2012年-季度美国金属加工机床同比增长35.2%
- 格式:pdf
- 大小:150.57 KB
- 文档页数:2
发布日期2012年9月受影响的出版物: API Specification 5CT,套管和油管规范,第九版,2011年7月勘误表本勘误表纠正API Spec 5CT第九版的编辑性错误。
第1页,1.1章节,第4自然段,第6个连字号应为:—整体油管 (IJ)。
第3节,第3章,替换ISO引用文件:ISO 9303, ISO 9304, ISO 9305, ISO 9402, ISO9598, ISO 9764和ISO 13665如下:第8页,4.1.38章节,删除定义中的“标准”:制造短节用的套管或有关、厚壁管或机械管、棒坯。
第11页,5.2.1章节,在“接头类型”中增加引用条款8.12.6:接头类型:SC、LC或BC或其它接头 8.12.2、8.12.6、表C.1或表E.1第11页,5.2.1章节,“长度范围”应为:长度范围或短节长度第11页,5.2.2章节,“冲击试验”的引用条款7.5.6修订为:第1组N80钢级Q类和R95,第2组(除M65)和第3组冲击试验要求 7.5.3, A.10 SR16 第11页,5.2.2章节,删除下列内容:统计拉伸试验-C90、T95及C110钢级 A.12(SR38)第11页,5.2.3章节,“第1组非热处理管子的冲击试验”后增加一行:壁厚≥30mm产品的替代淬透性要求 7.10.2第12页,5.2.3章节,“加厚套管-仅限Q125钢级”后增加一行:电焊套管和短接-第1和2组 A.14 SR40第12页,5.2.3章节,“电焊套管和短节-P110和Q125钢级”增加引用条款6.1:电焊套管和短节-P110和Q125钢级 6.1, A.6 SR11第12页,5.2.3章节,删除些列内容:特殊端部加工的套管、接箍或短节 8.12.6, 9.11.2第12页,5.3.1章节,“长度范围”应为:长度范围或短节长度第12页,5.3.2章节,“冲击试验”的引用条款7.5.6修订为:第1组N80钢级Q类和R95,第2组(除M65)和第3组冲击试验要求 7.5.3, A.10 SR16 第13页,5.3.3章节,“第1组非热处理管子的冲击试验”后增加一行:壁厚≥30mm(1.181 in)产品的替代淬透性要求-C110 7.10.2第13页,5.3.3章节,删除下列内容:延长加厚长度– EU 8.11.6加厚段长度-延长的或标准的 8.11.6油管、接箍或短节的特殊端部加工 8.12.6, 9.11.3第13页,5.3.3章节,“螺纹保护器”后增加一行:电焊油管和短节-第1和2组 A.14 SR40第14页,5.4.2章节,“冲击试验”的引用条款7.5.3修订为:冲击试验 7.4, 7.6, A.10 SR16第14页,5.4.2章节,“冲击试验”后增加一行:壁厚≥30mm产品的替代淬透性要求 7.10.2第14页,6.1章节,第5自然段应为:除非供需双方协商同意,否则C110钢级产品不应加厚。
常用钢20#与35#的对比1、20#20#是20钢的简易写法,属钢材中的一种材质。
常用于制造无缝钢管,模具,优质碳素钢板,槽钢,工字钢等钢材。
此种材质中碳的含量,大概在0.2%左右。
此种材质,相对于其他的优碳钢,也较普遍。
20钢:平均含碳量为0.17-0.23%,平均含硅量为0.15-0.40%,平均含锰量为0.6-1.00%,平均含硫量≤0.010%,平均含磷量≤0.025%钢中可分为低碳钢、中碳钢和高碳钢。
低碳钢--含碳量一般小于0.25%;中碳钢--含碳量一般在0.25~0.60%之间;高碳钢--含碳量一般大于0.60%。
钢中除含有碳(C)元素和为脱氧而含有一定量硅(Si)(一般不超过0.40%),锰(Mn)(一般不超过0.80%,较高可到1.20%)合金元素外,不含其他合金元素(残余元素除外)。
钢中含碳量低于2.1%为钢,含碳量高于2.1%为铁。
钢中含碳量越高其韧性越差,钢中含碳量越低其韧性越好。
该钢属于优质低碳碳素钢,冷挤压、渗碳淬硬钢。
该钢强度低,韧性、塑性和焊接性均好。
抗拉强度为253-500MPa,伸长率≥24%。
正火可促进该钢球化,细化大块状先共析铁素体,改进小于160HBS毛坯的切削性能。
该钢模具零件工艺路线为:下料→锻造模坯→退火→机械粗加工→冷挤压成型→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。
(2)供货状态及硬度未热处理态,硬度≤156HBS。
(3)标准JB/T 6057-92钢的化学成分(质量分数,%) C 0.17~0.23、Si 0.17~0.37、Mn 0.35~0.65、P≤0.035、S≤0.035、Ni≤0.30、Cr≤0.15、Cu≤0.25。
(4)参考对应钢号中国GB/JB的标准钢号是20、中国台湾CNS标准钢号S20C、德国DIN标准材料编号1.0402、德国DIN标准钢号CK22/C22、英国BS标准钢号IC22、法国AFNOR标准钢号CC20、法国NF标准钢号C22、意大利UNI标准钢号C20/C21、比利时NBN标准钢号C25-1、瑞典SS标准钢号1450、西班牙UNE标准钢号F.112、AISI/SAE标准钢号1020、日本JIS标准钢号S20C/S22C。
1Features➤Conservative and repeatable measurement of available charge in rechargeable batteries ➤Charge control output➤Designed for battery pack inte-gration-120µA typical standby current (self-discharge estimation mode)-Small size enables imple-mentations in as little as 12square inch of PCB➤Integrate within a system or as a stand-alone device-Display capacity via single-wire serial communication port or direct drive of LEDs➤Measurements compensated for current and temperature ➤Self-discharge compensation us-ing internal temperature sensor ➤16-pin narrow SOICGeneral DescriptionThe bq2012Gas Gauge IC is in-tended for battery-pack or in-system installation to maintain an accurate record of available battery charge.The IC monitors a voltage drop across a sense resistor connected in series between the negative battery terminal and ground to determine charge and discharge activity of the battery .Self-discharge of NiMH and NiCd batteries is estimated based on an internal timer and temperature pensations for battery tem-perature and rate of charge or dis-charge are applied to the charge,discharge,and self-discharge calcu-lations to provide available charge information across a wide range of operating conditions.Battery capac-ity is automatically recalibrated,or “learned,”in the course of a dis-charge cycle from full to empty .The bq2012includes a charge con-trol output that,when used with other full-charge safety termination methods,can provide a cost-effectivemeans of controlling charge based on the battery's charge state.Nominal available charge may be di-rectly indicated using a five-or six-segment LED display.These seg-ments are used to graphically indi-cate nominal available charge.The bq2012supports a simple single-line bidirectional serial link to an external processor (common ground).The bq2012outputs battery information in response to external commands over the serial link.Internal registers include available charge,temperature,capacity ,battery ID,battery status,and programming pin settings.To support subassembly testing,the outputs may also be con-trolled.The external processor may also overwrite some of the bq2012gas gauge data registers.The bq2012may operate directly from three or four cells.With the REF output and an external transis-tor,a simple,inexpensive regulator can be built to provide V CC across a greater number of cells.LCOMLED common outputSEG 1/PROG 1LED segment 1/program 1input SEG 2/PROG 2LED segment 2/program 2input SEG 3/PROG 3LED segment 3/program 3input SEG 4/PROG 4LED segment 4/program 4input SEG 5/PROG 5LED segment 5/program 5input SEG 6/PROG 6LED segment 6/program 6input1PN201201.eps16-Pin Narrow SOIC234 5678161514131211109LCOMSEG 1/PROG 1SEG 2/PROG 2SEG 3/PROG 3SEG 4/PROG 4SEG 5/PROG5SEG 6/PROG 6V SSV CC REF CHG DQ EMPTY SB DISP SRREF V oltage reference output CHG Charge control output DQ Serial communications input/outputEMPTY Empty battery indicator outputSB Battery sense input DISP Display control input SR Sense resistor input V CC 3.0–6.5V V SSSystem groundPin Connections Pin Namesbq2012Gas Gauge IC With Slow-Charge Control9/96 BPin DescriptionsLCOM LED common outputOpen-drain output switches V CC to sourcecurrent for the LEDs.The switch is off dur-ing initialization to allow reading of the softpull-up or pull-down program resistors.LCOM is also high impedance when the dis-play is off.SEG1–SEG6LED display segment outputs(dual func-tion with PROG1–PROG6)Each output may activate an LED to sink the current sourced from LCOM.PROG1–PROG2Programmed full count selection inputs (dual function with SEG1–SEG2)These three-level input pins define the pro-grammed full count(PFC)thresholds de-scribed in Table2.PROG3–PROG4Gas gauge rate selection inputs(dual function with SEG3–SEG4)These three-level input pins define the scale factor described in Table2.PROG5Self-discharge rate selection(dual func-tion with SEG5)This three-level input pin defines the selfdis-charge compensation rate shown in Table1. PROG6Display mode selection(dual function with SEG6)This three-level pin defines the display op-eration shown in Table1.CHG Charge control outputThis open-drain output becomes active lowwhen charging is allowed.Valid chargingconditions are described in the Charge Con-trol section.SR Sense resistor inputThe voltage drop(V SR)across the sense re-sistor R S is monitored and integrated overtime to interpret charge and discharge activ-ity.The SR input is tied to the high side ofthe sense resistor.V SR<V SS indicates dis-charge,and V SR>V SS indicates charge.Theeffective voltage drop(V SRO)as seen by thebq2012is V SR+V OS(see Table5).DISP Display control inputDISP high disables the LED display.DISPtied to V CC allows PROG X to connect directlyto V CC or V SS instead of through a pull-up orpull-down resistor.DISP floating allows theLED display to be active during a validcharge or during discharge if the NAC regis-ter is updated at a rate equivalent to V SRO≤-4mV.DISP low activates the display.SeeTable1.SB Secondary battery inputThis input monitors the single-cell voltagepotential through a high-impedance resis-tive divider network for end-of-dischargevoltage(EDV)thresholds,maximum chargevoltage(MCV),and battery removed.EMPTY Battery empty outputThis open-drain output becomes high-impedance on detection of a valid end-of-discharge voltage(V EDVF)and is low followingthe next application of a valid charge.DQ Serial I/O pinThis is an open-drain bidirectional pin.REF Voltage reference output for regulatorREF provides a voltage reference output foran optional micro-regulator.V CC Supply voltage inputV SS Ground2bq2012Functional DescriptionGeneral OperationThe bq2012determines battery capacity by monitoring the amount of charge input to or removed from a re-chargeable battery.The bq2012measures discharge and charge currents,estimates self-discharge,monitors