隧道贯通测量报告
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
贯通测量报告西安铁一院咨询监理公司重庆轨道交通三号线一期工程监理总部:我项目部承建的重庆市轨道交通三号线一期童家院子车场出入线隧道工程于2010年5月20日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请铁一院驻地监理及测量监理组进行复测,现报告如下:一、测量依据、技术标准1、国标GB50026-93《工程测量规范》;2、GB50308-2008《城市轨道交通工程测量规范》;3、CJJ8-99《城市测量规范》;4、重庆市轨道交通总公司编制的《重庆轻轨较新线一期工程施工测量技术管理规定》(试行稿)。
二、测量用仪器设备外业观测分为一组进行,平面复核测量采用徕卡TCR402、仪器标称精度2”2+2ppm;搞成采用徕卡DNA03型电子水准仪,配条形码铟钢尺,仪器精度为0.3mm/Km.三、测量洞外控制测量采用GPS导线控制,在隧道施工前已布设,施工中洞内采用精密双导线控制施工测量。
童家院子车场出入线隧道左右线分别在YK0+358.871和ZK0+358.911处与车场出入线隧道下一标段贯通。
本次贯通测量童家院子车场隧道中线出口段采用已知控制点GC1为起始边,在贯通面设一点LD1,入口段采用已知控制点GC5为起始边测量贯通点LD1,其贯通测量线路示意图如下:贯通面已知点已知点已知点测点进口端出口端已知点贯通测量示意图测量操作过程中各项指标均符合规范性标准要求。
贯通测量成果如下表所示:表1 贯通测量成果表四、结论贯通误差符合《工程测量规范》GB50026-2007、《城市轻轨交通工程测量规范》GB50308-2008的精度要求,所以隧道内的加密导线点能够满足隧道整体施工及验收规范要求。
中铁七局武汉分公司重庆轻轨项目部2010年5月20日。
隧道贯通测量报告篇一:隧道贯通测量报告(新)贯通测量报告西安铁一院咨询监理公司重庆轨道交通三号线一期工程监理总部:我项目部承建的重庆市轨道交通三号线一期童家院子车场出入线隧道工程于2010年5月20日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请铁一院驻地监理及测量监理组进行复测,现报告如下:一、测量依据、技术标准1、国标GB50026-93《工程测量规范》;2、GB50308-2008《城市轨道交通工程测量规范》;3、CJJ8-99《城市测量规范》;4、重庆市轨道交通总公司编制的《重庆轻轨较新线一期工程施工测量技术管理规定》(试行稿)。
二、测量用仪器设备外业观测分为一组进行,平面复核测量采用徕卡TCR402、仪器标称精度2”2+2ppm;搞成采用徕卡DNA03型电子水准仪,配条形码铟钢尺,仪器精度为0.3mm/Km. 三、测量洞外控制测量采用GPS导线控制,在隧道施工前已布设,施工中洞内采用精密双导线控制施工测量。
童家院子车场出入线隧道左右线分别在YK0+358.871和ZK0+358.911处与车场出入线隧道下一标段贯通。
本次贯通测量童家院子车场隧道中线出口段采用已知控制点 GC1为起始边,在贯通面设一点LD1,入口段采用已知控制点GC5为起始边测量贯通点LD1,其贯通测量线路示意图如下:测点进口端已知点已知点出口端贯通测量示意图测量操作过程中各项指标均符合规范性标准要求。
贯通测量成果如下表所示:表1 贯通测量成果表四、结论贯通误差符合《工程测量规范》GB50026-2007、《城市轻轨交通工程测量规范》GB50308-2008的精度要求,所以隧道内的加密导线点能够满足隧道整体施工及验收规范要求。
中铁七局武汉分公司重庆轻轨项目部2010年5月20日篇二:隧道贯通测量报告贾湾隧道贯通测量1、前言由于测量过程中不可避免地带有误差,因此贯通实际上总是存在偏差的。
隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;和上下的偏差,为高程贯通误差。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==隧道贯通报告篇一:隧道贯通测量报告长株潭城际铁路综合II标中铁十四局与中铁隧道局交叉贯通测量报告编制:复核:监理工程师:中铁十四局集团长株潭城际铁路综合II标项目经理部一工区二○一四年八月十二日一、交叉贯通测量目的为保证施工测量的准确性,保证中铁十四局树木岭隧道杨家山盾构进口段明挖段与中铁隧道局的精确贯通,我中铁十四局和中铁隧道局的测量人员在监理工程师的监督下,共同完成了隧道的贯通测量工作。
二、技术依据本次贯通测量采用以下有关测量规范进行施测。
3.1《铁路工程测量规范》(TB10101-201X);3.2《改建铁路工程测量规范》(TB10105-201X);3.3《地下铁道、轻轨交通工程规范》(GB50308-1999);3.4《城市测量规范》(GJJ8-99);3.5《新建铁路工程测量技术规范》(TB10101-99);3.6《工程测量规范》(GB50026-93);3.7 201X年导线复测成果三、仪器设备中铁十四局:瑞士莱卡TM30(1”)全站仪,中铁隧道局:瑞士莱卡TS02全站仪,本次测量所采用的仪器设备均经过有效检定。
