【答案】D【解析】【分析】3a2+6b可看为a2+2b的3倍.【详解】3a2+6b-3=3(a2+2b)-3=12-3=9.故选D【点睛】此题主要考查了代数式求值,将待求的式子前两项提取3整体出现a2+2b是解本题的关键.5.我市某文具店进行促销活动,决定将单价为a元的笔记本降价10%销售,降价后的销售价为()A. 10%aB. a-10%C. (1-10%)aD. (1+10%)a【答案】C【解析】【分析】根据题意可以求得降价后的销售价格,本题得以解决.【详解】由题意可得,降价后的销售价为:(1-10%)a,故选C.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.6.a,b是有理数,且|a|=-a,|b|=b,|a|>|b|,用数轴上的点来表示a,b,正确的是( )A. B. C. D.【答案】A【解析】分析:根据绝对值的定义和数轴的定义解答此题即可. 详解:|a|=-a ,|b|=b ,|a|>|b|, ∴a≤0,b≥0,|a|>|b|, 故选A .点睛:此题考查了数轴的知识,解答本题的关键是理解数轴上各点的大小关系,掌握原点左边的数小于0,原点右边的数大于0.7.无论a 取什么值,下列哪个代数式的值一定是正的?( ) A. 21a + B. 8a +C. 2(3)a +D. 3100a +【答案】A 【解析】 【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数. 【详解】A 、无论a 是何值,代数式a 2+1的值都是正数,符合题意; B 、当a=-8时,代数式8a +的值为0,0不是正数,不符合题意; C 、当a=-3时,代数式(a+3)2的值为0,0不是正数,不符合题意; D 、当x≤-10时,代数式3100a +的值小于等于0,,不符合题意. 故选A .【点睛】注意0既不是正数,也不是负数.平方数和绝对值都可以为0,也可以为正数.8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b ),如果以每包2a b+元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了 B. 赔了C. 不赔不赚D. 不能确定赚或赔【答案】B 【解析】 【分析】根据题意知商店获得的利润为2a b+×(20+30)-20a-30b=5(a-b ),由a<b 知5(a-b )<0,可得答案. 【详解】该商店一共购进茶叶50包,若每包以2a b+元的价格卖出,则共收入50×2a b+=25(a +b )元;购进两种茶叶共花费:20a+30b;25(a+b)−(20a+30b)=25a+25b−20a−30b=5a−5b=5(a−b)∵a<b,即a−b<0,所以5(a−b)<0即卖完后,这家商店赔了.故选B.【点睛】本题主要考查列代数式的能力及整式的化简,理解题意列出商店获取利润的代数式是解题的关键.二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______.【答案】(1). 12(2).12【解析】【分析】分别根据相反数的概念及绝对值的性质进行解答即可.【详解】-12与12只有符号相反,∴-12的相反数等于12,∵-12<0,∴|-12|=12.故答案为12;12.【点睛】本题考查的是相反数的概念及绝对值的性质,熟知以上知识是解答此题的关键.10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________.【答案】93.2810【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将3280000000用科学记数法表示为3.28×109. 故答案为3.28×109. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.比较大小,用“<”“>”或“=”连接: (1)-|23-| ___-(34-); (2)-3.14___-|-π|. 【答案】 (1). < (2). > 【解析】 【分析】(1)先化简,然后根据正数大于负数即可判断;(2)先化简,然后再求绝对值,最后根据两个负数比较大小,绝对值大的反而小即可比较. 【详解】(1)∵-|-23|=-23<0,-(-34)=34>0, ∴-|-23|<-(-34); (2)∵-|-π|=-π,|-3.14|=3.14,|-π|=π,且3.14<π, ∴-314>-|-π|,故答案为(1)<;(2)>.【点睛】本题考查的是有理数的大小比较,熟知两负数比较大小的法则是解答此题的关键.12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________.【答案】-1 【解析】 【分析】利用已知得出两个单项式是同类项,进而得出a ,b 的值即可得出答案.【详解】∵单项式312a x y -与223bx y -的和仍是单项式,∴a=2,b=3, 则a b -=-1, 故答案为-1.【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)其中,质量最接近标准的是__________号(填写序号).【答案】③【解析】【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据-2,+4,-1,+5,-6直接得出答案.【详解】∵①的质量是100-2=98(克),②的质量是100+4=104(克),③的质量是100-1=99(克),④的质量是100+5=105(克),⑤的质量是100-6=94(克),∴最接近100克的是③,故答案为③.【点睛】本题考查了正数和负数的应用,解此题的关键是理解题意.14.定义一种新的运算“*”,并且规定:a*b=a2-2b.则(-3)*(-1)=_______.【答案】11【解析】分析】根据题中的新定义运算的方法列出所求算式,计算即可得到结果.【详解】(-3)*(-1)=(-3)2-2×(-1)=9+2=11.故答案为11.【点睛】此题考查了有理数的混合运算,弄清题中的新定义运算的方法是解本题的关键.15.如图,用代数式表示图中阴影部分的面积为___________________.【答案】212ab b π-【解析】 阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】本题考查了列代数式,由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 16.已知x =5,y =4,且x >y ,则x -y =_________.【答案】1或9【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,然后根据x >y 得到满足题意的x 与y 的值,代入所求的式子中计算即可.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4, 又∵x >y ,∴x=5,y=4或x=5,y=-4,则x-y=5-4=1,或x-y=5-(-4)=9.故答案1或9. 【点睛】此题考查了有理数的减法,绝对值的代数意义,掌握绝对值的代数意义是解本题的关键,注意不要漏解.17.已知2a+b=23,a+2b=25,则代数式a+b=________.【答案】16【解析】【分析】把两式相加,得到3a+3b=48,即可求解.【详解】2a+b=23①,a+2b=25②,①+②,得3a+3b=48,即3(a+b)=48,得a+b=16,故答案为16【点睛】此题考查了代数式求值,把a+b看作一个整体是解题的关键.18.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.【答案】2【解析】【分析】把x=64代入程序中计算,以此类推得到一般性规律,即可确定出第2018次输出的结果.【详解】把x=64代入得:12×64=32,把x=32代入得:12×32=16,把x=16代入得:12×16=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,把x=1代入得:1+3=4,以此类推,∵(2018-3)÷3=671…2,∴第2018次输出的结果为2,故答案为:2.【点睛】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.三、计算题(每小题4分,共16分)19.(1)14―25+12―17;(2)113()(60)234--+⨯-; (3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 【答案】(1)-16;(2)5;(3)12;(4)-3. 【解析】【分析】(1)把正数负数分别结合计算即可;(2)运用乘法分配律计算可得;(3)先把除法转化成乘法,再根据有理数的乘法法则计算即可.(4)先算乘方和括号里面的,再算乘法,最后算减法即可.【详解】(1)14―25+12―17=14+12―25―17=26―42=-16;(2)()11360234⎛⎫--+⨯- ⎪⎝⎭=()()()113 6060603020234⎛⎫-⨯--⨯-+⨯-=+ ⎪⎝⎭-45=5; (3)()()54253245-÷⨯÷-=()4414411 2525553255322⎛⎫-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭; (4)()2212336⎡⎤--⨯--⎣⎦=-4-16⨯(3-9)= -4-16⨯(-6)=-4+1=-3 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+;(2)4(32)3(52)x y y x ----.【答案】(1)-8x-5y+2;(2)-6x-7y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)324576x y x y -+---+=()()()352746x x y y --+-+-+=-8x-5y+2;(2)()()432352x y y x ----=-12x+8y-15y+6x=(-12x+6x) +(8y-15y)=-6x-7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,【答案】54.【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式=15a 2b ﹣5ab 2+4ab 2﹣12a 2b =3a 2b ﹣ab 2,当a =﹣2,b =3时,原式=36+18=54.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b ,第三条边比第二条边短a -b .(1)求第二条边长;(2)求这个三角形的周长.【答案】(1)3a +4b ;(2)10a +12b【解析】【分析】(1)根据题意即可列出第二条边的长度;(2)根据题意列出第三条边的长度,然后即可求出三角形的周长.【详解】(1) 5a+3b -(2a-b)= 5a+3b -2a+b = 3a+4b;(2)5a+3b+(3a+4b)+(3a+4b)-(a-b)=5a+3b+3a+4b+3a+4b-a+b= 10a+12b 【点睛】本题考查整式的加减,涉及列代数式,属于基础题型.23.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有25小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+...+(2n-1)的结果(用含n的代数式表示);(2)请根据你的发现计算:① 1+3+5+7+ (99)② 101+103+105+ (199)【答案】(1)2n,①2500,②7500.【解析】【分析】(1)直接分别解各数据得出答案;(2)①利用(1)规律求出答案;②由以上规律可得原式可看作是1002-502.【详解】第(1)个图形中有1=12个正方形;第(2)个图形有1+3=4=22个小正方形;第(3)个图形有1+3+5=9=32个小正方形;第(4)个图形有1+3+5+7=16=42小正方形;……第n个图形有1+3+5+…+(2n-1)=n2小正方形;(1)1+3+5+…+(2n-1)=n2;(2)① 1+3+5+7+…+99=502=2500;②101+103+105+…+199=(1+3+5+7+…+199)+( 1+3+5+7+…+99)=1002-502=7500.【点睛】此题主要考查了图形的变化类,正确得出数字之间变化规律是解题关键.24.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?【答案】(1)2x,60+2.5(x-30)或2.5x-15;(2)这两个月一共应交115元水费【解析】【分析】(1)因为月用水量不超过30m3时,按2元/m3计费,所以当0≤x≤30时,水费为是2x;因为月用水量超过30m3时,其中的30m3仍按2元/m3收费,超过部分按 2.5元/m3计费,所以当x>30时,水费为:2×30+2.5(x-30)=2.5x-15;(2)由题意可得:因为四月份用水20立方米,所以用2x计算水费;五月份用水36立方米,所以用(2.5x-15)计算用水量.【详解】(1)月用水量不超过30立方米时水费为:2x元,月用水量超过30立方米时水费为:60+2.5(x-30)=2.5x-15;(2)当x=20时,2x=2×20=40,x-=⨯-=当x=36时,2.515 2.5361575答:这两个月一共应交115元水费【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-7或-1,(2)-4-t t+4 (3)不变,理由见解析.【解析】【分析】(1)设D表示的数为a,由绝对值的意义容易得出结果;(2)分别表示出t秒后A、B、C分别对应的数,再求AC即可;(3)表示出BC和AB,再相减即可得出结论.【详解】(1)设D表示的数为a,∵AD=3,∴|-4-a|=3,解得:a=-7或-1;(2)将点A向左移动t个单位长度,则移动后的点表示的数为-4-t;将点B和点C分别向右运动2t和3t个单位长度,则移动后的点表示的数分别为2+2t,6+3t;则BC=(6+3t)-(2+2t)=t+4;(3)AB=(2+2t)-(-4-t)=3t+6,3BC-AB=3(t+4)-(3t+6)=6,故3BC-AB的值不随时间t的变化而改变.【点睛】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.。
