金属工艺学复习资料__考试必备_重要的简答题1
- 格式:doc
- 大小:219.00 KB
- 文档页数:16
金属工艺学复习资料第一章1.使用性能:材料在使用过程中所表现的性能(力学性能,物理性能,化学性能)2.工艺性能:材料在加工过程中表现的性能(铸造,锻压,焊接,热处理,材料性能)3.拉伸过程的4个阶段:I.弹性形变II.屈服III.均匀塑性变形阶段IV.颈缩4.δs:屈服强度δ0.2:条件屈服强度δb:抗拉强度A k:冲击韧性HB:布氏硬度HR:洛氏硬度HV:维式硬度Ψ:收缩率δ:伸长率5.韧脆转变温度:在某一温度范围内冲击韧性值急剧下降的现象。
6.疲劳极限:材料经过无数次应力循环而不发生疲劳断裂的最高应力。
用δ-1表示。
第二章1.常见纯金属的晶格类型:体心立方晶格:晶格常数a,原子数2,常见金属α-Fe,δ-Fe。
面心立方晶格:晶格常数a,原子数4,常见金属γ-Fe,Cu,Ag。
密排六方晶格:晶格常数:底面边长a和高c存在c/a=1.633,常见金属Mg,Zn,Be。
2.结晶:物质由液态转化为晶态的过程。
3.过冷度:理论结晶温度和实际结晶温度之差,过冷度大小与冷速有关。
冷速越大,过冷度越大,过冷是结晶的必要条件。
4.结晶的过程:晶核的形成----晶核长大,长成树枝晶。
5.晶粒大小对金属机械性能的影响:常温下,晶粒越细小,晶界面积越大,金属机械性能越好。
强度,硬度高,塑性韧性高。
6.细化晶粒的过程:控制过冷度----变质处理----振动搅拌----热处理7.同素异形体的转变:金属在固态下,随着温度的改变其晶体结构发生变化的现象。
912℃1394℃例:α-Fe------------γ-Fe-------------δ-Fe(体心)(面心)(体心)7.重结晶(二次结晶):同素异构的转变。
8.合金:由两种或两种材料以上(其中一种是金属)组成的具有金属特性的材料。
9.相:金属或结晶中凡是化学成分和晶体结构相同,并与其他部分有界面分开的均匀组成部分。
10.固溶强化:由于溶质原子融入溶剂晶格产生晶格畸变而造成材料硬度和强度升高,塑性和韧性没有明显降低。
一、填空题1、金属工艺学是研究工程上常用材料性能和加工工艺的一门综合性的技术基础课。
2、金属材料的性能可分为两大类:一类叫(使用性能),反映材料在使用过程中表现出来的特性,另一类叫(工艺性能),反映材料在加工过程中表现出来的特性。
3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属力学性能(机械性能).4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是屈服点、抗拉强度等。
5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是断后伸长率和断面收缩率_。
6、常用的硬度表示方法有布氏硬度_、洛氏硬度和维氏硬度。
7、自然界的固态物质,根据原子在内部的排列特征可分为晶体和非晶体两大类。
8、金属的晶格类型主要有体心立方晶格、面心立方晶格、密排六方晶格三大类。
9、晶体的缺陷主要有点缺陷、线缺陷、面缺陷。
10、纯金属的结晶过程包括晶核的形成和晶核的长大两个过程11、根据溶质原子在溶剂中所占位置不同,固溶体可分为_置换固溶体和间隙固溶体两种。
12、合金是指由两种或两种以上化学元素组成的具有金属特性的物质。
13、合金中有两类基本相,分别是固溶体和金属化合物。
14、铁碳合金室温时的基本组织有铁素体、渗碳体、奥氏体珠光体和莱氏体。
15、铁碳合金状态图中,最大含碳量为6.69%。
16、纯铁的熔点是1538℃。
17、简化的铁碳合金状态图中有3个单相区5__个二相区。
18、钢的热处理工艺曲线包括加热、保温_和冷却三个阶段。
19、常用的退火方法有完全退火、球化退火和去应力退火。
为了去除工作中由于塑性变形加工,切削加工或焊接等造成的和铸件内存残余应力而进行退火叫去应力退火。
20、淬火前,若钢中存在网状渗碳体,应采用正火的方法予以消除,否则会增大钢的淬透性。
21、淬火时,在水中加入盐或碱,可增加在650℃—550℃范围内的冷却速度,避免产生软点。
22、工件淬火及高温回火的复合热处理工艺,称为调质。
⾦属⼯艺学简答题带答案⾦属⼯艺学复习题铸造部分1、什么是合⾦的铸造性能?它可以⽤哪些性能来衡量?铸造性能不好,会引起哪些缺陷?合⾦的流动性受到哪些因素影响?(1)流动性能和收缩性能(2)合⾦的流动性、浇注条件、铸型条件。
(3)缩孔、缩松、变形和裂纹(4)合⾦的种类,合⾦的成分,杂质与含⽓量2铸件的凝固⽅式有哪些?合⾦的收縮經历哪⼏个阶段?缩孔和缩松的产⽣原因是什么7防⽌缩孔和缩松的⽅法有哪些?逐层凝固糊状凝固中间凝固液态收缩凝固收缩固态收缩缩孔:缩孔产⽣的条件是⾦属在恒温或很⼩的温度范围内结晶,铸件壁以逐层凝固的⽅式进⾏凝固。
缩松:缩松形成的基本原因和缩孔形成的相同,但形成的条件却不同。
缩松形成的条件主要是在结晶温度范围宽、以糊状凝固⽅式凝固的合⾦或厚壁铸件中。
防⽌:控制铸件的凝固过程使之符合顺序凝固的原则,并在铸件最后凝固的部位设置合理的冒⼝,使缩孔移⾄冒⼝中,即可获得合格的铸件。