the battery for low-battery voltage thresholds,and compen-sates for temperature and charge/discharge rates.The charge measurement is made by monitoring the voltage across a small-value series sense resistor between the negative battery terminal and ground.The available battery charge is determined by monitoring this voltage over time and correcting the measurement for the envi-ronmental and operating conditions.Figure1shows a typical battery pack application of the bq2012using the LED display capability as a charge-state indicator.The bq2012can be configured to display capacity in either a relative or an absolute display mode.The relative display mode uses the last measured dis-charge capacity of the battery as the battery“full”refer-ence.The absolute display mode uses the programmed full count(PFC)as the full reference,forcing each seg-ment of the display to represent a fixed amount of charge.A push-button display feature is available for momentarily enabling the LED display.The bq2012monitors the charge and discharge currents as a voltage across a sense resistor(see R S in Figure1).A filter between the negative battery terminal and theSR pin may be required if the rate of change of the bat-tery current is too great.3bq2012Figure 1. Battery Pack Application Diagram—LED DisplayVoltage ThresholdsIn conjunction with monitoring V SR for charge/discharge currents,the bq2012monitors the single-cell battery po-tential through the SB pin.The single-cell voltage po-tential is determined through a resistor/divider network per the following equation:RB RB N 121=−where N is the number of cells,RB 1is connected to the positive battery terminal,and RB 2is connected to the negative battery terminal.The single-cell battery volt-age is monitored for the end-of-discharge voltage (EDV)and for maximum cell voltage (MCV).EDV threshold levels are used to determine when the battery has reached an “empty”state,and the MCV threshold is used for fault detection during charging.Two EDV thresholds for the bq2012are fixed at:EDV1(early warning)=1.05V EDVF (empty)=0.95VIf V SB is below either of the two EDV thresholds,the as-sociated flag is latched and remains latched,independ-ent of V SB ,until the next valid charge.During discharge and charge,the bq2012monitors V SR for various thresholds.These thresholds are used to compensate the charge and discharge rates.Refer to the count compensation section for details.EDV monitoring is disabled if V SR ≤-250mV typical andresumes sec-ond after V SR >-250mV .EMPTY OutputThe EMPTY output switches to high impedance when V SB <V EDF and remains latched until a valid charge oc-curs.The bq2012also monitors V SB relative to V MCV ,2.25V .V SB falling from above V MCV resets the device.ResetThe bq2012recognizes a valid battery whenever V SB is greater than 0.1V typical.V SB rising from below 0.25V or falling from above 2.25V resets the device.Reset can also be accomplished with a command over the serial port as described in the Register Reset section.TemperatureThe bq2012internally determines the temperature in 10°C steps centered from -35°C to +85°C.The tempera-ture steps are used to adapt charge and discharge rate compensations,self-discharge counting,and available charge display translation.The temperature range isavailable over the serial port in 10°C increments as shown below:Layout ConsiderationsThe bq2012measures the voltage differential between the SR and V SS pins.V OS (the offset voltage at the SR pin)is greatly affected by PC board layout.For optimal results,the PC board layout should follow the strict rule of a single-point ground return.Sharing high-current ground with small signal ground causes undesirable noise on the small signal nodes.Additionally:IThe capacitors (SB and V CC ) should be placed asclose as possible to the SB and V CC pins, respectively,and their paths to V SS should be as short as possible.A high-quality ceramic capacitor of 0.1µf is recommended for V CC .IThe sense resistor (R S ) should be as close as possible to the bq2012.IThe R-C on the SR pin