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分.)1.如果向北走3m, 记作+3m, 那么-10m 表示( ) A. 向东走10mB. 向南走10mC. 向西走10mD. 向北走10m2.下列各数:0.3333……,0,100,-1.5,2π,53,-0.121221222中,无理数的个数是( )A. 0个B. 1个C. 2个D. 3个3.下列说法正确的是( ) A. x+2=5是代数式B.2x yzx+是单项式 C. 多项式4x - 3x -2 是4x,- 3x,-2的和 D. 2不是单项式4.下列各式,正确的是( ) A. 2a+3b=5ab B. x+2x=3x C. 2(a+b)=2a+bD. -(m-n)=-m+n5.不超过33()2-的最大整数是 ( ) A. –4B. –3C. 3D. 46.下列等式成立的是( )A. 100÷17×(—7)=100÷1(7)7⎡⎤⨯-⎢⎥⎣⎦ B. 100÷17×(—7)=100×7×(—7) C. 100÷17×(—7)=100×17×7 D. 100÷17×(—7)=100×7×7 7.无论x 取什么值,下列代数式中,值一定是正数的是( ) A. 2x 2-1B. (2x+1)2C. |2x+1|D. 2x 2+18.小丽用计算机设计了一个计算程序,输入和输出的数据如下表.当输入数据-11时,输出的数据是( )输出-1225-310417-526…A.11120B. -11120C. -11121D. -11122二、填空题(本大题共10小题,每小题3分,共30分)9.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.10.比较大小:-34_____-57(填“>”、“<”或“=”)11.一个数用科学计数法表示为1.9×103,则这个数是_____.12.“与5的积是m-3的数”用代数式可以表示为________.13.已知-x m y n+1与2x2y是同类项,则m+n的值是________.14.数轴上表示数-5和表示-14的两点之间的距离是.15.在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是______16.计算2101×(-12)99结果是______.17.已知|x|=1,|y|=2,且xy>0,则x+y=______________18.观察如图所示图形构成的规律,根据此规律,第n个图中小圆点的个数为______.三、解答题(本题共9小题,共96分)19.计算:(1)(+16)-(+5)-(-4);(2)100-25×(-2)³(3)(13-+56-79)÷(118-)(4)-3²-(-3)³+(-2)²-2³20.计算:(1)-a+2a-2+4a(2)2x²-3xy+1-2(5-3xy+x²) 21.有下列7个数+4,﹣|﹣2|,-20%,73,0,-(-1),3.14(1)画出数轴,并将上面的七个数表示在数轴上;(2)下图的两个圈的交叉部分表示什么数的集合,请填写在横线上,并把七个数中适合的数填写到两个圈的交叉部分.22.先化简,在求值:14(-4x²+2x-8y)-(-x²-y),其中x=2,y=1.23.已知两个多项式A=9x²y+7xy-x-2,B=3x²y-5xy+x+7(1)求A-3B;(2)若要使A-3B的值与x的取值无关,试求y的值;24.体育课上,七年级某班男同学进行了100米测验,达标成绩为15秒,下表是梦想小组8名男生成绩记录,其中“+”表示成绩大于15秒.﹣0.8 +1 ﹣1.2 0 ﹣07 +0.6 ﹣0.4 ﹣0.1问:(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?25.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.双“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款,现某客户要到该卖场购买微波炉20台,电磁炉x台(x>20).(1)若该客户按方案一购买,需付款元,若该客户按方案二购买,需付款元.(用含x代数式表示)(2)若x=50,通过计算说明此时按哪种方案购买较为合算?26.在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则.下面我们利用这种方法来研究速算.(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?(2)几何建模:用长方形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,(3)模仿应用:①请仿照上面的方法使用长方形的面积表示56×54的乘积;②填空:89×81= ×8×100+×=7209;(4)归纳提炼:两个十位数字相同,并且个位数字之和是10两位数相乘的速算方法是(用文字表述) .27.定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x-1,若x<0,则[x]=x+1.例:[0.5]=-0.5(1)求[43]= , [-3]= ;(2)当a>0,b<0时,有[a]=[b],试求(b-a)-6(12a²b+52a-b)+3ba²+9b的值;(3)计算2[x]-[x+2].答案与解析一、选择题(本大题共8小题,每小题3分,共24分.)1.如果向北走3m, 记作+3m, 那么-10m 表示( ) A. 向东走10m B. 向南走10m C. 向西走10m D. 向北走10m【答案】B 【解析】 【分析】根据正负数的意义判断即可; 【详解】解:∵向北走3m, 记作+3m, ∴向北走为正,则向南走为负 ∴-10m 表示向南走10m 故选B.【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 2.下列各数:0.3333……,0,100,-1.5,2π,53,-0.121221222中,无理数的个数是( )A. 0个B. 1个C. 2个D. 3个【答案】B 【解析】 【分析】利用无理数就是无限不循环小数,主要有三种形式:①开方开不尽的数;②含的式子;③有规律但不循环的无限小数.【详解】0.3333……是无限循环小数,属于有理数,故不是无理数; 0是整数,属于有理数,故不是无理数; 100是整数,属于有理数,故不是无理数; -1.5是负分数,属于有理数,故不是无理数; 2π是含的式子,故是无理数;53是分数,属于有理数,故不是无理数;-0.121221222是有限小数,属于有理数,故不是无理数; 故选B .【点睛】此题考查的是无理数的概念,掌握无理数就是无限不循环小数和常见的表现形式是解决此题的关键. 3.下列说法正确的是( ) A. x+2=5是代数式B.2x yzx+是单项式 C. 多项式4x - 3x -2 是4x,- 3x,-2的和 D. 2不是单项式【答案】C 【解析】 【分析】根据代数式的定义、单项式的定义和多项式的项的定义判断即可. 【详解】A. x+2=5中含有等号,不是代数式,故A 错误; B.2x yzx+中含有“+”,不是单项式,故B 错误; C. 多项式4x - 3x -2 中的项分别是4x,- 3x,-2,故C 正确; D. 单独的一个数字或字母也是单项式,故D 错误; 故选C.【点睛】此题考查的是代数式的定义、单项式的定义和多项式的项的定义,利用它们的定义去判断各选项的对错是解决此题的关键. 4.下列各式,正确的是( ) A. 2a+3b=5ab B. x+2x=3x C. 2(a+b)=2a+b D. -(m-n)=-m+n【答案】D 【解析】 【分析】根据同类项的定义、合并同类项法则、乘法分配律和去括号法则判断即可. 【详解】A. 2a 和3b 不是同类项,不能合并,故A 错误; B. x+2x=(1+2)x= 3x ,故B 错误;C.根据乘法分配律: 2(a+b)=2a+2b ,故C 错误;D.根据去括号法则: -(m-n)=-m+n ,故D 正确. 故选D.【点睛】此题考查的是同类项的定义、合并同类项法则、乘法分配律和去括号法则,解决此题的关键是根据它们的定义及法则去判断各选项的对错. 5.不超过33()2-的最大整数是 ( ) A. –4 B. –3 C. 3 D. 4【答案】A 【解析】 【分析】利用乘方运算法则计算出结果即可【详解】332⎛⎫- ⎪⎝⎭=333222⎛⎫⎛⎫-⋅-⋅- ⎪ ⎪⎝⎭⎝⎭=278-;所以不超过278-的最大整数为﹣4. 故答案为A 选项.【点睛】本题主要考查有理数乘方运算以及有理数的大小比较,正确的进行乘方运算是关键. 6.下列等式成立的是( )A. 100÷17×(—7)=100÷1(7)7⎡⎤⨯-⎢⎥⎣⎦B. 100÷17×(—7)=100×7×(—7) C. 100÷17×(—7)=100×17×7 D. 100÷17×(—7)=100×7×7 【答案】B 【解析】 【分析】根据有理数的运算法则即可判断. 【详解】100÷17×(-7)=100×7×(-7) 故选B.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的乘除法则. 7.无论x 取什么值,下列代数式中,值一定是正数的是( ) A. 2x 2-1B. (2x+1)2C. |2x+1|D. 2x 2+1【答案】D 【解析】 【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数. 【详解】解:A 、当x=0时,代数式2x 2-1的值为-1,不符合题意;B 、当x=-12时,代数式(2x+1)2的值为0,0不是正数,所以错误; C 、当x=-12时,代数式|2x+1|值为0,0不是正数,所以错误;D 、无论x 是何值,代数式2x 2+1的值都是正数. 故选D .【点睛】本题主要考查代数式的求值,注意0既不是正数,也不是负数.平方数和绝对值都可以为0,也可以为正数.8.小丽用计算机设计了一个计算程序,输入和输出的数据如下表.当输入数据-11时,输出的数据是( )A.11120B. -11120C. -11121D. -11122【答案】D 【解析】 【分析】根据表中数据,找出输入、输出的数据关系即可. 【详解】解:当输入﹣1时,输出的结果为:()211211--=-+; 当输入2时,输出的结果为:222521=+;当输入﹣3时,输出的结果为:()2301313--=-+; 当输入4时,输出的结果为:2441741=+; 故当输入n 时,输出的结果为:21nn +;故当输入﹣11时,输出的结果为:()21111122111-=--+ 故选D.【点睛】此题考查的数字找规律题,找到输入数字与输出数字的关系并总结规律、概括公式是解决此题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高 m .【答案】2055 【解析】试题分析:根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米; ∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米). 考点:正数和负数.10.比较大小:-34 _____ -57(填“>”、“<”或“=”) 【答案】< 【解析】 【分析】根据两个负数的比较大小:绝对值大的反而小,判断即可.【详解】解:∵33214428-==,55207728-==而2120 2828>∴35 47 -<-故答案为:<.【点睛】此题考查的是负数比较大小,掌握两个负数比较大小:绝对值大的反而小,是解决此题的关键.11.一个数用科学计数法表示为1.9×103,则这个数是_____.【答案】1900【解析】【分析】根据有理数乘方的意义计算即可.【详解】解:1.9×103=1.9×1000=1900.故答案为:1900.【点睛】此题考查的是有理数的乘方及乘法运算,掌握有理数乘方的意义是解决此题的关键.12.“与5的积是m-3的数”用代数式可以表示为________.【答案】3 5 m-【解析】【分析】根据乘、除法互为逆运算即可表示. 【详解】∵这个数与5的积是m-3∴这个数是:3 5 m-故答案为:3 5m-.【点睛】此题考查是用代数式表示数,掌握代数式的规范写法和乘、除法互为逆运算是解决此题的关键.13.