(1)按照顺序凝固的原则进⾏凝固(2)合理地确定内浇道位置及浇注⼯艺(3)合理地应⽤冒⼝、冷铁和补铁等⼯艺措施3、热应⼒和机械应⼒产⽣的原因是什么?采⽤哪些措施可以预防和消除铸造应⼒?热应⼒是由于铸件壁厚不均,各部分冷却速度不同,同⼀时期,各部分收缩不⼀致,⽽引起的;铸件在固态收缩时,因受铸型,型芯,焦冒⼝等外⼒的阻碍⽽产⽣的应⼒称为机械应⼒;措施:1合理的设计铸件的结构。
设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。
2尽量选⽤线收缩率⼩、弹性模量⼩的合⾦。
3采⽤同时凝固的⼯艺。
所谓同时凝固市值采⽤⼀些⼯艺措施,使铸件各部分间温差尽量⼩,⼏乎同时进⾏凝固。
4设法改善铸型、型芯的退让性,合理设置浇冒⼝等,以减少机械应⼒。
5对铸件进⾏实效处理是消除铸造应⼒的有效措施4、什么是顺序凝固原则?什么是同时凝固原则?各有何应⽤?采⽤各种措施来使铸件结构上各部分按照远离冒⼝的部分先凝固,然后是靠近冒⼝部分,最后才是冒⼝本⾝凝固的次序进⾏凝固。
简答题1、什么叫刀具的前角?什么叫刀具的后角?简述前角、后角的改变对切削加工的影响。
答:前角是刀具前面与基面间的夹角,在正交平面中测量;后角是刀具后面于切削平面间的夹角,在正交平面中测量。
前角大,刀具锋利,这时切削层的塑性变形和摩擦阻力减小,切削力和切削热降低;但前角过大会使切削刃强度减弱,散热条件变差,刀具寿命下降,甚至会造成崩刀。
增大后角,有利于提高刀具耐用度,但后角过大,也会减弱切削刃强度,并使散热条件变差。
2、试述常用的手工造型有哪些?答:手工造型的方法很多,根据铸件的形状、大小和生产批量的不同进行选择,常用的有:整模造型,分模造型,挖砂造型,活块造型,刮板造型,三箱造型。
3、切削热是怎样产生?它对切削加工有何影响答:在切削过程中,切削层金属的变形及刀具的前面与切屑、后面与工件之间的摩擦所消耗的功,绝大部分转变成切削热。
切削热由切屑、刀具、工件及周围介质传出,其中传入切屑和周围介质的热量对加工无直接影响。
传入刀具的热量是切削区的温度升高,刀具的温度升高,磨损加剧,会影响刀具的使用寿命。
切削热传入工件,工件温度升高,产生热变形,将影响加工精度。
4 工件在锻造前为什么要加热?什么是金属的始锻温度和终锻温度?若过高和过低将对锻件产生什么影响?答:金属坯料锻造前,为了提高其塑性,降低变形抗力,使金属在较小的外力作用之下产生较大的变形,必须对金属坯料进行加热。
金属在锻造时,允许加热到的最高温度称为始锻温度,始锻温度过高会使坯料产生过热、过烧、氧化、脱碳等缺陷,造成废品;金属停止锻造的温度叫做终锻温度,终锻温度过低,塑性下降,变形抗力增大,当降到一定温度的时候,不仅变形困难,而且容易开裂,必须停止锻造,重新加热后再锻。
5、常见的电弧焊接缺陷有哪些?产生的主要原因是什么?答:咬边:焊接电流太大,焊条角度不合适,电弧过长,焊条横向摆动的速度过快;气孔:焊接材料表面有油污、铁锈、水分、灰尘等,焊接材料成分选择不当,焊接电弧太长或太短,焊接电流太大或太小;夹渣:电流过小,熔渣不能充分上浮,运条方式不当,焊缝金属凝固太快且周围不干净,冶金反应生成的杂质浮不到熔池表面;未焊透:焊接电流太小,焊接速度太快,焊件装配不当,焊条角度不对,电弧未焊透工件;裂纹:焊接材料的化学成分选择不当,造成焊缝金属硬、脆,在焊缝冷凝后期和继续冷却过程中形成裂纹,金属液冷却太快,导致热应力过大而形成裂纹,焊件结构设计不合理,造成焊接应力过大而产生裂纹。
18.金属的塑性变形是在切应力作用下,主要通过滑移来进行的;金属中的位错密度越高,则其强度越高,塑性越差。
19.金属结晶的必要条件是一定的过冷度,金属结晶时晶粒的大小主要决定于其形核率。
20.用于制造渗碳零件的钢称为渗碳钢,零件渗碳后,一般需要经过淬火+低温回火才能达到表面硬度高而且耐磨的目的。
21.珠光体是铁素体和渗碳体组成的机械混合物22.冷变形金属在加热时随加热温度的升高,其组织和性能的变化分为3个阶段,即回复、再结晶、晶粒长大。
23.在实际生产中,常采用加热的方法使金属发生再结晶,从而再次获得良好塑性,这种工艺操作称为再结晶退火。
24.从金属学的观点来看,冷加工和热加工是以再结晶温度为界限区分的25.随着变形量的增加,金属的强度和硬度显著提高,塑性和韧性明显下降,这种现象叫做加工硬化。
26.实验室里开了六个电炉,温度分别为910℃、840℃、780℃、600℃、400℃、200℃,现有材料15钢、45钢、T12钢。
问:若要制作轴,一般选用45钢;进行调质处理(淬火+高温回火);获得回火索氏体;淬火为了获得马氏体,提高钢的强度、硬度和耐磨性,高温回火是为了去除淬火应力,得到稳定的组织,提高综合力学性能,保持较高强度的同时,具有良好的塑性和韧性。
27.Fe-Fe3C相图ECF、PSK的含义,亚共析钢从液态缓慢冷却到室温时发生的组织转变过程:L、L+A、A、A+F、P+F 塑性变形阻力增强,强度、硬度提升,固溶强化。
低碳钢的拉伸曲线:实际结晶温度低于理论结晶温度的现象称为过冷。
理论结晶温度与实际结晶温度之差为过冷度。
冷却速度越大,过冷度越大。
第二章铸造1.灰铸铁的组织是钢的基体加片状石墨。