四、交叉贯通测量的过程与方法1.平面测量的过程与方法中铁十四局:在CPII064架设全站仪,后视GCPII063并检查CPII065,用极坐标法放出转点JM22,通过JM22放出左线DK1+440处中桩和右线YDK1+439.736处中桩,打桩固定,并记录。
中铁隧道局:在CPII065架设全站仪,后视GCPII066并检查CPII064,用极坐标法放出转点JM22,通过JM22检核中铁十四局放出的左线DK1+440处中桩和右线YDK1+439.736处中桩,并记录。
五、贯通成果精度中铁十四局和中铁隧道局贯通面贯通偏差成果如下:1、贯通里程:DK1+440 YDK1+439.7362、理论坐标DK1+440:X=3118969.888; Y=500775.046YDK1+439.736: X=3118970.612; Y=500768.1343、左线DK1+440纵向贯通误差:-11mm,横向贯通误差:7.7mm,竖向贯通误差:-6.2mm3、右线DK1+439.736纵向贯通误差:-7.2mm,横向贯通误差:3.3mm,竖向贯通误差:-4.3mm六、交叉贯通误差的调整与分配方案:本次交叉贯通测量由中铁十四局和中铁隧道局双方测量及相关技术人员现场共同实测,并有监理工程师现场旁站监督共同完成。
隧道贯通误差测量报告1、前言由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。
隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。
2、编制依据(1) 《工程测量规范》(GB50026-2007(2) 《国家三、四等水准测量规范》(GB/T12897-2006)(3) 《公路隧道施工技术规范》(JTG F60-2009)3、工程概况标段内隧道共1座,为隧道,该隧道设计为分离式隧道。
隧道桩号范围为左线LK79+874 LK80+515路线总长为639m 右线RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V级,洞身段为V级、W级、皿级,设置人行横洞1处。
双向四车道高速公路,隧道设计速度:80km/h。
4、贯通误差测量实测方案及误差规定(1)贯通误差测量实测方案隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据隧道左右洞进出口导线布设情况:左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即点GD006 1;右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即点GD006 2分别将GD006 1和GD006 GD006 2和GD006勺坐标、高程投影至线路中线及其垂直方向上,所得差值即为隧道纵向和横向误差,测得两组高程之差即为竖向贯通误差。
(2)误差规定隧道贯通误差根据《工程测量规范》(GB50026-2007规定乩6. 2隧道工程的硼工中线在贯通面上的贯画吴差’不应大于表8. 6. 2 W.«8.az |g道工程贯通限差注;作业时,可櫃18隧勇期工方法和随道用輦的不站肖贾通请菱的调整不会显著馬响Bi诡中线几何形狀和工程性獻1,躺向駅限差可适胡宽IF•曲.8,6, 3检宜控制测量隧道控量对贯诵中的影响值,不应大于表8. 6. 3的规定.* 8^3制测量对贯通申误羞辦ffl的限值5、贯通误差测量实测数据左洞进口导线实测数据右洞进口导线实测数据详细数据见附表1、26、贯通测量实测数据分析根据实测数据及:左洞:横向贯通误差为:8.0mm < 45mm高程贯通误差为:5.2mm < 25mm右洞:横向贯通误差为:0.0mm < 45mm高程贯通误差为:4.8mm < 25mm以上实测数据计算值与限差值对比得知,隧道左右洞横向贯通误差及高程贯通误差没有超过限差。
隧道贯通段测量内容隧道贯通段测量的主要内容有:1.进行贯通测量设计:这是确保隧洞准确贯通的技术基础,相向或单向掘进均宜事先做好贯通测量技术设计,并按设计进行作业。
2.建立洞外平面和高程控制:这是隧道贯通测量中的重要环节,通过建立洞外控制网,可以对隧道内的施工进行准确的定位和测量。
3.进行施工放样:在隧道内进行施工放样,标出拱顶、边墙和起拱线位置,立模后检测。
4.测绘洞室开挖和衬砌断面:通过测绘洞室开挖和衬砌断面,可以计算开挖、填筑工程量及进行竣工验收。
5.计算开挖、填筑工程量及进行竣工验收:这是隧道贯通测量的最后环节,通过对开挖、填筑工程量的计算和竣工验收,可以确保隧道施工符合设计要求,达到预期的贯通效果。
隧道贯通段测量的主要内容是围绕确保隧洞准确贯通的目标进行的,通过建立洞外平面和高程控制、进行施工放样、测绘洞室开挖和衬砌断面、计算开挖、填筑工程量及进行竣工验收等一系列步骤,最终实现隧道的准确贯通。
隧道贯通段测量的意义在于:1.保证隧道施工的准确性和精度,确保隧道的质量和安全。
2.通过获取实际的贯通误差值,可以作为下一步调整施工中线的依据,以获得一条调整后的隧道中线,作为扩大断面、衬砌以及在铁路隧道中铺设铁轨的依据。
3.可加快施工进度,改善通风状况与劳动条件,有利于矿井开采与掘进的平衡接续,加快矿井建设。
隧道贯通段测量在确保隧道准确贯通、提高施工效率、保障施工安全等方面都具有重要的意义。
隧道贯通测量的原理主要是通过测量隧道两端的控制点坐标和方位角,计算出两端之间的距离和方位差。
具体步骤如下:1.在隧道两端各设置一个控制点,并准确测量控制点的初始坐标和方位角。