已知-x m y n+1与2x2y是同类项,则m+n的值是________.【答案】2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出方程即可求出m、n. 【详解】解:∵-x m y n+1与2x2y是同类项∴211 mn=⎧⎨+=⎩解得:20 mn=⎧⎨=⎩∴m+n=2故答案为:2.【点睛】此题考查的是同类项的定义,根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出方程是解决此题的关键.14.数轴上表示数-5和表示-14的两点之间的距离是.【答案】9【解析】试题分析:如图所示,数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数,即-5-(-14)=9.考点:数轴与绝对值15.在数-5,1,-3,5,-2中,任取三个相乘,其中最大的积是______【答案】75【解析】【分析】把绝对值最大的两个负数相乘,然后把它们的积乘以5即可.【详解】解:在数-5,1,-3,5,-2中任取三个相乘,其中最大的积是-5×(-3)×5,即最大的积为75.故答案为75.【点睛】本题考查了有理数的大小比较比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.16.计算2101×(-12)99的结果是______.【答案】-4 【解析】【分析】逆用同底数幂的乘法可得:2101=299×22,然后利用乘法结合律和逆用积的乘方先计算299×(-12)99,再乘22即可.【详解】解:2101×(-12)99=299×22×(-12)99=[2×(-12)]99×22=(-1)99×4=-4故答案为:-4【点睛】此题考查的是有理数乘方和乘法运算,掌握逆用同底数幂的乘法和逆用积的乘方是解决此题的关键.17.已知|x|=1,|y|=2,且xy>0,则x+y=______________【答案】3或-3【解析】【分析】先根据绝对值的定义计算x和y的值,再根据xy>0分情况讨论x和y的值,再根据有理数的加法运算,可得答案.【详解】∵|x|=1,|y|=2∴x=±1,y=±2,又∵xy>0∴x、y同号当x=1,y=2时,x+y=3当x=-1,y=-2时,x+y=-3故填3或-3.【点睛】本题考查有理数的加法,绝对值,有理数的乘法.能通过有理数的乘法判断想x、y同号,从而分类讨论是解决此题的关键.18.观察如图所示图形构成的规律,根据此规律,第n个图中小圆点的个数为______.【答案】1+n2.【解析】【分析】根据每个图中小圆点的个数分析并总结规律即可.【详解】解:第1个图形中小圆点的个数为2=1+1=1+12;第2个图形中小圆点的个数为5=1+4=1+22;第3个图形中小圆点的个数为10=1+9=1+32;第4个图形中小圆点的个数为17=1+16=1+42;故第n个图中小圆点的个数为:1+n2.故答案:1+n2.【点睛】此题考查的是图形探索规律题,找到各图形中小圆点的个数的变化规律并概括公式是解决此题的关键三、解答题(本题共9小题,共96分)19.计算:(1)(+16)-(+5)-(-4);(2)100-25×(-2)³(3)(13-+56-79)÷(118-)(4)-3²-(-3)³+(-2)²-2³【答案】(1)15;(2)300;(3)5;(4)14 【解析】【分析】(1)根据有理数减法法则和加法法则计算即可;(2)根据有理数乘方的意义、乘法法则和减法法则计算即可;(3)根据除法法则和乘法分配律计算即可;(4)根据有理数乘方的意义、减法法则和加法法则计算即可;【详解】解:(1)(+16)-(+5)-(-4)=(+16)+(﹣5)+4=15;(2)100-25×(-2)3=100-25×(-8)=100+200=300;(3)(13-+56-79)÷(118-)=(13-+56-79)×(18-)=13-×(18-)+56×(18-)-79×(18-)=6+(15-)+14=5(4)-3²-(-3)³+(-2)²-2³=-9+27+4-8=14【点睛】此题考查的是有理数的混合运算,掌握有理数运算的各个法则是解决此题的关键.20.计算:(1)-a+2a-2+4a(2)2x²-3xy+1-2(5-3xy+x²)【答案】(1)5a-2;(2)3xy-9.【解析】【分析】(1)合并同类项即可;(2)去括号、合并同类项即可.【详解】解:(1)-a+2a-2+4a=(-1+2+4)a-2=5a-2(2)2x²-3xy+1-2(5-3xy+x²)=2x²-3xy+1-10+6xy-2x²=3xy-9【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.21.有下列7个数+4,﹣|﹣2|,-20%,73,0,-(-1),3.14(1)画出数轴,并将上面的七个数表示在数轴上;(2)下图的两个圈的交叉部分表示什么数的集合,请填写在横线上,并把七个数中适合的数填写到两个圈的交叉部分.【答案】(1)数轴见解析;(2)正整数;图见解析.【解析】【分析】(1)先将需化简的数化简再将其画在数轴上即可;(2)根据两个圈表示意义即可判断两个圈的交叉部分应是正整数,再将7个数中的正整数填入即可.【详解】(1)﹣|﹣2|=﹣2,-(-1)=+1,数轴如下所示:(2)根据题意:既属于整数又属于正数的数是正整数,而+4是正整数;﹣|﹣2|=-2不是正整数;-20%不是正整数;73不是正整数;0不是正整数;-(-1)=+1是正整数;3.14不是正整数.故将+4和-(-1)填入,如图所示:【点睛】此题考查的是用数轴表示数及正整数的概念,掌握在数轴上表示数和既属于整数又属于正数的数是正整数是解决此题的关键.22.先化简,在求值:14(-4x²+2x-8y)-(-x²-y),其中x=2,y=1.【答案】0【解析】【分析】先去括号,合并同类项进行化简,再代入求值即可.【详解】解:14(-4x²+2x-8y)-(-x²-y)=-x²+12x-2y+x²+y=12x-y将x=2,y=1代入得:原式=12×2-1=0【点睛】此题考查的是整式的加减法:化简求值题,掌握去括号法则和合并同类项法则将整式化简是解决此题的关键.23.已知两个多项式A=9x²y+7xy-x-2,B=3x²y-5xy+x+7(1)求A-3B;(2)若要使A-3B的值与x的取值无关,试求y的值;【答案】(1)22 xy-4x-23;(2)2 11【解析】【分析】(1)将A=9x²y+7xy-x-2,B=3x²y-5xy+x+7代入化简即可;(2)若要使A-3B的值与x的取值无关,只需使含x的项的系数为0即可求出y的值. 【详解】解:(1)将A=9x²y+7xy-x-2,B=3x²y-5xy+x+7代入,得:A-3B=(9x²y+7xy-x-2)-3(3x²y-5xy+x+7)=9x²y+7xy-x-2-9x²y+15 xy-3x-21=22 xy-4x-23(2)A-3B=22 xy-4x-23=(22 y-4)x-23∵A-3B的值与x的取值无关∴22 y-4=0解得:y=2 11【点睛】此题考查的是整式的加减,掌握去括号法则和合并同类项法则将整式化简及不含某项就使其系数为0是解决此题的关键.24.体育课上,七年级某班男同学进行了100米测验,达标成绩为15秒,下表是梦想小组8名男生的成绩记录,其中“+”表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?(达标率=达标人数总人数)(2)这个小组男生的平均成绩是多少秒?【答案】(1)这个小组男生的达标率是75%;(2)这个小组男生的平均成绩是14.8秒.【解析】【分析】(1)根据题意和表格中的数据可以求得这个小组男生的达标率;(2)根据题意和表格中的数据可以求得这个小组男生的平均成绩.【详解】解:(1)由题意可得,这个小组男生的达标率为:6100%8⨯=75%,答:这个小组男生的达标率是75%;(2)由题意可得,这个小组男生的平均成绩是:15+(0.8)1( 1.2)0(0.7)0.6(0.4)(0.1)8-++-++-++-+-=14.8(秒),答:这个小组男生的平均成绩是14.8秒.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.25.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.双“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款,现某客户要到该卖场购买微波炉20台,电磁炉x台(x>20).(1)若该客户按方案一购买,需付款元,若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=50,通过计算说明此时按哪种方案购买较为合算?【答案】(1)(200x+12000);(180x+14400);(2)按方案一购买比较合算.【解析】【分析】(1)根据题意,分别用x表示出方案一和方案二的付款即可;(2)把x=50分别代入方案一和方案二的付款中,然后比较大小即可.【详解】解:(1)根据题意:若该客户按方案一购买,需付款:800×20+200(x-20)=(200x+12000)元;若该客户按方案二购买,需付款:90%(800×20+200x)=(180x+14400)元;(2)将x=50代入方案一的付款中得:200×50+12000=22000元,x=50代入方案二的付款中得:180×50+14400=23400元,∵22000元<23400元∴当x=50时,按方案一购买比较合算.【点睛】此题考查的是用代数式表示实际问题,掌握各个方案的代数式的列法是解决此题的关键.26.在《代数式》的学习中,我们通过对同一面积的不同表达和比较,得到合并同类项的法则.下面我们利用这种方法来研究速算.(1)提出问题:47×43,56×54,89×81,……是一些十位数相同,且个位数之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?(2)几何建模:用长方形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原长方形上面.(2)分析:原长方形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的长方形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,(3)模仿应用:①请仿照上面的方法使用长方形的面积表示56×54的乘积;②填空:89×81= ×8×100+×=7209;(4)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) .【答案】模仿应用:①图形见解析;②9;9;1;归纳提炼:十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积.【解析】【分析】模仿应用:①参照几何建模中画47×43的矩形画法即可;②根据47×43和56×54总结的规律即可计算89×81;归纳提炼:根据以上总结规律写出即可.【详解】解:模仿应用:①画长为56,宽为54的矩形,如下图,将这个56×54的矩形从右边切下长50,宽4的一条,拼接到原长方形上面.分析:原长方形面积可以有两种不同的表达方式:56×54的矩形面积或(50+6+4)×50的矩形与右上角4×6的长方形面积之和,即56×54=(50+6+4)×50+4×6=6×5×100+4×6=3024;②根据47×43=5×4×100+3×7=2021和56×54=6×5×100+4×6=3024可得:满足两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是:将十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积即可.所以89×81=9×8×100+9×1=7209;归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是:十位上的数字加1的和乘十位上的数字,再乘100,加上两个数个位上的数字的乘积.【点睛】此题考查的是数形结合的数学思想,把代数式的运算转化成几何图形的面积,然后利用几何图形的面积找到代数式的速算方法.27.定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x-1,若x<0,则[x]=x+1.例:[0.5]=-0.5(1)求[43]= , [-3]= ;(2)当a>0,b<0时,有[a]=[b],试求(b-a)-6(12a²b+52a-b)+3ba²+9b的值;(3)计算2[x]-[x+2].【答案】(1)13;-2;(2)﹣14;(3)当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x-3. 【解析】【分析】(1)根据相伴数的定义计算即可;(2)先化简所求的整式,再根据相伴数的定义求出a、b的关系,然后代入即可;(3)根据相伴数的定义对x进行分类讨论即可.【详解】解:(1)根据题意:[43]=41133-=,[-3]= -3+1=-2;(2)(b-a)-6(12a²b+52a-b)+3ba²+9b=(b-a)-3a²b-15a+6b+3ba²+9b =(a-b)-15(a-b)∵a>0,b<0,[a]=[b]∴a-1=b+1∴a-b=2将a-b=2代入,得:原式=2-15×2=﹣14;(3)①当x<0,x+2<0时,即x<-2时2[x]-[x+2]=2(x+1)-(x+2+1)=2x+2-x-3=x-1;②当x<0,x+2≥0时,即-2≤x<0时2[x]-[x+2]=2(x+1)-(x+2-1)=2x+2-x-1=x+1;③当x≥0,x+2≥0时,即x≥0时2[x]-[x+2]=2(x-1)-(x+2-1)=2x-2-x-1=x-3;综上所述:当x<-2时,2[x]-[x+2] =x-1;当-2≤x<0时,2[x]-[x+2] =x+1;当x≥0时2[x]-[x+2]= x -3.【点睛】此题考查的是定义新运算,掌握相伴数的定义和分类讨论的数学思想是解决此题的关键.。