它的强度比σb比钢低得多,因为石墨的强度极低,可以看作是一些微裂纹,裂纹不仅分割了基体,而且在尖端处产生应力集中,所以灰铸铁的抗拉强度不如钢。
2.灰铸铁为什么在生产中被大量使用?灰铸铁抗压强度较高,切削加工性良好,优良的减摩性,良好的消振性,低的缺口敏感性,优异的铸造性能。
《金属工艺学》复习资料一、填空题1.机械设计时常用抗拉强度(σb)和屈服强度(σs或σ0.2)两种强度指标。
2.若退火亚共析钢试样中先共析铁素体占41.6%,珠光体58。
4%,则此钢的含碳量为约0。
46%。
3.屈强比是屈服强度与抗拉强度之比。
4。
一般工程结构用金属是多晶体,在各个方向上的性能相同,这就是实际金属的各向同性现象。
5.实际金属存在点缺陷、线缺陷和面缺陷三种缺陷。
实际晶体的强度比理想晶体的强度低(高,低)得多。
6。
根据组成合金的各组元之间的相互作用不同,合金的结构可分为两大类:固溶体和金属化合物。
固溶体的晶格结构同溶剂,其强度硬度比纯金属的高。
7。
共析钢加热至Ac1时将发生珠光体向奥氏体的转变,其形成过程包括四个阶段。
8。
把两个45钢的退火态小试样分别加热到Ac1~Ac3之间和Ac3以上温度水冷淬火,所得到的组织前者为马氏体+铁素体+残余奥氏体,后者为马氏体+残余奥氏体。
二、判断改错题( ×)1。
随奥氏体中碳含量的增高,马氏体转变后,其中片状马氏体减少,板条状马氏体增多。
(×)2.回火屈氏体、回火索氏体和过冷奥氏体分解时形成的屈氏体、索氏体,只是形成过程不同,但组织形态和性能则是相同的。
(×)3。
退火工件常用HRC标出其硬度,淬火工件常用HBS标出其硬度。
(√)4.马氏体是碳在α-Fe中所形成的过饱和固溶体;当发生奥氏体向马氏体的转变时,体积发生膨胀。
(×)5.表面淬火既能改变工件表面的化学成分,也能改善其心部组织与性能。
( √ )6。
化学热处理既能改变工件表面的化学成分,也能改善其心部组织与性能。
(√ )7.高碳钢淬火时,将获得高硬度的马氏体,但由于奥氏体向马氏体转变的终止温度在0℃以下,故钢淬火后的组织中保留有少量的残余奥氏体.(×)8。
为了消除加工硬化便于进一步加工,常对冷加工后的金属进行完全退火。
(× )9。
片状珠光体的机械性能主要决定于珠光体的含碳量。
一、缩松与缩孔缩孔:集中在铸件上部或最后凝固部位容积较大的孔洞,缩孔多呈倒圆锥形。
合金的液态及凝固收缩越大,浇注温度越高,铸件越厚;则缩孔的容积越大。
缩松:分散在铸件某区域内的细小缩孔;分为宏观缩松及显微缩松两种;逐层凝固合金缩孔倾向大;糊状凝固缩松倾向大。
缩孔、缩松的防止:实现顺序凝固,就可实现“补缩”:1.设置“冒口”(冒口虽然是缺陷区,但属多余部分)2.铸件某些厚大部位设置“冷铁”(冒口与冷铁增加成本,促进变形及裂纹倾向,仅用于必须补缩,如铝青铜、铸钢等;)3.倾向于糊状凝固的合金,整个截面上有树枝状晶架,难以避免显微缩松。
4.选用近共晶成分或结晶温度范围较窄的合金生产铸件较为科学。
二、可锻性及影响因素、铸造性能及影响因素、焊接性及影响因素三、对刀具材料的基本要求(1)高硬度刀具材料的硬度必须高于工件材料的硬度,一般其常温硬度要求在62HRC以上。
(2)足够的强度和韧度以承受很大的切削力、冲击与振动。
图1-3 常用刀具材料的耐热性(3)高耐磨性以抵抗切削过程中的剧烈磨损,保持刀刃锋利。
一般情况,材料的硬度愈高,耐磨性愈好。
(4)高的耐热性刀具材料应在高温下仍能保持较高硬度,又称为红硬性或热硬性。
(常用刀具材料的耐热性见图1-3,耐热性是衡量刀具材料性能的主要指标,它基本上决定了刀具允许的切削速度。
)(5)良好的工艺性以便于刀具制造,具体包括锻造、轧制、焊接、切削加工、磨削加工和热处理性能等。
刀具角度选用:“三大一小”,即采用大的前角、刃倾角和主偏角,采用小后角。
四、焊接热影响区及改善焊接热影响区组织和性能的方法焊接热影响区:熔合区、过热区、正火区、部分相变区等。
⑴熔合区处于液相线、固相线之间,所以也称半熔化区。
因温度过高而成为过热粗晶,强度、塑性和韧性都下降。
此处接头断面变化,易引起应力集中。
此区很大程度上决定着焊接接头的性能。
⑵过热区被加热到Ac3以上100~200°C至固相线温度区间。
一、填空题1.在切削加工过程中,工件上会形成三个表面,它们是 已加工表面 、待加工表面 、和 过渡表面 。
2.切削运动分 主运动 和__进给运动___两类。
3.切削用量包括 切削速度 、 进给量 和___背吃刀量___。
4. 刀具静止参考系主要由 基面 、 主切削面 、 正交平面 所构成。
5.0γ是 前角 的符号,是在 正交平 面内测量的 前刀 面与 基 面间的夹角。
6.s λ是 刃倾角 的符号,是在 切削平 面内测量的 主切削刃 与 基 面间的夹角。
7.过切削刃上的一个点,并垂直于基面和切削平面的是 正交平面 。
8. 为了减小残留面积,减小表面粗糙度Ra 值,可以采用的方法和措施有:减小主偏角 、 减小副偏角 和 减小进给量 。
9.常见切屑种类有: 带状切屑 、 节状切屑 和 崩碎切屑 。
10. 切屑厚度压缩比是 切屑厚度 与 切削层公称厚度 之比值,其数值越大,切削力越大,切削温度越高,表面越粗糙。