2.使用全站仪等测量仪器测量控制点,并记录测量数据。
3.在隧道贯通后,再次测量两端的控制点,并记录测量数据。
4.通过比较两次测量数据,可以得出贯通误差值,以此调整施工中的误差。
贯通测量的目的是保证隧道施工的准确性和精度,确保隧道的质量和安全。
从莞高速公路东莞段(含清溪支线)工程第9合同段施工测量报告山东省公路建设(集团)有限公司从莞高速公路东莞段施工第九合同段项目经理部2012年2月5日一、工程概况二、测量依据三、准备工作四、测量总体组织五、测量控制内容六、隧道衬砌位置的施工控制七、导线点、水准点实施控制八、隧道贯通误差的测定与调整九、监控量测十、2011年度测量工作小结一. 概况•走马岗隧道为施工第9合同段的施工项目,起止桩号为YK21+170~YK24+305,路线长度为3135.0m,本隧道沿线地形为山岭重丘区,地形陡峻,沿线林木较多,路线主要经走马岗、下跨东深供水隧道。
•由于隧道两端间山高林密,平面与高程控制用全站仪与水准仪连接加密难度大,为保证隧道两端顺利连接,我项目部聘请广州地质测绘院专业测量队在洞口处测设一级GPS 点及拟合高程。
二. 测量依据•(1)《公路工程质量检验评定标准》(JTGF81-2004);•(2)《公路路基施工技术规范》(JTG F10-2006);•(3)《公路桥涵施工设计规范》(JTJ 041-2000);•(4)《公路工程施工安全技术规程》(JTJ 076—95);•(5)《公路隧道施工技术规范》(JTG F60-2009)。
•(6)《工程测量规范》(GB50026-2007)。
三. 准备工作•(1)中标进场后,根据设计单位交桩的导线点和水准点,立即组织测量人员用全站仪和高精度自动安平水准仪进行导线点(一级)和水准点复测,水准点测量采用三等标准测量。
根据需要对导线点和水准点进行了加密,建立隧道施工导线和水准控制网。
测量成果资料上报监理工程师审核签认后,已可使用。
•(2)测量队对所有测量进行记录并整理所有资料,测量记录以及成果资料及时提交监理工程师审查后签字认可,作为原始资料记录,统一归到项目经理部内业资料组进行归档,工程竣工后作为竣工资料归业主所有。
四测量总体组织•(1)测量人员组织•项目部以总工为总负责人,测量工程师为负责人,成立现场测量小组管理模式。
《工程测量学》实习报告隧道贯通误差计算2011 年 4 月24 日1 基本要求------------------------------------------------------------------------------------- 32 实习目的-------------------------------------------------------------------------------------3 3平面网的模拟计算与分析(COSA)---------------------------------------- 34 控制网的优化设计-------------------------------------------------------------- 45 总结--------------------------------------------------------------------------------- 51实习任务分别采用COSA系列软件和自研发软件进行平面网平差和贯通误差计算,熟悉COSA软件的使用并与自研发软件对比。
2 实习目标1) 对比进出口点与不同定向组合的横、纵向贯通误差,分析导致贯通误差最小的组合及其意义2) 分别用两个软件进行平差和贯通误差计算,对比所得结果,分别分析其相对中误差,最弱点及最弱边精度,隧道贯通误差估算结果的差异。
3 平面网平差与隧道贯通误差计算(COSA)3.1观测方案文件:人工生成简化的观测方案文件“网名.FA2”(只含一组精度),单击“生成初始观测方案文件”菜单项。
平面网观测方案文件结构:第1行(观测精度指标部分):方向中误差,边长固定误差(mm),比例误差(ppm)第2行到第K行(控制点坐标部分):点名,点类型(0-已知点,1-未知点),X坐标,Y坐标…,……,……,……第K+1行(已知方位角部分,有已知方位角值时才有此行):测站点,照准点,A,方位角值从第K+2行起(观测方案部分):测站点点号L(代表方向):照准点点号1,....., 照准点点号n(按顺时针方向排序)S(代表边长): 照准点点号1,....., 照准点点号n(按顺时针方向排序)观测值方案文件示例(网名.FA2)0.7,1,1J,0,398.9779,377.7966J1,1,410.7532,490.5660J2,1,287.2544,386.3646J3,1,343.9037,290.1835C,1,1507.0854,400.0228C1,1,1490.7444,490.5660C2,1,1559.4496,376.2656C3,1,1464.0045,296.1208J,J1,A,84.0388JL:J1,J3,C,C3S:J1,J3,C,C3J1L:J,J2,J3,C1S:J,J2,J3,C1J2L:J1,J3,C1S:J1,J3,C1J3L:J,J1,J2,C2,C3S:J,J1,J2,C2,C3CL:C1,C2,C3,JS:C1,C2,C3,JC1L:C,C2,C3,J1,J2S:C,C2,C3,J1,J2C2L:C,C1,C3,J3S:C,C1,C3,J3C3,L:C,C1,C2,J,J3S:C,C1,C2,J,J33.2生成正态标准随机数单击“生成正态标准随机数”,将弹出一对话框,要求您输入生成随机数的相关参数,第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数。