期中测试一、选择题(本大题共10小题,共30分)1.3-的倒数是( )A .3B .3-C .13 D .13- 2.一只长满羽毛的鸭子大约重( )A .50克B .2千克C .20千克D .5千克3.下列各组数中结果相同的是( )A .23与32B .3|3|-与()33-C .()23-与23-D .()33-与33- 4.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .()23a b -B .()23a b -C .23a b -D .()23a b - 5.下列说法中,正确的是( )A .绝对值等于本身的数是正数B .倒数等于本身的数是1C .0除以任何一个数,其商为0D .0乘以任何一个数,其积为06.把数轴上表示4的点移动2个单位后表示的数为( )A .3B .2C .3或5D .2或67.按图中计算程序计算,若开始输入的值为−2,则最后输出的结果是( )A .8B .10C .12D .138.若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,则()2123m cd a b -+-+的值是( ) A .9 B .5 C .9或5 D .7-9.若规定“!”是一种数学运算符号,且1!1=,2!212=⨯=,3!3216=⨯⨯=,4!432124=⨯⨯⨯=,…,则10098!!的值为( ) A .5049 B .99! C .9 900 D .2!二、填空题(本大题共9小题,共27分)10.单项式323xy -的系数是m ,次数是n ,则mn =________.11.比较大小:45-________56-(填“>”或“<”)12.计算:()23x y y -+=________.13.对有理数a 、b ,规定运算如下:a b a b ab =+-※,则 2.52-=※________. 14.若单项式22m x y 与313n x y -是同类项,则m n +的值是________.15.已知2x y +=,则533x y --的值为________. 16.若关于x 、y 的多项式22232x xy y mx ++-中不含2x 项,则m =________.17.观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭; 111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭; …()1111333n n n n ⎛⎫=- ⎪++⎝⎭根据以上观察,计算1111144771020202023+++⋯+⨯⨯⨯⨯的值为________. 三、解答题(本大题共7小题,共63分)18.计算:(1)()()1623177-++---(2)()157362612⎛⎫+-⨯- ⎪⎝⎭(3)()()2(2)7365-⨯--⨯---(4)()2411336⎡⎤--⨯--⎣⎦19.化简:(1)3257x y x y -+--(2)()()22326x xy x xy --+-20.某天早上,一辆交通巡逻车从A 地出发,在东西向的马路上巡视,中午到达B 地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km )(1)巡逻车在巡逻过程中,第________次离A 地最远.(2)B 地在A 地哪个方向,与A 地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?21.化简求值:求代数式2222213824333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭的值,其中x ,y 满足()2310x y ++-=.22.已知在纸面上画有一根数轴,现折叠纸面.(1)若1-表示的点与1表示的点重合,则3表示的点与数________表示的点重合;(2)若1-表示的点与3表示的点重合,回答以下问题:①6表示的点与数________表示的点重合;②若数轴上A 、B 两点之间的距离为d (点A 在点B 的左侧,0d >),且A 、B 两点经折叠后重合,则用含d 的代数式表示点B 在数轴上表示的数是________.23.折叠纸面,若在数轴上1-表示的点与5表示的点重合,回答以下问题:(1)数轴上10表示的点与________表示的点重合.(2)若数轴上M 、N 两点之间的距离为2018(M 在N 的左侧),且M 、N 两点经折叠后重合,求M 、N 两点表示的数是多少?(3)如图,边长为2的正方形有一顶点A 落在数轴上表示1-的点处,将正方形在数轴上向右滚动(无滑动),正方形的一边与数轴重合记为滚动一次,求正方形滚动2 019次后,数轴上表示点A 的数与折叠后的哪个数重合?24.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示10-,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.期中测试答案解析一、1.【答案】D【解析】∵()1313⎛⎫-⨯-= ⎪⎝⎭, ∴3-的倒数是13-.故选:D .2.【答案】B【解析】成年鸭子大约重5千克,刚长满羽毛的还不到成年大约重2千克. 故选:B .3.【答案】D【解析】A .239=,328=,故不相等;B .()33327327-=-=-,故不相等;C .()239-=,239-=-,故不相等; D .()3327-=-,3327-=-,故相等, 故选:D .4.【答案】B【解析】∵a 的3倍与b 的差为3a b -,∴差的平方为()23a b -.5.【答案】D【解析】A .绝对值等于本身的数是非负数,故原题说法错误;B .倒数等于本身的数是1±,故原题说法错误;C .0除以任何一个不为零数,其商为0,故原题说法错误;D .0乘以任何一个数,其积为0,故原题说法正确;故选:D .6.【答案】D【解析】两种情况,即:426+=或422-=,故选:D .7.【答案】D【解析】()253-+=,39<,358+=,89<,8513+=,139>,∴若开始输入的值为2-,则最后输出的结果是13.故选:D .8.【答案】D【解析】∵a ,b 互为相反数,c ,d 互为倒数,且m 的绝对值为2, ∴0a b +=,1cd =,2m =±,()()2211222102410733m cd a b -+-+=-⨯±+-⨯=-⨯+-=-. 故选:D . 9.【答案】C 【解析】原式12349910012349798⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯ 99100=⨯9900=.故选:C .二、10.【答案】83-【解析】∵单项式323xy -的系数是m ,次数是n , ∴23m =-,4n =, 则83mn =-. 故答案为:83-. 11.【答案】>【解析】44245530-==,55256630-==, ∵24253030< ∴4556-->. 故答案为:>.12.【答案】2x y +【解析】原式2232x y y x y =-+=+,故答案为:2x y +13.【答案】4.5【解析】∵aAb a b ab =+-,∴ 2.52A -()2.52 2.52=-+--⨯2.525=-++4.5=,故答案为:4.5.14.【答案】5【解析】由同类项的定义可知2n =,3m =,则5m n +=.故答案为:5.15.【答案】1-【解析】533x y --()53x y =-+532=-⨯1=-故答案为1-.16.【答案】3【解析】将多项式合并同类项得()223m xy y -++,∵不含2x 项,∴30m -=,∴3m =.故答案为:317.【答案】6742023【解析】根据题意得:原式11111111134347320202023⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1111111344720202023⎛⎫=-+-++- ⎪⎝⎭11132023⎛⎫=- ⎪⎝⎭1202332023=⨯ 6742023=, 故答案为:6742023 三、18.【答案】解:(1)原式16231773=-+-+=-;(2)原式18302127=--+=-;(3)原式281855=--=;(4)原式()1161106=--⨯-=-+=.19.【答案】解:(1)3257x y x y -+-- 85x y =--;(2)()()22326x xy x xy --+- 22636x xy x xy =---+2546x xy =-+.20.【答案】(1)6(2)158612451016-++-+-=(千米),答:B 地在A 地东方,与A 地相距16千米;(3)158+612451060++-++++-+++-=(千米),600.212⨯=(升), 12784⨯=(元). 答:这一天交通巡逻车所需汽油费84元.【解析】解:(1)第一次距A 地:15千米,第二次距A 地:1587-=千米,第三次距A 地:7613+=千米,第四次距A 地:131225+=千米,第五次距A 地:25421-=千米,第六次距A 地:21526+=千米,第七次距A 地:261016-=千米,2625211615137>>>>>>,答:巡逻车在巡逻过程中,第6次离A 地最远;故答案为:6.21.【答案】解:原式222222213824333535x x xy y x xy y x y =--++++=-+, ∵()2310x y ++-=,∴30x +=,10y -=,解得:3x =-,1y =,则原式918=-+=-.22.【答案】(1)3-(2)①4- ②112d +【解析】解:(1)∵1102-+=,. ∴0233⨯-=-,故答案为:3-;(2)①∵1312-+=, ∴1264⨯-=-,故答案为:4-; ②∵1312-+=,A 、B 两点之间的距离为d (点A 在点B 的左侧,0d >),且A 、B 两点经折叠后重合, ∴表示点B 在数轴上表示的数是:112d +, 故答案为:112d +. 23.【答案】(1)6-(2)∵数轴上M 、N 两点之间的距离为2 018, ∴112018100922MN =⨯=, ∴2+1009=1011,210091007-=- ∴点M 表示的数为1007-,点N 表示的数为1 011.答:M 、N 两点表示的数是1007-、1 011;(3)∵边长为2的正方形有一顶点A 落在数轴上表示1-的点处, ∴正方形滚动一次后一个顶点落在表示3的点处,正方形滚动2次后一个顶点落在表示5的点处,正方形滚动3次后一个顶点落在表示7的点处,初中数学 七年级上册 11 / 11 ∴正方形滚动2 019次后一个顶点落在表示2201914039⨯+=的点处,∴正方形滚动2 019次后,数轴上表示点A 的数与折叠后的4 039重合.【解析】解:(1)∵在数轴上1-表示的点与5表示的点重合, ∴1522-+= ∴数轴上1-表示的点与5表示的点的中点是2表示的点.∴数轴上10表示的点与6-表示的点重合.故答案为6-;(2)详见答案;(3)详见答案.24.【答案】解:(1)点P 运动至点C 时,所需时间1021018219t =÷+÷+÷=(秒),(2)由题可知,P 、Q 两点相遇在线段OB 上于M 处,设OM x =.则()102181102x x ÷+÷=÷+-÷, 解得163x =. 故相遇点M 所对应的数是163. (3)P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等有4种可能: ①动点Q 在CB 上,动点P 在AO 上,则:8102t t -=-,解得:2t =.②动点Q 在CB 上,动点P 在OB 上,则:()851t t -=-⨯,解得: 6.5t =. ③动点Q 在BO 上,动点P 在OB 上,则:()()2851t t -=-⨯,解得:11t =.④动点Q 在OA 上,动点P 在BC 上,则:()102151310t t +-=-+,解得:17t =. 综上所述:t 的值为2、6.5、11或17.。