11.总切削力可分解为 切削力 、 进给力 和 背向力 三个切削分力。
12.刀具磨损的三个阶段是:初期磨损阶段、正常磨损阶段和急剧磨损阶段。
刀具重磨和换刀应安排在 正常磨损阶段 后期、 急剧磨损发生 之前。
13.刀具耐用度是指刀具从开始切削至磨损量达到规定的磨钝标准为止的实际切削总时间。
14.产生积屑瘤的条件是:①切削塑性金屑,②中等切速切削,粗加工加工时可利用积屑瘤,精加工加工时尽量避免产生积屑瘤。
15.用圆柱铣刀铣平面时,有两种铣削方式,即 逆铣 和 顺铣 。
一般铣削常采用 逆铣 。
16.对钢材精车时用高速,其主要目的是 避免产生积屑瘤 。
17.磨削加工的实质是磨粒对工件进行 刻划 、 滑擦 和 切削 三种作用的综合过程。
18.砂轮的硬度是 磨粒受力后从砂轮表面脱落的难易程度 ,工件材料硬,应选用硬度 较软 砂轮,磨削有色金属等软材料时,应选用 较硬 砂轮。
19.机床上常用的传动副有 带传动 、 齿轮传动 、 齿轮齿条传动 、 丝杠螺母(螺杆)传动和 蜗轮蜗杆传动20.机床传动系统中,常用的机械有级变速机构有:滑移齿轮变速、离合器式齿轮变速等21.对于刚度好、长度长、余量多的外圆面,先用横磨法分段进行粗磨,相邻两段间有5-10的搭接,工件上留下0.01~0.03的余量,再用纵磨法精磨,这种加工方法称为综合磨法。
⾦属⼯艺复习资料锻造1、⾦属塑性变形的实质⾦属塑性变形的实质是晶体内部产⽣滑移的结果。
单晶体内的滑移变形。
在切向应⼒作⽤下,晶体的⼀部分与另⼀部分沿着⼀定的晶⾯产⽣相对滑移,从⽽造成晶体的塑性变形。
当外⼒继续作⽤或增⼤时,晶体还将在另外的滑移⾯上发⽣滑移,使变形继续进⾏,因⽽得到⼀定的变形量。
2、内部组织的变化①晶粒沿最⼤变形的⽅向伸长:(形成纤维组织)②晶粒破碎,位错密度增加,产⽣加⼯硬化③产⽣内应⼒3、加⼯硬化的概念及其原因在塑性变形过程中,随着⾦属内部组织的变化,⾦属的⼒学性能也将产⽣明显的变化,即随着变形程度的增加,⾦属的强度、硬度增加,⽽塑性、韧性下降,这⼀现象即为加⼯硬化或形变强化。
关于加⼯硬化的原因,⽬前普遍认为与位错的交互作⽤有关。
随着塑性变形的进⾏,位错密度不断增加,因此位错在运动时的相互交割加剧,产⽣固定割阶、位错缠结等障碍,使位错运动的阻⼒增⼤,引起变形抗⼒的增加,因此就提⾼了⾦属的强度。
4、可锻性好差的判断⾦属的可锻性是衡量材料在经受压⼒加⼯时获得优质制品难易程度的⼯艺性能。
可锻性常⽤⾦属的塑性和变形抗⼒来综合衡量。
塑性越好,变形抗⼒越⼩,则⾦属的可锻性好。
反之则差。
⾦属的塑性⽤⾦属的断⾯收缩率ψ、伸长率δ等来表⽰。
变形抗⼒系指在压⼒加⼯过程中变形⾦属作⽤于施压⼯具表⾯单位⾯积上的压⼒。
变形抗⼒越⼩,则变形中所消耗的能量也越少。
⾦属的可锻性取决于⾦属的本质和加⼯条件。
5、锻造温度提⾼⾦属变形时的温度,是改善⾦属可锻性的有效措施。
⾦属在加热中,随温度的升⾼、⾦属原⼦的运动能⼒增强,很容易进⾏滑移,因⽽塑性提⾼,变形抗⼒降低,可锻性明显改善,更加适宜进⾏压⼒加⼯。
但温度过⾼,对钢⽽⾔,必将产⽣过热、过烧、脱碳和严重氧化等缺陷,甚⾄使锻件报废,所以应该严格控制锻造温度。
锻造温度范围系指始锻温度和终锻温度间的温度区间。
锻造温度范围的确定以合⾦状态图为依据。
碳钢的锻造温度范围,其始锻温度⽐AE线低200℃左右,终锻温度为800℃左右。
一、单项选择题(每题2分,共20分)1. 金属工艺学是研究()的科学。
A. 金属材料的加工B. 金属材料的性质C. 金属材料的制备D. 金属材料的回收利用2. 金属材料的力学性能主要包括()。
A. 强度、塑性、硬度B. 硬度、韧性、弹性C. 硬度、塑性、弹性D. 塑性、韧性、硬度3. 金属的()是指金属在受力时抵抗变形的能力。
A. 塑性B. 硬度C. 强度D. 韧性4. 金属的()是指金属在受力时抵抗断裂的能力。
A. 塑性B. 硬度C. 强度D. 韧性5. 金属的()是指金属在受力时抵抗局部变形的能力。
B. 硬度C. 强度D. 韧性6. 金属的()是指金属在受力时抵抗变形而不破坏的能力。
A. 塑性B. 硬度C. 强度D. 韧性7. 金属的()是指金属在受力时抵抗局部变形而不破坏的能力。
A. 塑性B. 硬度C. 强度D. 韧性8. 金属的()是指金属在受力时抵抗变形而不破坏的能力。
A. 塑性B. 硬度C. 强度D. 韧性9. 金属的()是指金属在受力时抵抗局部变形而不破坏的能力。
A. 塑性B. 硬度C. 强度10. 金属的()是指金属在受力时抵抗局部变形而不破坏的能力。
A. 塑性B. 硬度C. 强度D. 韧性二、多项选择题(每题3分,共15分)1. 金属工艺学的研究内容包括()。
A. 金属材料的性质B. 金属材料的加工工艺C. 金属材料的制备方法D. 金属材料的回收利用E. 金属材料的表面处理2. 金属材料的力学性能指标包括()。
A. 强度B. 塑性C. 硬度D. 韧性E. 弹性3. 金属的加工方法包括()。
A. 冲压B. 剪切C. 焊接E. 热处理4. 金属的表面处理方法包括()。
A. 镀层处理B. 涂层处理C. 镀锌D. 镀镍E. 镀金5. 金属的热处理方法包括()。