大广南高速公路湖北黄石至通山某标段东方山隧道贯通测量误差分析某集团有限公司大广南高速公路某合同段某年某月某日东方山隧道贯通测量误差分析1、说明由于测量过程中不可避免地带有误差,因此贯通实际上总是存在偏差的。
隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,垂直于隧道中心线的左右偏差(水平面内)和上下的偏差(竖直面内)。
第一种偏差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有着直接影响,所以这后两种方向上的偏差又称为贯通重要方向的偏差。
贯通的容许偏差是针对重要方向而言的。
2、工程概述大广南高速公路东方山隧道位于鄂州市汀祖镇与黄石市下陆区东方山街道办。
隧道进口位于鄂州市汀祖镇上张村东方朔纪念馆北西侧山坡;隧道出口位于黄石市下陆区东方山街道办陆柏林村,设计为分离式隧道,大致由北东往南西向展布。
起终点对应里程桩号ZK165+303~ZK168+202(YK165+308~YK168+239)全长2899m(右幅2931m),进出口均采用削竹式洞门,整个隧道采用机械通风,电光照明。
3、选择贯通测量方案为了加快施工速度,改善通风状况及劳动条件,我们决定采用进、出口两个工作面相向掘进。
为了保证各掘进工作面沿着设计的方向掘进,使贯通后接合处的偏差不超过《工程测量规范》允许的限差要求,满足隧道贯通的精度,所以它的贯通测量的方案选择及误差预计都是必要的。
贯通测量方案和测量方法选用的是否合理,一方面要看它们在实地施测时是否切实可行,另一方面还要看贯通测量的精度是否能满足隧道贯通的设计容许偏差要求。
进行误差预计的目的就是帮助我们选择合理的测量方案和测量方法,做到隧道贯通心中有数,既不应由于精度不够而造成工程损失,也不盲目追求高的精度,而增加测量工作量,尤其对长大隧道的贯通有着十分重要的意义。
3.1选择贯通测量方案:3.1.1工地调查收集资料,初步确定贯通测量方案。
X 高速XX隧道贯通误差报告编制:复核:技术负责人:监理工程师:中铁X局XX高速X标项目部2013年11 月5日目录2、编制依据 -------------------------------3、工程概况 -------------------------------4、贯通误差测量 ----------------------------4.1贯通测量实际观测值的确立-------------------4.2贯通测量实测方案及误差规定-----------------4.3贯通测量实测--------------------------4.3.1贯通测量实测数据-------------------4.3.2贯通测量实测数据分析-----------------1、前言由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。
隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;由进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,由进出口端导线控制点分别测得贯通面同一点的坐标为横向贯通误差,其中纵向及工程贯通误差对隧道正确贯通一般影响不大。
目前隧道贯通误差主要分析横向贯通误差。
2、编制依据(1)《工程测量规范》(GB50026-2007(2)《国家三、四等水准测量规范》(GB/T12897-2006)(3)《公路隧道施工技术规范》(JTGF60-20093、工程概况XX隧道为双洞四车道,左、右线隧道分离式布设,左线隧道全长759m,右线隧道全长882m围岩以皿、W、V级为主,本隧道左线LK6+211~LK6+97位于半径4200m的圆曲线上,右线RK6+306~RK7+18位于半径4550m的圆曲线上。
4、贯通误差测量4.1 贯通测量实际观测值的确立根据影响隧道贯通测量误差的因素分析,XX隧道贯通测量误差预估分别从洞内、外横向、纵向及竖向因素考虑,预估其相应误差值,作为实际贯通误差的参考值。
长基岭隧道贯穿测量方案 ........................................................... 错误!未定义书签。
1.1 工程概况 ................................................................................ 错误!未定义书签。
1.1.1 工程位置及标段范围...................................................... 错误!未定义书签。
1.1.2 设计概况.......................................................................... 错误!未定义书签。
贯穿测量旳规定........................................................................ 错误!未定义书签。