【篇一】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将准确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.1【考点】绝对值.【专题】计算题.【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:|-2|=-(-2)=2.故选C.【点评】本题考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1X103元B.1.1X104元C.1.1X105元D.1.1X106元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为aX10n的形式,其中lW|a|〈10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数;当原数的绝对值〈1时,n是负数.【解答】解:将110000用科学记数法表示为:1.1X105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中1W|a|〈10,n为整数,表示时关键要准确确定a的值以及n的值.3.下列各对数中,互为相反数的是()A、—(—2)和2B.+(—3)和一(+3)C.D.—(—5)和一一5【考点】相反数.【专题】计算题.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、一(一2)+2=4,故本选项错误;B、+(-3)-(+3)=-6,故本选项错误;C、一2二一,故本选项错误;D>-(-5)-|-5|=0,故本选项准确.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.4.若(2a—l)2+2|b—3|=0,则ab=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【专题】计算题.【分析】因为平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b 的值,再将它们代入ab中求解即可.【解答】解:由题意,得,解得.・:ab=()3二.故选D.【点评】本题主要考查非负数的性质和代数式的求值.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论能够求解这类题目.5.下列式子中:,,,n(x2—y2),,7x—l,y2+8x,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个【考点】单项式;多项式.【分析】根据单项式与多项式的定义,结合所给各式实行判断即可.【解答】解:所给式子中单项式有,一共2个;多项式有:,,n(x2—y2),7x—1,y2+8x,一共4个.故选B.。
2024-2025学年苏科版七年级数学上册期中复习试卷一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A .48.810⨯B .48.0810⨯C .58.810⨯D .58.0810⨯3.一个点在数轴上从表示 - 3的点A 开始,先向左移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( ) A .2B .9C .2或8D .2或94.下列各说法中,错误的是( )A .x ,y 的平方和,用代数式表示为22x y +B .x 与y 和的5倍,用代数式表示为5()x y +C .x 的5倍与y 的和的一半,用代数式表示为52yx + D .比x 的2倍多3的数,用代数式表示为23x + 5.下列各对数中,相等的一对是( )A .223与223⎛⎫ ⎪⎝⎭B .3(2)-与32-C .22-与2(2)-D .()23--与2||3--6.若()2230a b -++=,则()2024a b +的值是( )A .1-B .2024-C .1D .20247.如图,a b c d e f ,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .3-C .7D .88.有理数a 、b 在数轴上对应的点的位置如右图所示,则下面结论:①a <0; ②|a ∣>|b |; ③a +b >0;④b -a >0;其中正确的个数有( )个.A .1B .2C .3D .49.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折n 次,可以得到折痕的条数是( )A .nB .1n -C .21n -D .121n --10.如图所示,在这个运算程序当中,若开始输入的x 是48,则经过2023次输出的结果是( )A .3B .6C .12D .24二、填空题 11.比较大小:23-34-. 12.若代数式513m a b +与22n a b -是同类项,那么m+n= .13.若22(3)0a b ++-=,则b a =.14.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为.15.已知22210,216a ab b ab -=-=-,则()()22224a ab b a b -+--=.16.已知210x y --=,则52x y -+的值是17.定义一种新运算,规定:3a b a b ⊕=-,若1(6)24a b ⊕-=-请计算(2)(25)a b a b +⊕-值为.18.列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为三、解答题 19.计算:(1)()()6487--+-+; (2)()25118362⎛⎫--⨯- ⎪⎝⎭; (3)()211623--÷-⨯-.20.(1)把下面的直线补充成一条数轴,在数轴上表示下列各数;(2)--,4,112-,0,2.5, 3.5-.(2)用“>”将(1)中的每个数连接起来. 21.化简: (1)3245m m --+;(2)()()222332x y x y ++-;22.用火柴棒按图中的方式搭图形.按上述信息填空: (1)a =______,b =______;(2)按照这种方式搭下去,则搭第n 个图形需要火柴棒的根数为______;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2023个图形需要的火柴棒根数. 23.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数) (3)国庆黄金周水果超市出售此种接子的收益如何? 24.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)1111 1232343458910 +++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.25.某超市在双十一期间对顾客实行优惠政策,规定如下表:(1)若小惠一次购物原价300元,她实际付款___________元;若一次购物原价600元,她实际付款___________元.(2)若小惠在该超市一次购物x元.当x大于或等于500元时,她实际付款___________元(用含x的代数式表示并化简).(3)如果小惠两次购物合计850元(原价),第一次购物的原价为a元(200300a<<),用含a的代数式表示两次购物实际付款一共多少元?当250a=元时,小惠两次购物一共节省了多少元?26.如图,数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当2t=时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.。
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A.B. 2C.12D. 12-2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A 6个B. 5 个C. 4 个D. 3个3.下列计算正确的是( ) A. 2a −a = 2B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn4.下列方程中,是一元一次方程的是( ) A.110x-= B. x ﹣1=0 C. x 2﹣x ﹣1=0 D. 2(x ﹣1)=2x5.关于x 的方程ax +3=1的解为x =2,则a 的值为( ) A. 1B. -1C. 2D. -26.一元一次方程3x+6=2x ﹣8移项后正确的是( ) A. 3x ﹣2x=6﹣8B. 3x ﹣2x=﹣8+6C. 3x ﹣2x=8﹣6D. 3x ﹣2x=﹣6﹣87.按如图所示的运算程序,能使输出的结果为18的是( )A. x =1,y =4B. x = -4,y = 4C. x = -4,y = -1D. x =4,y =48.若规定[a]表示不超过a 的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( ) A. ﹣3B. ﹣2C. ﹣1D. 0二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y-的次数是_________10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2.11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6B. 5C. 4D. 313.一个多项式加上﹣3-x ﹣2x 2得到x 2+1,这个多项式是________ 14.若|x ﹣2|+(y +3)2=0,则(x +y)2018=________15.若|x |=7,|y |=5,且x >y ,那么x ﹣y 的值是_______________. 16.已知2x ﹣3y=3,则代数式6x ﹣9y+5的值为_____.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为_____.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32- 各数在数轴上表示出来,并用“<”把它们连接起来. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值. 21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值; (2)若2A -B 值与y 的取值无关,求x 的值. 23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c 0,+ 0,c - 0. (2)化简:| b -c|+|+b|-|c -a|24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?25.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A. B. 2 C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A. 6个B. 5 个C. 4 个D. 3个【答案】C 【解析】试题分析:根据单项式的定义:数字与字母的积,或单独的数字和字母都叫单项式.即可求解. 解:单项式有:a , -2ab ,-1, 2312ab c ,共4个. 故选C.3.下列计算正确的是( ) A. 2a −a = 2 B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn【答案】D 【解析】 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】A .2a −a = a ,故A 错误; B .不是同类项不能合并,故B 错误; C .3x 2 + 2x 2 = 5x 2,故C 错误; D .mn − 2mn = −mn ,故D 正确. 故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题的关键.4.下列方程中,是一元一次方程的是( )A. 110x-= B. x﹣1=0 C. x2﹣x﹣1=0 D. 2(x﹣1)=2x【答案】B【解析】【分析】根据一元一次方程定义进行分析即可.【详解】A.不是一元一次方程,故此选项错误;B.是一元一次方程,故此选项正确;C.不是一元一次方程,故此选项错误;D.不是一元一次方程,故此选项错误.故选B.【点睛】本题主要考查了一元一次方程定义,关键是掌握只含有一个未知数(元),且未知数次数是1,这样的方程叫一元一次方程.5.关于x的方程ax+3=1的解为x=2,则a的值为( )A. 1B. -1C. 2D. -2【答案】B【解析】【分析】把x=2代入方程可得关于a 的方程,解之即可得.【详解】把x=2代入方程ax+3=1得,2a+3=1,解得:a=-1,故选B.【点睛】本题考查了一元一次方程的解,方程的解是能使方程两边相等的未知数的值.6.一元一次方程3x+6=2x﹣8移项后正确的是( )A. 3x﹣2x=6﹣8B. 3x﹣2x=﹣8+6C. 3x﹣2x=8﹣6D. 3x﹣2x=﹣6﹣8【答案】D【解析】试题解析:根据移项法则得:3x﹣2x=﹣6﹣8,故选D.7.按如图所示的运算程序,能使输出的结果为18的是()A. x=1,y=4B. x= -4,y= 4C. x= -4,y= -1D. x=4,y=4 【答案】C【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】A.x=1,y=4时,输出结果为12+2×4=9,不符合题意;B.x=﹣4,y=4时,输出结果为(﹣4)2+2×4=24,不符合题意;C.x=﹣4,y=﹣1时,输出结果为(﹣4)2﹣2×(﹣1)=18,符合题意;D.x=4,y=4时,输出结果为42+2×4=24,不符合题意.故选C.