A. 热处理B. 冷处理C. 热加工D. 冷加工E. 热处理与冷处理的结合三、判断题(每题2分,共10分)1. 金属的塑性是指金属在受力时抵抗变形的能力。
金属工艺学各章知识点第7章铸造成形二、基本内容1、铸造成形工艺基础1)合金的流动性和充型能力:流动性好的合金,充型能力强,易获得形状完整、尺寸准确、轮廓清晰、壁薄和形状复杂的铸件。
灰铸铁流动性最好,硅黄铜、铝硅合金次之,铸钢最差。
2)合金的收缩:液态收缩和凝固收缩是铸件产生缩孔和缩松的主要原因,固态收缩是铸件产生内应力、变形和裂纹的的主要原因。
1、铸造成形方法1)砂型铸造:各种手工造型方法的特点和应用,见书中表7-1。
铸件常见的缺陷的特征及产生原因,见书中表7-22)特种铸造:熔模铸造的工艺过程:制母模→压型→制蜡模→制壳→焙烧→浇注→清理。
熔模铸造的特点:铸件的尺寸精度及表面质量高,减少切削、节约材料,适于铸熔点高、难切削加工材料。
3、铸件结构工艺性1)砂型铸造对铸件结构设计的要求:减少和简化分型面;外形力求简单对称;有结构斜度;有利于节省型芯及型芯的定位、固定、排气和清理。
2)合金铸造性能对铸件结构设计的要求:铸件壁厚要合理、壁厚应均匀、有铸造圆角和过渡连接、尽量避免过大平面。
四、习题一、填空题1、合金的铸造性能主要是指()、()、()、()。
2、合金的收缩过程分为()、()、()三个阶段。
3、铸件产生缩孔和缩松的主要原因是()收缩和()收缩。
4、铸件产生内应力、变形和裂纹的主要原因是()收缩。
二、判断题1、机器造型不能进行三箱造型。
()2、铸造造型时,模样的尺寸和铸件的尺寸一样大。
()三、选择题1、下列铸造合金中,铸造性能最好的是(),铸造性能最差的是()。
A 铸钢B 铸铁C 铸铜2、下列铸件大批量生产时,采用什么方法铸造为宜?车床床身()、汽轮机叶片()、铸铁水管()。
A 砂型铸造B 熔模铸造C 离心铸造四、简答题1、砂型铸造工艺对铸件结构设计有哪些要求?2、合金铸造性能对铸件结构设计有哪些要求?3、下图中砂型铸造铸件结构工艺性不好,说明原因,画出正确图形。
第8章锻压成形二、基本内容1、锻压成形基础知识1)塑性变形对金属性能的影响:随着变形程度的增加,强度和硬度提高而塑性和韧性下降的现象称为冷变形强化。
一、填空:1.合金的收縮經歷了(液態收縮)、(凝固收縮)、(固態收縮)三個階段。
2.常用的熱處理方法有(退火)、(正火)、(淬火)、(回火)。
3.鑄件的表面缺陷主要有(粘砂)、(夾砂)、(冷隔)三種。
4.根據石墨的形態,鑄鐵分為(灰鑄鐵)、(可鍛鑄鐵)、(球墨鑄鐵)、(蠕墨鑄鐵)四種。
5.鑄造時,鑄件的工藝參數有(機械加工餘量)、(起模斜度)、(收縮率)、(型芯頭尺寸)。
6.金屬壓力加工的基本生產方式有(軋製)、(拉拔)、(擠壓)、(鍛造)、(板料衝壓)。
7.焊接電弧由(陰極區)、(弧柱)和(陽極區)三部分組成。
8.焊接熱影響區可分為(熔合區)、(過熱區)、(正火區)、(部分相變區)。
9.切削運動包括(主運動)和(進給運動)。
10.鍛造的方法有(砂型鑄造)、(熔模鑄造)和(金屬型鑄造)。
11.車刀的主要角度有(主偏角)、(副偏角)、(前角)、(後角)、(刃傾角)。
12.碳素合金的基本相有(鐵素體)、(奧氏體)、(滲碳體)。
14.鑄件的凝固方式有(逐層凝固)、(糊狀凝固)、(中間凝固)三種。
15.鑄件缺陷中的孔眼類缺陷是(氣孔)、(縮孔)、(縮松)、(夾渣)、(砂眼)、(鐵豆)。
17.衝壓生產的基本工序有(分離工序)和(變形工序)兩大類。
20.切屑的種類有(帶狀切屑)、(節狀切屑)、(崩碎切屑)。
21.車刀的三面兩刃是指(前刀面)、(主後刀面)、(副後刀面)、(主切削刃)、(副切削刃)。
二、名詞解釋:1.充型能力:液態合金充滿鑄型型腔,獲得形狀完整、輪廓清晰鑄件的能力,成為液態合金的充型能力。
2.加工硬化:隨著變形程度增大,金屬的強度和硬度上升而塑性下降的現象稱為加工硬化。
3.金屬的可鍛性:衡量材料在經受壓力加工時獲得優質製品難易程度的工藝性能,稱為金屬的可鍛性。
4.焊接:利用加熱或加壓等手段,借助金屬原子的結合與擴散作用,使分離的金屬材料牢固地連接起來的一種工藝方法。
5.同素異晶轉變:隨著溫度的改變,固態金屬晶格也隨之改變的現象,稱為同素異晶轉變。
第1章金属材料及其性质1、(名词解释)晶格:将原子看成是一个点,再把相邻原子中心用假想的的直线连接起来,形成的立体结构即为晶格。
晶胞:从晶格中取出一个最基本的几何单元,这个单元就称为晶胞。
晶粒:每个晶核长成的晶体称为晶粒。
晶界:晶粒之间的接触面称为晶界。
同素异晶转变:随着温度的改变,固态金属的晶格也随之改变的现象。
过冷度:理论结晶温度与实际结晶温度之差。
固溶体:溶质原子溶入溶剂晶格而仍保持溶剂晶格的金属晶体,称为固溶体。
金属化合物:各组元按一定整数比结合而成,并具有金属性质的均匀物质。
机械混合物:由结晶过程形成的两相混合物。
2、什么是材料的力学性能?它包含哪些指标?如何测得?力学性能:金属材料的力学性能又称为机械性能,是金属材料在力的作用下所表现出来的性能。
比如:强度、硬度、塑性、韧性。
测量方法:强度:金属材料在力的作用下,抵抗塑性变形断裂的能力。