should be located as close as possible to the SR pin. The maximum R should not exceed 100K.4bq2012TMPGG (hex)Temperature Range0x < -30°C 1x -30°C to -20°C 2x -20°C to -10°C 3x -10°C to 0°C 4x 0°C to 10°C 5x 10°C to 20°C 6x 20°C to 30°C 7x 30°C to 40°C 8x 40°C to 50°C 9x 50°C to 60°C Ax 60°C to 70°C Bx 70°C to 80°C Cx> 80°CGas Gauge OperationThe operational overview diagram in Figure2illustrates the operation of the bq2012.The bq2012accumulates a measure of charge and discharge currents,as well as an estimation of self-discharge.Charge and discharge cur-rents are temperature and rate compensated,whereas self-discharge is only temperature compensated.The main counter,Nominal Available Charge(NAC), represents the available battery capacity at any given time.Battery charging increments the NAC register, while battery discharging and self-discharge decrement the NAC register and increment the DCR(Discharge Count Register).The Discharge Count Register(DCR)is used to update the Last Measured Discharge(LMD)register only if a complete battery discharge from full to empty occurs without any partial battery charges.Therefore,the bq2012adapts its capacity determination based on the actual conditions of discharge.The battery’s initial capacity is equal to the programmed full count(PFC)shown in Table2.Until LMD is up-dated,NAC counts up to but not beyond this threshold during subsequent charges.This approach allows the gas gauge to be charger-independent and compatible with any type of charge regime.st Measured Discharge(LMD)or learnedbattery capacity:LMD is the last measured discharge capacity of thebattery.On initialization(application of V CC or bat-tery replacement),LMD=PFC.During subsequentdischarges,the LMD is updated with the latestmeasured capacity in the Discharge Count Register(DCR)representing a discharge from full to belowEDV1.A qualified discharge is necessary for a ca-pacity transfer from the DCR to the LMD register.The LMD also serves as the100%reference thresh-old used by the relative display mode.2.Programmed Full Count(PFC)or initial bat-tery capacity:The initial LMD and gas gauge rate values are pro-grammed by using PROG1–PROG4.The PFC alsoprovides the100%reference for the absolute dis-play mode.The bq2012is configured for a given ap-plication by selecting a PFC value from Table2.The correct PFC may be determined by multiplyingthe rated battery capacity in mAh by the sense re-sistor value:Battery capacity (mAh)*sense resistor (Ω) =PFC (mVh)Selecting a PFC slightly less than the rated capac-ity for absolute mode provides capacity above thefull reference for much of the battery’s life.5bq2012Figure 2. Operational OverviewExample:Selecting a PFC Value Given:Sense resistor =0.1ΩNumber of cells =6Capacity =2200mAh,NiCd battery Current range =50mA to 2A Absolute display mode Serial port only Self-discharge=Voltage drop resistor =5mV to 200mV Therefore:2200mAh *0.1Ω=220mVhSelect:PFC =33792counts or 211mVh PROG 1=float PROG 2=float PROG 3=float PROG 4=low PROG 5=float PROG 6=floatThe initial full battery capacity is 211mVh (2110mAh)until the bq2012“learns”a new capac-ity with a qualified discharge from full to EDV1.6bq2012PROG x ProgrammedFull Count (PFC)PROG 4= L PROG 4= ZUnits 12PROG 3= HPROG 3= Z PROG 3= L PROG 3= H PROG 3= ZPROG 3= L ---Scale =1/80Scale =1/160Scale =1/320Scale =1/640Scale =1/1280Scale =1/2560mVh/count H H 4915261430715476.838.419.2mVh H Z 4505656328214170.435.217.6mVh H L 4096051225612864.032.016.0mVh Z H 3686446123011557.628.814.4mVh Z Z 3379242221110653.026.413.2mVh Z L 3072038419296.048.024.012.0mVh L H 2764834617386.443.221.610.8mVh L Z 2560032016080.040.020.010.0mVh LL2252828214170.435.217.68.8mVh V SR is equivalent to 2counts/sec.