【点睛】本题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( )A. ﹣3B. ﹣2C. ﹣1D. 0 【答案】A【解析】∵[a]表示不超过a的最大整数,m=[π]=3,n=[﹣2.1]=﹣3,∴[m+74n]=[3+74×(﹣3)]=[﹣94]=﹣3,故选A.二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y的次数是_________【答案】(1). 5(2). 4【解析】【分析】根据绝对值的代数意义和单项式次数的概念求解.【详解】-5的绝对值是5,单项式32x y-的次数是4.故答案为5,4.【点睛】本题考查了绝对值和单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2. 【答案】1.026×105 【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂, 【详解】解:102 600=1.026×105 故答案为:1.026×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键. 11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________. 【答案】2x +3 【解析】 【分析】由题意先表示出乙数的2倍,再加上3,即可得到结果. 【详解】解:乙数x 的2倍为2x, 所以甲数为:2x+3, 故答案为2x+3.【点睛】本题考查了列代数式,读懂语句列出代数式是解题的关键.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】 【分析】根据相同字母的指数相同列方程求解即可. 【详解】由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故选A.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.一个多项式加上﹣3-x﹣2x2得到x2+1,这个多项式是________【答案】3x2+x+4【解析】【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【详解】设这个整式为M,则M=x2+1﹣(﹣3﹣x﹣2x2)=x2+1+3+x+2x2=(1+2)x2+x+(1+3)=3x2+x+4.故答案为3x2+x+4.【点睛】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.14.若|x﹣2|+(y+3)2=0,则(x+y)2018=________【答案】1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x﹣2=0,y+3=0,解得:x=2,y=﹣3,所以,(x+y)2018=(2﹣3)2018=1.故答案为1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x|=7,|y|=5,且x>y,那么x﹣y的值是_______________.【答案】2或12【解析】【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【详解】∵|x|=7,|y|=5,且x>y,∴x=7,y=5或x=7,y=﹣5,∴x﹣y=7﹣5=2或7﹣(﹣5)=12.故答案为2或12.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.16.已知2x﹣3y=3,则代数式6x﹣9y+5值为_____.【答案】14.【解析】【详解】代数式6x-9y+5可变形为3(2x-3y)+5,又2x-3y=3,所以6x-9y+5=3×3+5=14.故答案为14.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子数为_____.【答案】【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(−1),3+(−1)+b=−1+b+c,∴a=−1,c=3,∴数据从左到右依次为3、−1、b、3、−1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、−1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为−1.故答案为−1.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32各数在数轴上表示出来,并用“<”把它们连接起来.【答案】答案见解析.【解析】 【分析】在数轴上把各个数表示出来,再根据在数轴上表示的数,右边的总比左边的数大比较即可. 【详解】在数轴上表示为:用“<”把它们连接为:﹣4<0<32-<122<﹣(﹣3.5). 【点睛】本题考查了数轴和有理数的大小比较,注意:在数轴上表示的数,右边的总比左边的数大. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 【答案】(1)-3;(2)-43;(3)-19;(4)-84 【解析】 【分析】(1)先算绝对值,把减法转化为加法,然后计算即可; (2)按照有理数混合运算的顺序,先乘方后乘除最后算加减; (3)运用乘法的分配律计算;(4)把除法转化为乘法后,运用乘法的分配律计算. 【详解】(1)原式=-8+12+16-23=-3; (2)原式=52273-⨯=2-45=-43; (3)原式=-18+20-21=-19;(4)原式=21×(-0.75)-105×0.75+14×0.75=0.75×(-21-105+14)=0.75×(-112)=-84. 【点睛】本题考查了有理数的混合运算.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣. 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值.【答案】(1)-4m 2-2n ;(2)3.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【详解】(1)原式=﹣4m 2﹣2n ;(2)原式=﹣a +3b +5ab ﹣5b +2a ﹣6ab =a ﹣2b ﹣ab,当a ﹣2b =4,ab =1时,原式=4-1=3.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 【答案】(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x ﹣15+3x =6,移项得:4x +3x =6+15,合并同类项得:7x =21,化系数为1得:x =3;(2)去分母得:3(x +1)﹣2(2x ﹣1)=12,去括号得:3x +3﹣4x +2=12,移项得:3x ﹣4x =12﹣3﹣2,合并同类项得:﹣x =7,化系数为1得:x =﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值;(2)若2A -B 的值与y 的取值无关,求x 的值.【答案】(1)2A -B =7xy+2x-4y ;(2)47x =【解析】【分析】(1)把A与B代入2A﹣B中,去括号合并后,把x与y的值代入计算即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1),= 2x2+6xy+2x﹣1﹣2x2+xy﹣4y+1,=7xy+2x﹣4y,当x=﹣2,y=﹣2时,2A﹣B=7xy+2x﹣4y =7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)=28-4+8=32;(2)由(1)可知2A﹣B=7xy+2x﹣4y =(7x﹣4)y+2x,若2A﹣B的值与y的取值无关,则7x﹣4=0,解得:47x .【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c0,+0,c-0.(2)化简:| b-c|+|+b|-|c-a|【答案】(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)的面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?【答案】(1)50x-x2;(2)600-50x+x2;(3)504【解析】【分析】(1)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(2)阴影面积等于矩形面积减去道路面积;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【详解】(1)30x+20x﹣x2=50x﹣x2.答:修建十字路的面积是(50x﹣x2)平方米.(2)草坪的面积为:30×20﹣(50x﹣x2)=600﹣50x+x2;(3)600﹣50x+x2=600﹣50×2+2×2=504(平方米).答:草坪(阴影部分)的面积504平方米.【点睛】本题考查了列代数式及代数式求值的问题,应熟记长方形的面积公式.另外,整体面积=各部分面积之和;阴影部分面积=原面积﹣空白的面积.进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.【答案】(1)仓库原料比原来减少9吨;(2)选方案二运费少;(3)当a=2b时,两种方案运费相同.【解析】【分析】(1)将进出数量×进出次数,再把它们相加即可求解;(2)分别求出两种方案的钱数,再相加即可求解;(3)根据两种方案的运费相同,列出等式求解即可.【详解】(1)﹣3×2+4×1﹣1×3+2×3﹣5×2=﹣6+4﹣3+6﹣10=﹣9.答:仓库的原料比原来减少9吨.(2)方案一:(4+6)×5+(6+3+10)×8=50+152=202(元),方案二:(6+4+3+6+10)×6=29×6=174(元),因为174<202,所以选方案二运费少.(3)根据题意得:5a+8b=6(a+b),解得:a=2b.答:当a=2b时,两种方案运费相同.【点睛】本题考查了有理数的混合运算,列代数式,以及正数和负数,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.【答案】(1)1+t,(2)192;(3)10,83.【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M 表示的数为t,N 表示的数为t+2,∴AM=t﹣(﹣1)=t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11, 解得:192t = (3)假设能相等 ,则点A 表示的数为2t ﹣1,M 表示的数为t,N 表示的数为t+2,B 表示的数为11﹣t, ∴AM=|2t﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t)|=|2t ﹣9|,∵AM=BN ,∴|t﹣1|=|2t ﹣9|,1210,83t t ==解得 故在运动的过程中AM 和BN 能相等,此时运动的时间为 秒和8秒.点睛:本题考查了数轴及一元一次方程的应用,根据数量关系列出一元一次方程是解答试题的关键.。
实用文档苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是( )A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2| 2.下列说法不正确的是( )A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是( )A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a b c c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是( )A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是( )A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是( ) A .3 B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____. 8.单项式23x y -的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式. 9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要 根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯-⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么实用文档数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值. 19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a b a b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150, -35, -40,+210,-32, +20, -18, -5, +20, +85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式: (2)由此计算:11111...1335572013201520152017+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n = (n 为正整数);参考答案实用文档1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D. 