工程上常以屈服点和抗拉强度最为常用。
硬度:以洛氏硬度为例。
其原理是将压头(金刚石圆锥体、淬火钢球或硬直合金球)施以100N的初始压力,使压头与试样始终保持紧密接触。
然后,向压头施加主载荷,保持数秒后卸除主载荷,以残余压痕深度计算其硬度值。
塑性:主要测量两个数据,伸长率和断面收缩率。
韧性:通常采用摆锤冲击弯曲试验机来测定。
3、液态金属的结晶条件是什么?结晶与同素异晶体转变有何异同?液态金属结晶的必要条件:温度降至结晶温度及以下温度。
同素异晶结构是在固态下原子重新排列的过程,广义上也属于结晶过程。
为区别由液态转变为固态的初次结晶,常将同素异晶转变称为二次结晶或重结晶。
4、晶粒大小与力学性能有何关系?如何细化晶粒?同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑形和韧性也愈好,晶核愈多,晶核长大的余地愈小,长成的晶粒愈细。
提高冷却速度,以增加晶核的数目;金属浇注之前,向金属液内加入变质剂(孕育剂)进行变质处理,以增加外来晶核,进行热加工,或者塑性加工。
5、含碳量对刚的力学性能有何影响?为什么?含量增加,钢的强度、硬度增加,而塑性韧性降低○2含碳量增加以后,珠光体含量增多,铁素体含量减少。
第1篇一、金属工艺学概述金属工艺学是一门研究金属材料的加工、变形、处理和回收利用的科学。
它涵盖了金属材料的制备、加工、变形、处理、回收和再利用等各个环节。
金属工艺学的研究对于提高金属材料的性能、延长其使用寿命、降低生产成本具有重要意义。
二、金属材料的分类与性能1. 金属材料的分类金属材料可分为以下几类:(1)纯金属:如铜、铝、铁等。
(2)合金:由两种或两种以上金属元素组成的材料,如不锈钢、铝合金等。
(3)复合材料:由金属与其他材料(如陶瓷、塑料等)组成的材料。
2. 金属材料的性能(1)力学性能:包括强度、塑性、韧性、硬度等。
(2)物理性能:包括导电性、导热性、磁性、密度等。
(3)化学性能:包括耐腐蚀性、抗氧化性、耐高温性等。
三、金属工艺学基本原理1. 金属变形原理金属变形是指在力的作用下,金属体积、形状和结构发生改变的过程。
金属变形原理主要包括以下几种:(1)滑移:金属在力的作用下,晶粒发生相对滑移,导致变形。
(2)孪晶:在一定的应力条件下,晶粒发生孪晶变形。
(3)位错:位错是金属晶体中的一种缺陷,它对金属的变形和性能有重要影响。
2. 金属加热与冷却原理金属加热与冷却是金属加工过程中的重要环节。
以下为金属加热与冷却原理:(1)加热:金属加热时,其温度逐渐升高,原子振动加剧,导致金属软化。
(2)冷却:金属冷却时,原子振动减弱,晶体结构逐渐稳定,金属硬化。
3. 金属热处理原理金属热处理是指在一定温度下对金属进行加热、保温和冷却,以改变其组织和性能的过程。
金属热处理原理主要包括以下几种:(1)退火:通过加热使金属组织发生变化,提高其塑性和韧性。
(2)正火:通过加热和冷却使金属组织发生变化,提高其硬度和耐磨性。
(3)淬火:通过快速冷却使金属组织发生变化,提高其硬度和耐磨性。
(4)回火:通过加热和冷却使金属组织发生变化,提高其韧性和稳定性。
四、金属工艺学主要加工方法1. 冲压加工冲压加工是指利用冲模对金属板材、带材、管材等进行压力加工的方法。
《金属工艺学》复习资料一、填空:1.合金的收缩经历了(液态收缩)、(凝固收缩)、(固态收缩)三个阶段。
2.常用的热处理方法有(退火)、(正火)、(淬火)、(回火)。
3.铸件的表面缺陷主要有(粘砂)、(夹砂)、(冷隔)三种。
4.根据石墨的形态,铸铁分为(灰铸铁)、(可锻铸铁)、(球墨铸铁)、(蠕墨铸铁)四种。
5.铸造时,铸件的工艺参数有(机械加工余量)、(起模斜度)、(收缩率)、(型芯头尺寸)。
6.金属压力加工的基本生产方式有(轧制)、(拉拔)、(挤压)、(锻造)、(板料冲压)。
7.焊接电弧由(阴极区)、(弧柱)和(阳极区)三部分组成。
8.焊接热影响区可分为(熔合区)、(过热区)、(正火区)、(部分相变区)。
9.切削运动包括(主运动)和(进给运动)。
10.锻造的方法有(砂型铸造)、(熔模铸造)和(金属型铸造)。
11.车刀的主要角度有(主偏角)、(副偏角)、(前角)、(后角)、(刃倾角)。
12.碳素合金的基本相有(铁素体)、(奥氏体)、(渗碳体)。
14.铸件的凝固方式有(逐层凝固)、(糊状凝固)、(中间凝固)三种。
15.铸件缺陷中的孔眼类缺陷是(气孔)、(缩孔)、(缩松)、(夹渣)、(砂眼)、(铁豆)。
17.冲压生产的基本工序有(分离工序)和(变形工序)两大类。
20.切屑的种类有(带状切屑)、(节状切屑)、(崩碎切屑)。
21.车刀的三面两刃是指(前刀面)、(主后刀面)、(副后刀面)、(主切削刃)、(副切削刃)。
二、名词解释:1.充型能力:液态合金充满铸型型腔,获得形状完整、轮廓清晰铸件的能力,成为液态合金的充型能力。
2.加工硬化:随着变形程度增大,金属的强度和硬度上升而塑性下降的现象称为加工硬化。
3.金属的可锻性:衡量材料在经受压力加工时获得优质制品难易程度的工艺性能,称为金属的可锻性。
4.焊接:利用加热或加压等手段,借助金属原子的结合与扩散作用,使分离的金属材料牢固地连接起来的一种工艺方法。