左右线贯穿计划........................................................................ 错误!未定义书签。
2.1贯穿误差旳估算 ..................................................................... 错误!未定义书签。
横向贯穿误差旳估算................................................................ 错误!未定义书签。
竖向贯穿误差旳估算................................................................ 错误!未定义书签。
3.1贯穿测量方案 ......................................................................... 错误!未定义书签。
工程测量标准化作业手册(贯通测量专篇)一、标准名称工程测量标准化作业手册(贯通测量专篇) 三、适用范围适用于盾构、TBM 姿态定向测量。
四、管理内容 4.1贯通误差分配我国铁路隧道贯通误差的限值(极限误差)是根据隧道长度不同而变化的,即隧道越长限值越大。
长度区间划分相应限差的大小是根据多年的实践经验指定的,既能满足隧道贯通和限界要求,又可以达到测量精度,所以是科学的、可行的。
我国铁路隧道贯通误差限差的规定如表8.1所列,测量误差以中误差衡量,贯通误差限值规定为2倍贯通中误差。
表8.1 铁路隧道贯通误差限值从上表显示,城市轨道交通暗挖隧道长度都小于4km ,因此城市轨道交通隧道横向贯通误差的限值为100mm ,高程贯通误差限值是50mm 是可行的。
则得到《城市轨道交通工程测量规范》规定:横向贯通中误差为±50mm ,高程贯通中误差为±25mm 。
我们知道,隧道贯通测量包括地面控制测量、联系测量和地下控制测量,因此,横向贯通误差主要受上述三项测量误差影响,假设各项测量误差对贯通影响相互独立,则有1232222Q q q q m m m m =++ (8-1)式中:1q m —地面控制测量引起的横向中误差(mm );2q m —联系测量引起的横向中误差(mm );3q m —地下控制测量引起的横向中误差(mm );Q m —地下铁道隧道横向贯通中误差(mm )。
由于地面测量的条件较地下好,在分配测量误差时可在等影响原则的基础上作适当的调整,即对地面测量的精度适当提高一些,而地下控制测量的精度降低一些。
按此原则分配方案如下:1q m =±25mm ,2q m =±20mm ,3q m =±35mm代入8-1式中得:Q m =±47.4mm <±50mm 同理,高程测量误差的计算公式为:1232222H h h h m m m m =++ (8-2)式中:1h m —地面高程控制测量引起的中误差(mm );2h m —向地下传递高程测量引起的中误差(mm );3h m —地下高程控制测量的中误差(mm );H m —地下铁道隧道高程贯通中误差(mm )。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==隧道贯通报告篇一:隧道贯通测量报告长株潭城际铁路综合II标中铁十四局与中铁隧道局交叉贯通测量报告编制:复核:监理工程师:中铁十四局集团长株潭城际铁路综合II标项目经理部一工区二○一四年八月十二日一、交叉贯通测量目的为保证施工测量的准确性,保证中铁十四局树木岭隧道杨家山盾构进口段明挖段与中铁隧道局的精确贯通,我中铁十四局和中铁隧道局的测量人员在监理工程师的监督下,共同完成了隧道的贯通测量工作。
二、技术依据本次贯通测量采用以下有关测量规范进行施测。
3.1《铁路工程测量规范》(TB10101-201X);3.2《改建铁路工程测量规范》(TB10105-201X);3.3《地下铁道、轻轨交通工程规范》(GB50308-1999);3.4《城市测量规范》(GJJ8-99);3.5《新建铁路工程测量技术规范》(TB10101-99);3.6《工程测量规范》(GB50026-93);3.7 201X年导线复测成果三、仪器设备中铁十四局:瑞士莱卡TM30(1”)全站仪,中铁隧道局:瑞士莱卡TS02全站仪,本次测量所采用的仪器设备均经过有效检定。
四、交叉贯通测量的过程与方法1.平面测量的过程与方法中铁十四局:在CPII064架设全站仪,后视GCPII063并检查CPII065,用极坐标法放出转点JM22,通过JM22放出左线DK1+440处中桩和右线YDK1+439.736处中桩,打桩固定,并记录。
中铁隧道局:在CPII065架设全站仪,后视GCPII066并检查CPII064,用极坐标法放出转点JM22,通过JM22检核中铁十四局放出的左线DK1+440处中桩和右线YDK1+439.736处中桩,并记录。
五、贯通成果精度中铁十四局和中铁隧道局贯通面贯通偏差成果如下:1、贯通里程:DK1+440 YDK1+439.7362、理论坐标DK1+440:X=3118969.888; Y=500775.046YDK1+439.736: X=3118970.612; Y=500768.1343、左线DK1+440纵向贯通误差:-11mm,横向贯通误差:7.7mm,竖向贯通误差:-6.2mm3、右线DK1+439.736纵向贯通误差:-7.2mm,横向贯通误差:3.3mm,竖向贯通误差:-4.3mm六、交叉贯通误差的调整与分配方案:本次交叉贯通测量由中铁十四局和中铁隧道局双方测量及相关技术人员现场共同实测,并有监理工程师现场旁站监督共同完成。