当a bc c时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.实用文档7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3, 五, 三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值实用文档≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93 (2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6 (2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】实用文档将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 18.1.【解析】试题分析: 由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可. 试题解析: 由题意可得2(3)200x y z ++-==,, ∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1. ①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618. 【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可. 【详解】根据流程图可得输出结果为2(21)2x y ++÷. 当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618. 【点睛】 本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离; (2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】实用文档(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可; (2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可. 【详解】 (1)第5个等式:a 5=1911⨯=12×(19﹣111); (2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017) =12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017) =12×(1﹣12017) =12×20162017=10082017; (3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭. 【点睛】 本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。
2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。
2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。
& 鑫达捷致力于精品文档 精心制作仅供参考 &第一学期期中检测七 年 级 数 学 试 题(考试时间:100分钟,满分:100分) 成绩一、选择题(3分×10=30分,将答案填在下面表格中) 1.下列一组数: 0.6,-412, ()23-, -5,-(-1.7)中负数有A .1个B .2个C .3个D .4个 2.下列各组数中,数值相等的是A .3443和B .()2244--和 C .3322)(和-- D .()2223232⨯-⨯-和 3.用代数式表示“的3倍与的差的平方”,正确的是 A .B .C .D .4.下列说法正确的是A. a -一定是负数B. 一个数的绝对值一定是正数C. 一个有理数不是正数就是负数D. 平方等于本身的数是0和1 5.下列各式中成立的是A.a +(-2b +c -3d )=a +2b +c -3dB.a -(-2b +c -3d )=a +2b -c +3dC.a -2(-2b +c -3d )=a +4b +2c -6dD.a -2(-2b +c -3d )=a +4b -c +3d 6.下列说法中正确的个数是(1) a 和0都是单项式。
(2)多项式-3a 2b+7a 2b 2-2ab+1的次数是3。
(3)单项式-23πa 2b 的系数为-23。
(4)x 2+2xy-y 2可读作x 2、2xy 、-y 2的和。
A.1个B.2个C. 3个D.4个7.下列计算正确的是 A .y x xy y x 2222-=- B .ab b a 532=+ C .ab ab ab 633-=--D .523a a a =+8.下列方程的变形正确的是 A .从321x x =-可得到321x x -=B .从3142125x x -+=-得155841x x -=+-C .从13(21)2x x --=得1632x x --=D .从3223x x --=+得3232x x --=+9.当x=2时,代数式ax 3+bx+1的值为3,那么当x=-2时,代数式ax 3+bx+5的值是:A .1 B. -1 C. 3 D . 2 10.如图,表示阴影部分面积的代数式是( )A .ab bc +B .()ad c b d +-C .()()c b d d a c -+-D .ab cd -二、填空题(2分×10=20分)11.已知方程︱x+5︱=3,则x=___________。
初一数学期中考试试卷2011.11一、选择题(共10小题,每小题2分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填在括号中)1.︱-3︱的相反数是 ( )A 、 ±3B 、 -3C 、31- D 、 32.下列说法错误的是 ( ) A 、零是绝对值最小的有理数 B 、如果两个数互为相反数,那么它们的绝对值相等. C 、任何有理数的绝对值都是正 D 、两个互为相反数的商是-13.在|-2|,-(-2)2,-|-2|,(-2)3,-(-2)3,(-1)2n(n 是正整数),这6个数中,负数的个数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个4.08北京奥运国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为( ) A 、25.8×104m 2B 、25.8×105m 2C 、2.58×105m 2D 、2.58×106m25.四个有理数的积是负数,则这四个数中负因数的个数是 ( ) A 、1个 B 、3个 C 、1个或3个 D 、不能确定6.若有理数a 、b 在数轴上的位置如图所示,则下列各式中不成立的是 ( ) A 、a >-bB 、b -a <0C 、|a|>|b|D 、a+b <07.下列去括号正确的是 ( ) A 、-(a+b-c)=-a+b-c B 、-2(a+b-3c)=-2a-2b+6c C 、-(-a-b-c)=-a+b+c D 、-(a-b-c)=-a+b-c8.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值 ( ) A 、只与a 有关 B 、只与b 有关 C 、与字母a 、b 都有关 D 、与字母a 、b 都无关9.已知n 表示正整数,则2)1(21n n -+= ( )A 、0B 、 1C 、0 或1D 、 无法确定,随n 值的不同而不同 10.若代数式x 2的值和代数式2x + y- 1的值相等,则代数式9-2(y +2x) +2x 2的值是 ( ) A 、7 B 、 4 C 、1 D 、不能确定二、填空题(共12小题,每小题2分,共24分。
期中测试一、选择题(本大题共10小题,共30分) 1.下面四个数中比3-小的数是( ) A .1B .0C .4-D .2-2.下列各式:①113x ;②23⋅;③20%x ;④a b c -÷;⑤226m n +;⑥5x -千克;其中,不符合代数式书写要求的有( ) A .5个B .4个C .3个D .2个3.下列说法错误的是( ) A .数字0是单项式B .23xy π的系数是13,次数是3C .14ab 是二次单项式D .25mn-的系数是25-,次数是24.下列运算正确的是( ) A .235x x +=B .235x y +=C .32xy xy xy -=D .()x y x y --=--5.在式子1x ,25x y +,0,2a -,233x y -,13x +中,单项式的个数是( ) A .5个B .4个C .3个D .2个6.多项式2332a b ab ab +-的项数和次数分别是( ) A .4,3B .3,9C .3,4D .3,37.已知1x =,24y =,且x y >,则x y +值为( ) A .3±B .5±C .+1或+3D .1-或3-8.计算机中常用的十六进制是逢16进1的计数制,采用数字0-9和字母A F -共16个计数符号,这些记数符号与十进制的数之间的对应关系如下表:例如:十进制中的261610=+,可用十六进制表示为1A ;在十六进制中,1E D B +=等.由上可知,在十六进制中,3E ⨯=( )A .42B .2AC .2AD .2F9.若1x =是关于x 的一元一次方程123x x m +=-+的解,则m 的值为( ) A .2B .3C .12D .4310.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A .2 016个B .2 015个C .2 014个D .2 013个二、填空题(本大题共8小题,共24分)11.单项式234xy -的系数是________.12.比较大小:34-________56-(填“<”、“>”或“=”).13.在数轴上,点A 所表示的数是3-,那么到点A 距离等于4个单位的点所表示的数为________. 14.若关于x 的方程372x x m -=+的解与方程213x -=的解相同,则m 的值是________. 15.若a ,b 互为相反数,c ,d 互为倒数,则()()11a b cd +-+的值为________.16.已知当1x =时,代数式35ax bx ++的值为4-,那么当1x =-时,代数式35ax bx ++的值为________. 17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为________.18.已知m 是一个正整数,记()()F x x m x m =---的值,例如,()()101010F m m =---.若()()()122030F F F +++=,则m =________.三、解答题(本大题共7小题,共66分) 19.计算:(1)()()()201859---+++-(2)()4235-++⨯-(3)()24251 2.5393⎛⎫⎛⎫⨯-⨯-÷- ⎪ ⎪⎝⎭⎝⎭(4)13124243⎛⎫-⨯-+- ⎪⎝⎭20.先化简,再求值.(1)()()226733a a a a ----+,其中13a =-;(2)()()22225343a b ab ab a b ---+,其中1a =,2b =-.21.某单位需以“挂号信”或“特快专递”方式向四所学校各寄一封信这四封信的重量分别是81 g ,90 g ,215 g ,352 g 根据这四所学校的地址及信件的重量范围,在邮局查得相关邮费标准如下:(1)重量为90 g 的信若以“挂号信”方式寄出,邮寄费为多少元?若以“特快专递”方式寄出呢? (2)这四封信分别以怎样的方式寄出最合算?请说明理由.22.老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:()22222445a ab b a b --+=-(1)求所捂住的多项式;(2)当3a =,1b =-时,求所捂住的多项式的值.23.如图,一个长方形运动场被分隔成A ,B ,A ,B ,C 共5个区,A 区是边长为 m a 的正方形,C 区是边长为 m c 的正方形.(1)列式表示每个B 区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简 (3)如果40a =,10c =,求整个长方形运动场的面积.24.已知在纸面上画有一根数轴,现折叠纸面.(1)若1-表示的点与1表示的点重合,则3表示的点与数________表示的点重合; (2)若1-表示的点与3表示的点重合,回答以下问题: ①6表示的点与数________表示的点重合;②若数轴上A 、B 两点之间的距离为d (点A 在点B 的左侧,0d >),且A 、B 两点经折叠后重合,则用含d 的代数式表示点B 在数轴上表示的数是________. 25.阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB当A 、B 两点中有一点在原点时,不妨设点A 在原点(如图1)AB OB b a b =-=-; 当A 、B 两点都不在原点时①当点A 、B 都在原点的右边(如图2)AB OB OA b a b a a b =-=-=-=-②当点A 、B 都在原点的左边(如图3)()AB OB OA b a b a a b =-=-=---=-③当点A 、B 在原点的两边(如图4)AB OB OA b a b a a b =+=+=-+=-回答下列问题:(1)数轴上表示1和5的两点之间的距离是________,数轴上表示1和3-的两点之间的距离是________; (2)数轴上若点A 表示的数是x ,点B 表示的数是2-,则点A 和B 之间的距离是________,若3AB =,那么x 为________;(3)当x 是________时,代数式215x x ++-=;(4)若点A 表示的数1-,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒12个单位长度,求运动几秒后,点Q 与点P 相距1个单位?)(请写出必要的求解过程)期中测试 答案解析一、 1.【答案】C【解析】∵13->,03->,43--<,23-->, ∴四个数中比3-小的数是4-. 故选:C . 2.【答案】B【解析】①14133x x =,不符合要求;②23⋅应为23⨯,不符合要求; ③20%x ,符合要求; ④ba b c a c-÷=-,不符合要求; ⑤226m n +,符合要求;⑥()5x -千克,不符合要求,不符合代数式书写要求的有4个。