5.同素异晶转变:随着温度的改变,固态金属晶格也随之改变的现象,称为同素异晶转变。
金属工艺学简答题(1)5.1什么是液态合金的充型能力?与流动性有何关系?不同化学成分的合金为何流动性不同?液态合金充满型腔并使铸件形状完整,轮廓清晰的能力,称为合金的充型能力。
流动性越好充型能力越强。
共晶成分合金流动性最好。
凝固温度区间小,已结晶的固体层内表面光滑,对金属液阻力较小,过热度大。
纯金属是在一定温度范围内逐步凝固,经过液固并存区,枝状晶使得已结晶固体层表面粗糙,所以合金流动性变差。
5.4什么是缩孔和缩松?如何形成的?对铸件有何危害?如何防止?缩孔:由于液态金属逐层凝固,内部剩余液体由于液态收缩和补充凝固层的凝固收缩,体积减小,产生空隙。
缩松:由于合金的糊状凝固,被枝状晶分隔开的液体区难以得到补缩而形成小的孔。
防止缩孔:1.增加冒口2.合理使用冷铁防止缩松:1选取凝固区域小的合金2.采用顺序凝固原则3.增大结晶压力危害:使铸件有效承载面积减少,孔洞部位易产生应力集中,力学性能下降,气密性,物理性能和化学性能也下降。
5.5铸造内应力,变形,裂纹是如何产生的?如何减少危害?内应力分为热应力和机械应力。
热应力由于壁厚分布不均冷却速度不一致。
机械应力是由于铸件受到各种机械阻碍而产生的应力。
采用合理铸造工艺,造型工艺减小铸造应力。
逐渐结构上要注意避免牵制收缩的结构,去应力退火。
变形:薄厚不均匀截面不对称及具有细长特点的铸件,残留铸造应力大于铸件屈服极限。
、采用合理铸造工艺,合理造型结构,尽量简单对称壁厚均匀。
采取同时凝固原则。
时效处理。
反变形法。
5.6什么是顺序凝固,什么是同时凝固原则?各须采取什么结构来实现?凝固原则适用于什么场合?顺序凝固原则是采用各种工艺使远离冒口的部分到冒口之间形成温度梯度,实现由远离冒口向冒口顺序凝固。
适用于收缩大壁厚差别较大易产生缩孔的合金铸件,如铸钢,可锻铸铁。
同时凝固原则是使铸件各部分冷却速度尽量相等。
适用于壁厚均匀的薄铸件以及气密性要求不高的,结晶温度范围宽,收缩较小的合金。
金属工艺学复习资料
1. 金属材料的分类
金属材料可以分为两类:有色金属和黑色金属。
有色金属包括铝、铜、锡等,而黑色金属包括铁、钢、铸铁等。
不同的金属材料具有不同的物理和化学特性,因此在加工和应用过程中需要根据材料的特性进行相应的处理和选择。
2. 金属的加工方法
金属加工的方法主要有铸造、锻造、冷拔、热轧、冷轧、剪切、冲压等。
不同的加工方法适用于不同的金属材料和加工要求,可以使材料得到不同的形状和性质。
3. 金属结构和组织
金属的结构和组织主要包括原子结构、结晶结构、金属晶体、晶界、析出相等。
这些结构和组织的不同类型和形态对金属的强度、硬度、耐磨性、韧性等性质有着重要的影响。
4. 金属的热处理
金属的热处理包括退火、正火、淬火、回火等。
热处理能够改变金属材料的结构和组织,提高其机械性能,改善金属表面的性质以及消除加工应力等。
5. 金属的表面处理
金属的表面处理主要包括电镀、喷涂、镀层等。
这些方法可以保护金属表面不受腐蚀、磨损、氧化等环境因素的侵害,同时也可以改善金属的外观和使用寿命。
总之,金属工艺学是金属制造工业中非常重要的学科,掌握金属的材料特性、加工方法、结构组织和热处理等知识,对于提高金属制造品质的稳定性和性能的优化方案具有非常重要的意义。
《金属工艺学》复习资料一、填空:1.合金的收缩经历了(液态收缩)、(凝固收缩)、(固态收缩)三个阶段。
2.常用的热处理方法有(退火)、(正火)、(淬火)、(回火)。
3.铸件的表面缺陷主要有(粘砂)、(夹砂)、(冷隔)三种。
4.根据石墨的形态,铸铁分为(灰铸铁)、(可锻铸铁)、(球墨铸铁)、(蠕墨铸铁)四种。
5.铸造时,铸件的工艺参数有(机械加工余量)、(起模斜度)、(收缩率)、(型芯头尺寸)。
6.金属压力加工的基本生产方式有(轧制)、(拉拔)、(挤压)、(锻造)、(板料冲压)。
7.焊接电弧由(阴极区)、(弧柱)和(阳极区)三部分组成。
8.焊接热影响区可分为(熔合区)、(过热区)、(正火区)、(部分相变区)。
9.切削运动包括(主运动)和(进给运动)。
10.锻造的方法有(砂型铸造)、(熔模铸造)和(金属型铸造)。
11.车刀的主要角度有(主偏角)、(副偏角)、(前角)、(后角)、(刃倾角)。
12.碳素合金的基本相有(铁素体)、(奥氏体)、(渗碳体)。
14.铸件的凝固方式有(逐层凝固)、(糊状凝固)、(中间凝固)三种。
15.铸件缺陷中的孔眼类缺陷是(气孔)、(缩孔)、(缩松)、(夹渣)、(砂眼)、(铁豆)。
17.冲压生产的基本工序有(分离工序)和(变形工序)两大类。
20.切屑的种类有(带状切屑)、(节状切屑)、(崩碎切屑)。
21.车刀的三面两刃是指(前刀面)、(主后刀面)、(副后刀面)、(主切削刃)、(副切削刃)。
二、名词解释:1.充型能力:液态合金充满铸型型腔,获得形状完整、轮廓清晰铸件的能力,成为液态合金的充型能力。
2.加工硬化:随着变形程度增大,金属的强度和硬度上升而塑性下降的现象称为加工硬化。
3.金属的可锻性:衡量材料在经受压力加工时获得优质制品难易程度的工艺性能,称为金属的可锻性。