(nom.)904522.511.255.562.8mVTable 2. bq2012 Programmed Full Count mVh SelectionsNote:PROG 5and PROG 6states are independent.Table 1. bq2012 Programming3.Nominal Available Charge(NAC):NAC counts up during charge to a maximum value of LMD and down during discharge and self-discharge to0.NAC is reset to0on initializa-tion(PROG6=Z or low)and on reaching EDV1.NAC is set to PFC on initialization if PROG6=high.To prevent overstatement of charge during periods of overcharge,NAC stops incrementing when NAC= LMD.4.Discharge Count Register(DCR):The DCR counts up during discharge independent of NAC and could continue increasing after NAC has decremented to0.DCR stops counting when EDV1is reached.Prior to NAC=0(empty battery), both discharge and self-discharge increment the DCR.After NAC=0,only discharge increments the DCR.The DCR resets to0when NAC=LMD.The DCR does not roll over but stops counting when it reaches FFFFh.The DCR value becomes the new LMD value on the first charge after a valid discharge to V EDV1if:No valid charge initiations(charges greater than 256NAC counts;where V SRO>V SRQ)occurred dur-ing the period between NAC=LMD and EDV1de-tected.The self-discharge count is not more than4096 counts(8%to18%of PFC,specific percentage threshold determined by PFC).The temperature is≥0°C when the EDV1level is reached during discharge.The valid discharge flag(VDQ)indicates whether the present discharge is valid for LMD update. Charge CountingCharge activity is detected based on a positive voltage on the V SR input.If charge activity is detected,the bq2012increments NAC at a rate proportional to V SRO (V SR+V OS)and,if enabled,activates the LED display if the rate is equivalent to V SRO>4mV.Charge actions in-crement the NAC after compensation for charge rate and temperature.The bq2012determines charge activity sustained at a continuous rate equivalent to V SRO>V SRQ.A valid charge equates to sustained charge activity greater than 256NAC counts.Once a valid charge is detected,charge counting continues until V SRO falls below V SRQ.V SRQ is a programmable threshold as described in the Digital Magnitude Filter section.The default value for V SRQ is 375µV.Charge ControlCharge control is provided by the CHG output.This output is asserted continuously when:NAC<0.94*LMD and0.95V<V SB<2.25V and0°C<Temp<50°C andBRM=0This output is asserted atduty cycle(low for0.5sec and high for7.5sec)when above conditions are not met and:NAC<LMD and0.95V<V SB<2.25V andTemp<50°C andBRM=0This output is also asserted atduty cycle(low for0.5sec and high for7.5sec)for a period after:NAC=LMD andTemp<50°C and0.95V<V SB<2.25V andBRM=0This output is inactive when:NAC=LMD(after a2-hour top-off period)orTemp>50°C orV SB<0.95V orV SB>2.25V orBRM=1The top-off timer(2hours)is reset to allow another top-off after the battery is discharged to0.8*LMD(PROG6 =L)or0.8*PFC(PROG6=Z or H).Caution:The charge control output should be used with other forms of charge termination such as∆T/∆t and-∆V.If charge terminates due to maximum temperature,the battery temperature must fall typically10°C below50°C before the charge output becomes active again. Discharge CountingAll discharge counts where V SRO<V SRD cause the NAC register to decrement and the DCR to increment.Ex-ceeding the fast discharge threshold(FDQ)if the rate is equivalent to V SRO<-4mV activates the display,if en-abled.The display becomes inactive after V SRO rises above-4mV.V SRD is a programmable threshold as described in the Digital Magnitude Filter section.The default value for V SRD is-300µV.7bq2012Self-Discharge EstimationThe bq2012continuously decrements NAC and increments DCR for self-discharge based on time and temperature.The self-discharge count rate is programmed to be a nomi-nal *NACor *NAC per day or disabled as selected by 5.the rate for a battery whose tempera-ture is between 20°–30°C.The NAC register cannot be decremented below 0.Count CompensationsThe bq2012determines fast charge when the NAC up-dates at a rate of ≥2counts/sec.Charge and discharge are compensated for temperature and charge/discharge rate before updating the NAC and/or DCR.Self-dis-charge estimation is compensated for temperature be-fore updating the NAC or DCR.Charge CompensationTwo charge efficiency compensation factors are used for trickle charge and fast charge.Fast charge is defined as a rate of charge resulting in ≥2NAC counts/sec (≥0.15C