初中数学试卷 桑水出品初一年级期中试卷一、精心选一选(本大题共8小题,每小题3分,共24分)1、-5的相反数是 ( )A .15- B .15 C .-5 D .5 2、下列合并同类项中,正确的是( ) A .xy y x 633=+ B .332532a a a =+ C .033=-nm mn D .257=-x x3、下列各组数中,相等的一组是( )A .42-与()42-B .53与3C .(3)--与3--D .()31-与()20131-4、中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( )A .6.75×104吨B .6.75×103吨C .0.675×105吨D .67.5×103吨5、若m =3,n =5且m -n >0,则m +n 的值是 ( )A .-2B .-8或 -2 C. -8或 8 D .8或-26、若2352M x x =-+,2251N x x =-+则M 、N 的大小关系为( )A . M N >B .M N =C .M N <D .不能确定7、将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“15cm ”分别对应数轴上的﹣3.6和x ,则( )A .9<x <10B .10<x <11C .11<x <12D .12<x <13 8、如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个长方形(无缝隙,不重叠),若拼成的长方形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6二、细心填一填(本大题共10小题,每小题3分,共30分)9、单项式232xy π-的系数是 10、比较大小:43-__ _65-. 11、在数轴上有两点A 和B ,已知线段AB 长为4个单位,若点A 表示的数是-1,则点B 表示的数是 .12、在10月份内,小明一家出去旅游,共5天,这5天日期之和为60,小明家是10月 日出发的。
初一数学参考答案及评分标准 2010.11一、精心选一选:1、B2、C3、B4、B5、B6、D 二、细心填一填:7、-5,32 8、-6 9、61003.1⨯ 10、41-,6 11、2或-4 12、7,0 13、)2.1()1(02.12102-〈--〈〈-〈-- 14、12 15、-9 16、 4三、认真答一答:17、(1)-2 + 3 -(-4)+(-1)= -2+3+4-1 ………………2'= 4 ……………………4'(2)⎪⎭⎫ ⎝⎛--⨯151434843=6-1-107………………2'=4.3 ……………………4'(3) 23)32(94)1(-÷⨯-=94941÷⨯- ………………2' = -1 …………………………4'(4) ()59312622+--⨯-÷--=4312164-⨯⎪⎭⎫ ⎝⎛-⨯-- …………2' = -7 …………………………4'18、(-2010)+402043+(-200932)+(-121) =(-2010)+(4020+43)+(-2009-32)+(-1-21) …………………………1'=[(-2010)+4020+(-2009)+(-1)]+[ 43 +(-32)+(-21)] …………………………2'=126128129-- =125- …………………………4' 19、(1)原式=2a +5b -8 …………………………4'(2)原式=8x 2-4xy -x 2-xy +6 …………………………2' =7x 2-5xy +6 …………………………4'20、解:由题意得m -1=0,n +2=0∴ m =1,n = -2 …………………………1'原式= -2mn +6m 2- m 2 +5 mn -5m 2- 2mn …………………………2' =mn …………………………3'当m =1,n = -2时,原式=1×(-2)= -2 ………………………4'21、解:(1)M =15x 2 +2x -4-(x 2 +3x +7) …………………………1'=15x 2 +2x -4-x 2 -3x -7=14x 2 -x -11 …………………………3'(2)M +(x 2 -3x +7)=14x 2 -x -11+ x 2 -3x +7=15 x 2 -4x -4 …………………………5' 22、(1)280+7+5-3=289元/克 …………………………1'(2)最高价是292元/克;最低价是283元/克 …………………………3'(各1分) (3)291×1000×(1-5‰-3‰)-280×1000×(1+5‰)=7272(元) ………6' 答:赚了7272元. (若分步列式,计算正确,可酌情给分) 23、(1)3×45+6×6=171(元) …………………………2' (2)4×45+6×8=228(元),5×45=225<228,∴至少付225元. ……………4' (3)当0≤b ≤7,且为整数时,至少应付(45a +6b )元;当8≤b ≤9,且为整数时,至少应付(45a +45)元. ……………6' (第(3)题只写出45a +6b 得1分) 24、(1)(每空1分)…………………………3' (2)b a d -=…………………………4'(3)是-5,-4,-3,-2,-1,0,1,2,3,4,5共11个点,和为0…………………………5'(如不是求11个数的和不得分) (4)点C 在-1…………………………6'点C 在-1与2之间(包括-1和2)…………………………7'附加卷答案:1、(答案不唯一,每空2分) 10-4- (-6)×3=24 ;5×5-15=24或5×(5-1÷5)=242、二十;二3、0(四个数分别取1,-1,13,-13)4、(1)1-n 21(2分) (2)如图:(2分) 5、(1)5144ba + (1分) (2)a =4b (1分)(3)6b ÷b 53=10答:至少派10名. (2分)a 6 -6 -6 -6 -10 -2.5 b4 0 4 -4 2 -2.5 A ,B 两点间的距离261021212 21231212412312 21212212312初中数学试卷金戈铁骑制作。
2014—2015年度第一学期初一数学期中试卷
(考试时间100分钟,满分100分) 2014.11
【卷首语】亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光.请认真审题,看清要求,仔细答题. 预祝你取得好成绩!
一、选择题(本大题为单选题,共8题,每题3分,共24分)
1.-5的相反数是 ( )
A .15
-
B .1
5 C .-5 D .5
2.在数-
2
1,-|-2|,+[-(-2)], (-2)3
,中负数的个数是 ( ) A.4个 B.3个 C.2个 D.1个
3.下面的计算正确的是 ( )
A. 6a -5a=1
B. a+2a 2
=3a 3
C.-(a -b)=-a+b
D.2(a+b)=2a+b 4.下列代数式中,单项式共有 ( )
a , -2a
b ,
3x , x y +, 22
x y +, -1, 2312
ab c A .3个 B .4个 C .5个 D .6个
5.下列各组代数式中,是同类项的是 ( )
A .5x 2
y 与
15xy B .-5x 2y 与15yx 2 C .5a x 2与15
yx 2 D .83与x 3 6. 下列说法中,正确的有( )个.
⑴-a 表示负数; ⑵多项式-3a 2b +7a 2b 2-2ab +l 的次数是3 ; ⑶单项式-2xy 2
9
的系数为-2; ⑷若| x |=-x ,则x <0.
A .0个
B .1个
C .2个
D .3个
7.用代数式表示“m 的3倍与n 的差的平方”,正确的是……………( )
A. 2)3(n m -
B. 2)(3n m -
C.23n m -
D. 2
)3(n m - 8.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )
学校_______________班级_________________姓名_________________考试号__________
密 封 线 内 请 不 要 答 题 …………………………密……………………………封……………………………线…………………………………………
A .31
B . 46
C .51
D . 66
二、填空题(每空2分,共26分)
9. 6320000用科学记数法表示为 。
10. 3
2
-
的倒数为 ;绝对值等于3的数是 . 11
.比较大小,用“<”“>”或“=”连接:
(1) (2)-3.14 -︱-π︱
12. 数轴上与表示-2的点距离3个长度单位的点所表示的数是__________. 13.在数—10,4.5,—
7
20, 0,—(—3),2.10010001…,42
,—2π中, 整数是 ,无理数是 . 14.定义新运算“⊗”,规定:a ⊗b = 1
3a -4b ,则12⊗ (-1)= .
15. 若a 、b 互为相反数,c 、d 互为倒数,m 到原点的距离为2,则代数式|m |-cd +a +b
m 的
值为 .
16. 若代数式x 2+3x -5的值为2,则代数式-2x 2-6x +3的值为 .
17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .
18.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其 中a+b+c 的值为 .
三、解答题(合计50分)
19.计算(每题3分,共12分)
(1)10(16)(24)---+- (2) 355();53
÷-
⨯ ⎪⎭
⎫
⎝⎛----32_______43输 入n 计算n 2-n >28
输出结果 Yes
No
(3)()42)7
3326
1(-⨯+-
(4)-12-61×[(-2)3+(-3)2
];
20.(4分)将-2.5,1
2
,2,-2-,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.
21.化简.(每小题3分,共6分)
(1)2x +(5x -3y )-(3x +y ) (2)3(4x 2-3x +2)-2(1-4x 2-x )
22. (4分)化简并求值. 221
4(1)2(1)(42)2
x x x x --+--,其中3x =-.
23. (4分)有理数a 、b 、c 在数轴上的位置如图,
化简:|c -b |+|a +b |-|a -c |.
c
b
0 a
24.(4分)已知多项式A 、B ,其中122+-=x x A ,小马在计算B A +时,由于粗心把B A +看成了B A -求得结果为1232---x x ,请你帮小马算出B A +的正确结果.
25.(7分)(1)在下列横线上用含有a ,b 的代数式表示相应图形的面积. ① ② ③ ④
(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数
学式子表示: ;
(3)利用(...2.)的结论....
计算992
+198+1的值.
26.(9分)如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数, 且a 、b 满足|a +2|+ (c -7)2=0.
(1)a= ,b= ,c = ;
(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .
则AB= ,AC= ,BC= .(用含t 的代数式表示)
a
a
a
a
b
b
b
b a
b b
a
①
②
③
④
(第25题)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,
请求其值.
初中数学试卷
灿若寒星制作。