工程测量学课程设计报告-隧道贯通测量技术设计院系:建筑工程学院专业:测绘工程地点:测绘专业课程设计教室班级:测绘B091姓名:学号:教师:成绩:评语:2012 年 7月 9 日至 2012 年 7月15 日目录一、工程概况 ----------------------------------------41-1、测区地质和测区概况--------------------------------------------4 1-2、工程任务------------------------------------------------------5 1-3、测区已有成果及资料收集----------------------------------------5 1-4、测量作业依据--------------------------------------------------6二、控制网的布设-------------------------------------62-1、坐标系统的选择------------------------------------------------6 2-2、地面平面控制网------------------------------------------------6 2-3、外业测量------------------------------------------------------11 2-4、地面高程控制网------------------------------------------------12 2-5、地下隧道平面控制网--------------------------------------------13 2-6、隧道内高程控制网----------------------------------------------17三、贯通测量方案的实施-------------------------------18四、贯通误差预计-------------------------------------20 4-1、第一种方案----------------------------------------------------20 4-2、第二种方案----------------------------------------------------23 4-3、方案的精度评定------------------------------------------------25 五、组织安排------------------------------------------24六、质量与安全保障措施--------------------------------24七、经费预算-----------------------------------------25 7-1、造标费用------------------------------------------------------25 7-2、水准测量费用--------------------------------------------------25 7-3、导线测量费用--------------------------------------------------26 7-4、绘制竣工地形图------------------------------------------------26 7-5、总价----------------------------------------------------------26 八、技术总结-----------------------------------------268-1、坐标系选择-----------------------------------------------------26 8-2、地面导线部分---------------------------------------------------26九、体会---------------------------------------------26一、工程概况1-1、测区地质和气候概况1-1-1、测区的地质概况测区涉及门头沟区大台街道和房山区大安山乡。
隧道贯通测量实习报告隧道贯通测量实习报告新建合福铁路安徽段站前四标闻家山隧道贯通测量报告1、前言隧道贯通面接合处的偏差可以分解为空间的三个方向,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;还有高程贯通误差。
纵向贯通误差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有直接影响。
2、工程概述新建合福铁路安徽段站前四标的闻家山隧道,位于安徽省铜陵县境内,隧道洞身穿越区为低山丘陵区,地形起伏较大,进、出口山坡较陡峭。
隧道里程为DK154+980~DK155+280,全长300m,为双线隧道。
隧道位于R=8000m的左偏曲线上,为大断面单洞室双线结构。