to 0.32C depending on PFC selections;see Table 2).The compensation defaults to the fast charge factor until the actual charge rate is determined.Temperature adapts the charge rate compensation factors over three ranges between nominal,warm,and hot tem-peratures.The compensation factors are shown below .Discharge CompensationCorrections for the rate of discharge are made by adjusting an internal discharge compensation factor.The discharge factor is based on the dynamically measured V SR .The compensation factors during discharge are:Temperature compensation during discharge also takes place.At lower temperatures,the compensation factor increases by 0.05for each 10°C temperature range below 10°C.Compensation factor = 1.0 + (0.05*N)Where N =Number of 10°C steps below 10°C and -150mV <V SR <0.For example:T >10°C :Nominal compensation,N =00°C <T <10°C:N =1(i.e.,1.0becomes 1.05)-10°C <T <0°C:N =2(i.e.,1.0becomes 1.10)-20°C <T <-10°C:N =3(i.e.,1.0becomes 1.15)-20°C <T <-30°C:N =4(i.e.,1.0becomes 1.20)Self-Discharge CompensationThe self-discharge compensation is programmed for a nominal rateof *NACor *NAC per day .This is the rate for a 20–30°C temperature range (TMPGG =6x).This rate varies across 8ranges from <10°C to >70°C,doubling with each higher tem-perature step (10°C).See Table 3.Digital Magnitude FilterThe bq2012has a programmable digital filter to eliminate charge and discharge counting below a set threshold.The de-fault setting is -0.30mV for V SRD and +0.38mV for V SRQ .The proper digital filter setting can be calculated using the following equation.Table 4shows typical digital filter settings.V SRD (mV) = -45 / DMF V SRQ (mV) = -1.25*V SRD8bq2012Table 3. Self-Discharge CompensationCharge TemperatureTrickle Charge CompensationFast Charge Compensation<30°C 0.800.9530–40°C 0.750.90> 40°C0.650.80Approximate V SR Threshold Discharge CompensationFactorEfficiency V SR > -150 mV 1.00100%V SR < -150 mV1.0595%DMF DMF Hex.V SRD (mV)V SRQ (mV)754B -0.600.7510064-0.450.56150 (default)96-0.300.38175AF -0.260.32200C8-0.230.28Table 4. Typical Digital Filter SettingsError SummaryCapacity InaccurateThe LMD is susceptible to error on initialization or if no updates occur.On initialization,the LMD value in-cludes the error between the programmed full capacity and the actual capacity.This error is present until a valid discharge occurs and LMD is updated(see DCR de-scription).The other cause of LMD error is battery wear-out.As the battery ages,the measured capacity must be adjusted to account for changes in actual battery capacity.A Capacity Inaccurate counter(CPI)is maintained and incremented each time a valid charge occurs(qualified by NAC;see the CPI register description)and is reset whenever LMD is updated from the DCR.The counter does not wrap around but stops counting at255.The ca-pacity inaccurate flag(CI)is set if LMD has not been up-dated following64valid charges.Current-Sensing ErrorTable5illustrates the current-sensing error as a func-tion of V SR.A digital filter eliminates charge and dis-charge counts to the NAC register when V SRO(V SR+ V OS)is between V SRQ and V SRD. Communicating With the bq2012The bq2012includes a simple single-pin(DQ plus re-turn)serial data interface.A host processor uses the in-terface to access various bq2012registers.Battery char-acteristics may be easily monitored by adding a single contact to the battery pack.The open-drain DQ pin on the bq2012should be pulled up by the host system,or may be left floating if the serial interface is not used.The interface uses a command-based protocol,where the host processor sends a command byte to the bq2012. The command directs the bq2012to either store the next eight bits of data received to a register specified by the command byte or output the eight bits of data specified by the command byte.The communication protocol is asynchronous mand and data bytes consist of a stream of eight bits that have a maximum transmission rate of333 bits/sec.The least-significant bit of a command or data byte is transmitted first.The protocol