开挖施工采用新澳法,从隧道进口向出口单向开挖,其中进出口洞门DK154+980~DK155+035与DK155+247~DK155+280段为明挖段。
3、贯通误差测量3.1贯通测量方案(1)隧道开挖控制测量说明闻家山隧道施工采用从进口单向掘进的方法。
隧道DK154+980~DK155+247开挖的控制测量采用全站仪从进口GPS控制测量主网边测量洞内导线点,利用电子水准仪从进口洞门水准点对洞内做二等水准控制,对隧道开挖和二次衬砌进行施工测量控制。
(2)贯通测量具体实施方案隧道贯通前,由于DK155+247~DK155+280段为明挖段,是使用出口导线点和水准点测量控制的,根据现场施工情况,实际贯通面里程为DK155+247。
平面贯通测量,用原隧道进口洞内的导线点放样出DK155+247的对应隧道中线桩,再使用隧道出口洞外的导线点,对该中线桩进行测量,分别测取桩点的平面坐标,将两组坐标分别投影到贯通面上和隧道中线上,则贯通面上的投影差值即为横向贯通误差,在中线上的投影差值即为纵向贯通误差。
高程贯通测量,采用二等水准测量方法,从隧道洞内联测进口和出口附近的水准点,得到高程不符值即为实际的竖向贯通误差。
*****引水工程C1标项目经理部3#下游—出水口隧道贯通测量误差报告编制:复核:监理:****公司*****引水工程C1标项目经理部2015年11月1、前言由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。
隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前研究隧道贯通误差主要为横向贯通误差。
2、编制依据(1)《水利水电工程施工测量规范》(SL 52-93);(2)《水工建筑物地下开挖工程施工技术规范》(DL/T5099-1999);(3)*****引水工程-引水隧洞《施工图设计图册》(水工);(4)隧道洞口地形及洞外已知控制点点位实际情况。
本工程属跨地域引水工程,供水对象为厦门市,引水流量10.0m3/s,枢纽建筑物由拦河闸坝及引水系统组成。
拦河闸坝由闸室段和左右岸重力段组成,引水系统进水口位于坝左岸上游约50m处,为塔式进水口,底板高程61.0m,引水隧洞总长13.842km,隧洞出口高程55.0m,设一工作闸门,流入石兜水库上游河道内。
开挖洞径为底宽3.0m、直径3.9m的扩底圆形断面,地质较差段采用钢筋混凝土衬砌和喷锚支护,钢筋混凝土衬砌后洞径为3.2m圆形。
本标段合同编号:FJFY/C1,本标段设2条施工支洞,分别为2#施工支洞、3#施工支洞。
3#施工支洞与引水隧洞交点桩号:引7+773.682,采用5.0×5.0m 城门型断面,施工支洞洞身长1343m(直线计约1300m),底高程56.07m,洞口高程180m。
引水隧洞桩号:引1+500~引10+673,隧洞全长为9173m,3#下游引水隧洞桩号:引7+773~G9+745.5总长1971.4m,原设计坡度为0.584‰,在开挖过程中,由洞内于涌水较大,为了有利于下游隧道排水,经设计院同意,对引8+300—G9+744.5段设计高程进行调整,调整为零坡度开挖,设计底板为55.832,详见报告单(浙隧[2014]C1标报告008号),开挖洞径为底宽3.0m,直径3.9m的扩底圆形断面,部份地质较差段采用钢筋混凝土衬砌和喷锚支护。
地铁隧道贯通测量林正庆上海地铁一号线纵贯市区,全长14.7km,是上海目前较大的市政施工项目之一。
上海隧道一号线全线采用盾构机械施工,施工时要进行跟踪测量,即贯通测量。
隧道贯通测量精度指标有多种,其中横向和竖向精度指标最为重要,是衡量隧道掘进的准确程度的标准。
贯通测量指导盾构到达竖井预留门洞,要求准确贯通,因此贯通测量在盾构施工中起到很重要的作用。
地铁隧道贯通测量的目的,是使盾构准确地沿着设计轴线开挖推进,并进入接收井的预留门洞。
盾构机头中心与预留门洞中心的偏差值称为贯通误差。
预留门洞的大小,应该是盾构内径、隧道内衬管径厚度、施工误差、测量误差这四个方面的总和。
测量误差如能达到设计所要求的±5cm,就能达到贯通测量规定的要求。
但一般情况下,建设单位为了保证质量起见,对测量精度提出更高的要求。
上海地铁一号线平面首级控制为四等空中导线,一般点位设置在区间隧道附近较稳定的高大建筑物上,观测视线由空中传递,并采取强制归心测角测距。
高程控制点为二等几何水准网进行联测,点位远离施工区,较稳定。
地面坐标传递到进下隧道的方法,一般采用方向线法、投点法两种;高程控制传递至井下采用钢尺悬挂观测法进行。
常熟路站至陕西南路站区间隧道工程,由于受施工现场条件的限制,采用常规的地面坐标传递到井下的方向线法和投点法已不能保证精度,而采用经纬仪加光电测距仪直接进行传递,这是首次。
1工程概况地铁一号线常熟路站至陕西南路站区间隧道工程全长742m,为上、下两平行隧道,位于淮海中路下面。
该区间隧道采用逆向施工技术进行掘进,先埋设地下管线,在隧道轴线上预留门洞,再进行路面铺装,而后进入地下施工。
两车站各预留施工沉井,井口边长仅8m,且偏离隧道轴线设置。
沉井深15m,施工出土、进料都由井口通过。
同时控制点受施工现场限制,控制点所在的建筑物在施工区沉井旁,建筑物沉降使控制点产生位移,由此给确保隧道贯通测量的精度带来很大难度。
隧道贯通测量误差,是指纵、横向和竖向误差。
隧道通车情况报告模板概述该报告主要描述一条隧道的通车情况,包括隧道的建设、设施、通车后的运营和维护等方面。
隧道建设及设施该隧道位于某市区域内,全长约10公里,双向四车道,设计时速为80公里/小时,共设置13个进出口,其中4个为主要进出口。
隧道采用盾构法施工,采用三管并行形式,单管直径约12米。
在建设过程中采用了先进的技术和安全措施,保证了隧道的施工质量和安全性。
通车后,隧道启用了先进的通信和计费设施,如电子标签识别、汽车识别自动支付系统等。
此外,隧道还设置了一系列的安全设施,如火灾自动报警系统、排烟系统、应急电话、应急供气等。
运营情况自隧道通车后,交通状况明显得到改善,很大程度上缓解了区域交通拥堵状况。
随着通车车流的逐渐增多,隧道也陆续推行了各项措施以提高通行效率,比如优化进出口道路和交通指示标志等。
此外,隧道区域内交通管理局还开设了一系列的宣传活动,包括交通安全知识讲座、交通法律法规宣传等,以提高公众对交通法规的遵守和交通安全的意识。
维护情况为了保证隧道的日常维护和安全运营,交通管理局制定了一系列的规定和管理制度,如隧道巡检制度、安全管理制度、维修计划等。
在日常维护中,交通管理局针对隧道的不同部位和设施制定了不同的维护计划,并委托专业公司进行维护和维修工作。
此外,交通管理局还定期对隧道进行安全检查,并逐步完善隧道安全设施和管理制度,以保障隧道的安全稳定运行。
结论综上所述,该隧道在建设、设施、运营和维护等方面均表现良好,并取得了显著的交通改善效果。
同时,交通管理局也将继续完善隧道的运营和维护,促进隧道的良性发展。
炮台山隧道贯通测量报告
1、前言
由于测量过程中不可避免地带有误差,因此贯通实际上总是存在偏差的。
隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;和上下的偏差,为高程贯通误差。
纵向贯通误差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有着直接影响。
2、工程概述
新建铁路原州区至王洼线第三合同段的炮台山隧道地处黄土梁峁区,隧道进口位于山前陡坎上,出口位于清石河右岸台地上。
隧道长度1548m,隧道起止里程DK19+634-DK21+185。
隧道进出口段埋深较小,多在6.6-47m之间,其余段落隧道埋深较大,最大埋深可达120m。
隧道位于线路纵坡 6.0‰和 4.3‰的单面下坡上,除DK19+704-DK20+013位于R-600m的曲线上和 DK20+641-DK21+151位于R-800m的曲线上,其余段落位于直线上。
隧道进、出口道路均被深沟所阻,只有乡村道路可以绕行到达,交通困难。
3、贯通误差测量
3.1贯通测量方案
炮台山隧道施工采用进出口双向掘进。
隧道贯通后,在隧道贯通面上钉一临时桩,用隧道进口洞内的控制点,和隧道出洞洞内的控制点,各自向临时桩进行测量,分别测取临时桩点的平面坐标,将两组
坐标的差值分别投影到贯通面上和隧道中线上,则贯通面上的投影即为横向贯通误差,在中线上的投影即为纵向贯通误差。
高程贯通测量是测定实际的竖向贯通误差,通常采用水准测量方法,从隧道进口和出口附近的水准点开始,各自向洞内进行,分别测出贯通面上同一点的高程,即获此点的两个高程之差。
依据【铁路工程测量规范】(TB10101-2009)中表6.1.4关于隧道贯通误差规定:
2 相向开挖长度大于20km的隧道应作特殊设计
炮台山隧道全长1548m,故横向贯通误差限差为100mm,高程贯通误差限差为50mm。
3.2贯通误差的测定
纵横贯通误差的测定。
采用GPT7501全站仪,采用由炮台山隧道进口两个控制点ZD14和ZD16引入的控制点ZD14-23和ZD14-21,测量贯通面的临时桩L1坐标为X(3997968.145),Y(496282.256),H(1658)。
隧道出口两个控制点GPS12-2、GPS12-1引入的控制点ZD8-8和ZD8-7,测量贯通面的临时桩L1坐标为X(3997968.107), Y(496282.273), H(1658.004)。
得到△X=0.038,△Y=0.017,△H=0.004。
将两组坐标分别投影到贯通面上、隧道中线上和高程上,临时桩L1进口测的里程为20+685.981,距中
线宽度1.184,高程1658;出口测的里程为20+686.006,距中线宽度1.218,高程1658.004则纵向贯通误差为(25m m),横向贯通误差为(34m m),高程贯通误差(4 m m)。
根据表6.1.4要求,开挖长度小于4km的隧道,横向贯通误差限差为100mm,高程贯通误差为50mm,所以炮台山隧道的贯通误差未超限。
4、贯通误差的调整
平面贯通误差调整。
贯通误差≤50mm时,在保证隧道建筑限界要求的条件下,可不调整线路中线,按设计线位铺轨。
贯通误差>50mm 时,应采用洞内控制网实测隧道中线,采用线位拟合方法进行调整,调整后的线路应满足轨道平顺性标准和隧道建筑限界的要求。
高程贯通误差调整。
由两端测得的贯通点高程,应取两贯通高程的平均值作为调整后的贯通点高程。
高程贯通误差调整可按贯通误差的一半,分别在两端未初衬地段,以未初衬的线路长度按比例调整其范围内各水准点高程。
未衬砌段高程放样应依据调整后的水准点高程进行。
调整后的线路应满足线路设计和验收规范要求。
贯通误差的调整。
炮台山隧道横向贯通误差为34mm,所以在保证隧道建筑限界要求的条件下,可不调整线路中线。
高程贯通误差为4mm,可不调整线路高程。