is simple enough that it can be implemented by most host processors using either polled or interrupt processing.Data input from the bq2012may be sampled using the pulse-width capture timers available on some microcontrollers.Communication is normally initiated by the host proces-sor sending a BREAK command to the bq2012.A BREAK is detected when the DQ pin is driven to a logic-low state for a time,t B or greater.The DQ pin should then be returned to its normal ready-high logic state for a time,t BR.The bq2012is now ready to receivea command from the host processor.The return-to-one data bit frame consists of three dis-tinct sections.The first section is used to start the transmission by either the host or the bq2012taking the DQ pin to a logic-low state for a period,t STRH,B.The next section is the actual data transmission,where the data should be valid by a period,t DSU,after the negative edge used to start communication.The data should be held for a period,t DV,to allow the host or bq2012to sample the data bit.The final section is used to stop the transmission by return-ing the DQ pin to a logic-high state by at least a period, t SSU,after the negative edge used to start communication.The final logic-high state should be held until a period,t SV,to allow time to ensure that the bit transmission was stopped properly.The timings for data and break communication are given in the serial communication timing specification and illustration sections.Communication with the bq2012is always performed with the least-significant bit being transmitted first.Figure3shows an example of a communication se-quence to read the bq2012NAC register.bq2012 RegistersThe bq2012command and status registers are listed in Table6and described in the following sections.9bq2012Symbol Parameter Typical Maximum Units NotesINL Integrated non-linearityerror±2±4%Add 0.1% per °C above or below 25°Cand 1% per volt above or below 4.25V.INR Integrated non-repeatability error±1±2%Measurement repeatability givensimilar operating conditions.Table 5. Current-Sensing Error as a Function of V SRbq2012Symbol RegisterNameLoc.(hex)Read/WriteControl Field7(MSB)6543210(LSB)CMDR Commandregister00h Write W/R AD6AD5AD4AD3AD2AD1AD0FLGS1Primarystatus flagsregister01h Read CHGS BRP BRM CI VDQ CHG EDV1EDVFTMPGG Temperatureand gas gaugeregister02h Read TMP3TMP2TMP1TMP0GG3GG2GG1GG0NACH Nominalavailablecharge highbyte register03h R/W NACH7NACH6NACH5NACH4NACH3NACH2NACH1NACH0NACL Nominalavailablecharge lowbyte register17h Read NACL7NACL6NACL5NACL4NACL3NACL2NACL1NACL0BATID Batteryidentificationregister04h R/W BATID7BATID6BATID5BATID4BATID3BATID2BATID1BATID0LMD Last meas-ured dis-charge regis-ter05h R/W LMD7LMD6LMD5LMD4LMD3LMD2LMD1LMD0FLGS2Secondarystatus flagsregister06h Read CR DR2DR1DR0n/u n/u n/u OVLDPPD Program pinpull-downregister07h Read n/u n/u PPD6PPD5PPD4PPD3PPD2PPD1PPU Program pinpull-up regis-ter08h Read n/u n/u PPU6PPU5PPU4PPU3PPU2PPU1CPI Capacityinaccuratecount register09h Read CPI7CPI6CPI5CPI4CPI3CPI2CPI1CPI0DMF Digital mag-nitude filterregister0ah R/W DMF7DMF6DMF5DMF4DMF3DMF2DMF1DMF0RST Reset register39h Write RST0000000 Note:n/u = not usedTable 6. bq2012 Command and Status Registers10Command Register(CMDR)The write-only CMDR register is accessed when eight valid command bits have been received by the bq2012. The CMDR register contains two fields:I W/R bitI Command addressThe W/R bit of the command register is used to select whether the received command is for a read or a write function.The W/R values are:Where is:0The bq2012 outputs the requested registercontents specified by the address portion ofCMDR.1The following eight bits should be writtento the register specified by the address por-tion of CMDR.The lower seven-bit field of CMDR contains the address portion of the register to be accessed.Attempts to write to invalid addresses are ignored.Primary Status Flags Register(FLGS1)The read-only FLGS1register(address=01h)contains the primary bq2012flags.The charge status flag(CHGS)is asserted when a valid charge rate is detected.Charge rate is deemed valid when V SRO>V SRQ.A V SRO of less than V SRQ or discharge activity clears CHGS.The CHGS values are:Where CHGS is:0Either discharge activity detected or V SRO<V SRQ1V SRO>V SRQThe battery replaced flag(BRP)is asserted whenever the potential on the SB pin(relative to V SS),V SB,falls from above the maximum cell voltage,MCV(2.25V),or rises above0.1V.The BRP flag is also set when the bq2012is reset(see the RST register description).BRP is reset when either a valid charge action increments NAC to be equal to LMD,or a valid charge action is de-tected after the EDV1flag is asserted.BRP=1signifies that the device has been reset.The BRP values are:Where BRP is:0Battery is charged until NAC=LMD or dis-charged until the EDV1 flag is asserted1V SB dropping from above MCV,V SB risingfrom below 0.1V,or a serial port initiatedreset has occurred11bq2012FLGS1 Bits76543210 CHGS-------FLGS1 Bits76543210-BRP------CMDR Bits76543210-AD6AD5AD4AD3AD2AD1AD0 (LSB)CMDR Bits76543210 W/R-------TD201201.epsDQ Break000000101001Written by Host to bq2012CMDR = 03hReceived by Host to bq2012NAC = 65hLSB MSB LSB MSB1110Figure 3. Typical Communication With the bq2012。
专利名称:低碳微合金化贝氏体铁素体钢及其制造方法专利类型:发明专利
发明人:张爱文,江来珠,华蔚,付金华,王汉忠
申请号:CN01113108.X
申请日:20010626
公开号:CN1330166A
公开日:
20020109
专利内容由知识产权出版社提供
摘要:本发明涉及一种低碳微合金化贝氏体铁素体钢及其制造方法。
该钢按重量百分计组分配比为:C0.05~0.08%,Si0.20~0.80%,Mn2.0~3.0%,Cr0.5~1.0%,Ti0.01~0.05%,N0.01~
0.02%,B0.0005~0.0050%,余量为Fe。
该钢是在氧气顶吹转炉或电炉中冶炼,钢锭坯经1180~1220℃加热,1150℃±50℃开轧或开锻,900℃±20℃终轧或终锻,压缩比为4~10,控制其冷速为0.1~1℃/S。
本发明提供的这种钢为低碳微合金化非调质钢,无需调质处理而能保证大截面钢材表面至心部的组织均为贝氏体铁素体,具有高强度、高韧性和高抗疲劳性的良好性能,适于制造汽车前轴及连杆等构件。
其制造工艺大为简化,节约能源,减少环境污染,降低生产周期和制造成本。
申请人:宝山钢铁股份有限公司
地址:201900 上海市宝山区富锦路果园
国籍:CN
代理机构:上海英特专利事务所
代理人:何文欣
更多信息请下载全文后查看。
astm hc276执行标准
ASTM HC276 是一种镍基合金,执行标准是ASTM B625,也称
为Inconel 625。
ASTM B625 是美国材料与试验协会(ASTM)制定的关于镍基合金板材、带材和薄板的标准规范。
该标准规定了Inconel 625 合金的化学成分、机械性能、物理性能、制造工艺和检验方法等方面的要求。
Inconel 625 合金具有优异的耐腐蚀性、高温强度和良好的可加工性,被广泛应用于航空航天、石油化工、海洋工程、核能等领域。
在执行ASTM B625 标准时,需要按照标准规定的要求进行材料的选择、制造、检验和测试,以确保材料的质量和性能符合要求。
同时,也需要注意标准的更新和修订,及时了解和应用最新的标准要求。
原材料标准附录⼀:原材料化学成分及机械性能1、CuNi2Si的化学成份符合DIN 17666CuNi2Si的机械性能符合EN 121632、不锈钢0Cr18Ni9,化学成份、机械性能符合GB/T1220-1992《不锈耐酸钢技术条件》规定:3、不锈钢1Cr18Ni9,化学成份、机械性能符合GB/T1220-1992《不锈耐酸钢技术条件》规定:4、T2的化学成分、机械性能5、 Q235A,化学成份、机械性能符合GB/T700-1988《普通碳素结构钢技术条件》规定:6、铸造碳钢ZG270-500,化学成份、机械性能符合GB/T11352-1989《⼀般⼯程⽤铸造碳钢》的规定:7、不锈钢螺栓、螺柱、螺钉的机械性能(依据GB/T3098.6)8、不锈钢螺母的机械性能(依据GB/T3098.15)9、锌锭化学成份符合GB/T470-1997《锌分类及技术条件》规定,牌号不低于2号锌:10、优质碳素结构钢10#:化学成份、机械性能符合GB/T699-1999《优质碳素结构钢技术条件》的规定:11、铝合⾦6082:化学成份符合GB/T3190-1996的规定,机械性能符合GB/T5237-2000的规定:12、优质碳素结构钢20#,化学成份、机械性能符合GB/T699-1999《优质碳素结构钢技术条件》的规定:13、QAl9-4:化学成份符合GB5233-85《加⼯青铜-化学成分和产品形状》的规定,机械性能符合GB4429-84《铝青铜棒》的规定:14、牌号为QSn4-0.3的铜合⾦:其化学成分符合GB/T5233-1985《加⼯青铜的化学成分》的规定,机械性能符合GB/T4429-84的规定:15、ZL114A,化学成份、机械性能符合GB/T1173-1986的规定:16、铝合⾦型材AlSi1MgMn-T6的化学成份符合EN AW-6082铝合⾦型材AlSi1MgMn-T6的机械性能符合EN AW-608217、铸造铝合⾦GK-AlSi7Mg0.3-T6的化学成份符合EN1706-1998铸造铝合⾦GK-AlSi7Mg0.3-T6的机械性能符合EN1706-1998。
稀土元素取代对Ti0.26Zr0.07V0.24Mn0.1Ni0.33贮氢合金结构和电化学性能的影响郭欣;李书存;王丽;李焱薇【期刊名称】《无机化学学报》【年(卷),期】2014(030)009【摘要】研究了5种稀土元素部分取代V对Ti0.6Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响.结果表明,Ti0.26Zr0.07V0.24 Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33REx (x=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14 Laves相组成.在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大.稀土元素部分取代V均改善了合金电极的活化性能.La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性.Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能.合金电极在高温状态下表现出了良好的放电性能,其中Nd在333 K时放电容量可达550.4 mAh· g-1.稀土元素对荷电保持率的影响各异.【总页数】6页(P2019-2024)【作者】郭欣;李书存;王丽;李焱薇【作者单位】燕山大学环境与化学工程学院,秦皇岛066004;燕山大学环境与化学工程学院,秦皇岛066004;燕山大学亚稳材料制备技术与科学实验室,秦皇岛066004;燕山大学环境与化学工程学院,秦皇岛066004;燕山大学环境与化学工程学院,秦皇岛066004【正文语种】中文【中图分类】O613.8+1;TG139+.7【相关文献】部分取代Ml混合稀土贮氢合金的电化学性能 [J], 赵东江;马松艳2.稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33贮氢合金微观结构和电化学性能的影响 [J], 李书存;赵敏寿;刘研;焦体峰3.硼的添加对Ti0.26Zr0.07V0.24Mn0.1Ni0.33贮氢合金结构和电化学性能的影响[J], 李书存;赵敏寿;焦体峰4.Al元素对ML(NiCoMnAlFe)5.5贮氢合金微结构和电化学性能的影响 [J], 姜龙5.镧取代对镁基贮氢合金的影响及其电化学性能研究 [J], 乔林军;焦丽芳;袁华堂;冯艳;刘强;王一菁因版权原因,仅展示原文概要,查看原文内容请购买。