4.焊接:利用加热或加压等手段,借助金属原子的结合与扩散作用,使分离的金属材料牢固地连接起来的一种工艺方法。
5.同素异晶转变:随着温度的改变,固态金属晶格也随之改变的现象,称为同素异晶转变。
6.起模斜度:为使型芯便于从砂型中取出,凡垂直于分型面的立壁在制造模样时,必须留出一定的倾斜度,此倾斜度称为起模斜度。
7.积屑瘤:在一定范围的切削速度下切削塑性金属时,常发现在刀具前刀面靠近切削刃的部位粘附着一小块很硬的金属,这就是积屑瘤。
8.结晶:金属的结晶就是金属液体转变为晶体的过程,亦即金属原子由无序到有序的排列过程。
9.热处理:就是将钢在固态下,通过加热、保温和冷却,以改变钢的组织,从而获得所需性能的工艺方法。
10.锻造:利用冲击力或压力使金属在抵铁间或锻模中变形,从而获得所需形状和尺寸的锻件,这类工艺方法称为锻造。
三、简答题:1.铸型分型面的选择原则是什么?答:(1)应使造型工艺简化。
如尽量使分型面平直、数量少,避免不必要的活块和型芯等。
(2)应尽量使铸件全部或大部置于同一砂箱,以保证铸件的精度。
(3)为便于造型、下芯、合箱和检验铸件的壁厚,应尽量使型腔及主要型芯位于下箱。
2.影响金属可锻性的因素有哪些?答:金属的可锻性取决于金属的本质和加工条件。
对于金属本质来说:(1)不同化学成分的金属其可锻性不同;(2)金属内部的组织结构不同,其可锻性有很大差别;对于加工条件来说:(1)变形温度的影响;(2)变形速度的影响;(3)应力状态的影响;3.简述焊接接头热影响区的组织和性能?答:焊接接头热影响区可分为:熔合区、过热区、正火区和部分相变区等。
(1)熔合区:熔化的金属凝固成铸态组织,未熔化金属因加热温度过高而成为过热粗晶。
强度、塑性和韧性都下降。
(2)过热区:由于奥氏体晶粒急剧长大,形成过热组织,故塑性及韧性降低。
(3)正火区:加热时金属发生重结晶,转变为细小的奥氏体晶粒。
冷却后得到均匀而细小的铁素体和珠光体组织,其力学性能优于母材。
(4)部分相变区:珠光体和部分铁素体发生重结晶,转变成细小的奥氏体晶粒。
部分铁素体不发生相变,但其晶粒有长大趋势。
冷却后晶粒大小不均,因而力学性能比正火区稍差。
4.简述车削的工艺特点及应用?答:车削的工艺特点:(1)易于保证工件各加工面的位置精度;(2)切削过程比较平稳;(3)适用于有色金属零件的精加工;(4)刀具简单。
车削的应用:可以加工各种回转表面,如内外圆柱面、内外圆锥面、螺纹、沟槽、断面和成形面等。
加工精度可达IT8—IT7,表面粗糙度Ra值为1.6—0.8um。
5.对刀具材料有哪些基本要求?答:(1)较高的硬度;(2)足够的强度和韧度,以承受切削力、冲击和振动;(3)较好的耐磨性;(4)较高的耐热性;(5)较好的工艺性。
6.板料冲压工艺的特点是什么?答:(1)可以冲压出形状复杂的零件,且废料较少;(2)产品具有足够高的精度和较低的表面粗糙度值,冲压件的互换性较好;(3)能获得重量轻、材料消耗少、强度和刚度都较高的零件;(4)冲压操作简单,工艺过程便于机械化和自动化,生产效率很高。
故零件成本低。
7.切削液的作用是什么?有哪些种类?答:切削液主要通过冷却和润滑作用来改善切削过程。
它一方面吸收并带走大量切削热,起到冷却作用;另一方面它能渗入到刀具与工件和切屑的接触便面,形成润滑膜,有效地减少摩擦。
切削液的种类:(1)水基切削液,如:水溶液、乳化液等;(2)油基切削液,主要成分是矿物油,少数采用动植物油或复合油。
8.简述铣削的工艺特点及应用?答:铣削的工艺特点:(1)生产率较高;(2)容易产生振动;(3)刀齿散热条件较好。
铣削的应用:主要用来加工平面(包括水平面、垂直面和斜面)、沟槽、成形面和切断等。
加工精度可达IT8—IT7,表面粗糙度Ra值为1.6—3.2um。
9.简述防止焊接变形和开裂的方法?答:焊接应力的存在会引起焊件的变形。
防止焊接变形的方法:(1)在结构设计中采用对称结构或大刚度结构、焊缝对称分布结构;(2)施焊中,采用反变形措施或刚性夹持方法;(3)正确选择焊接参数和焊接次序,对减少焊接变形也很重要;焊接应力过大的严重后果是使焊件产生裂纹。
防止焊接开裂的方法:(1)合理选材;(2)采取措施减小应力;(3)选用合理的焊接工艺和焊接参数(如采用碱性焊条、小能量焊接、预热、合理的焊接次序)。
10.简述钻削的工艺特点及应用?答:钻削的工艺特点:(1)容易产生“引偏”(2)排屑困难;(3)切削热不易传散;钻削的应用:主要用于粗加工,例如精度和粗糙度要求不高的螺钉孔、油孔和螺纹底孔等。
加工精度IT10以下,表面粗糙度Ra值大于12.5um。
11.为保证铸件性能,对铸件结构有哪些要求?答:(1)应尽量避免铸件起模方向存有外部侧凹,便于起模;(2)尽量使分型面为平面;(3)凸台和筋条结构应便于起模;(4)垂直分型面上的不加工表面最好有结构斜度;(5)尽量不用和少用型芯;(6)应有足够的芯头,以便于型芯的固定、排气和清理;(6)合理设计铸件的壁厚;(7)铸件的壁厚应尽可能均匀;(8)设计铸件壁的联接或转角时,也应尽力避免金属的积聚和内应力的产生;(9)为防止热裂,可在铸件易裂处增设防裂筋;(10)设计铸件的筋、辐时,应尽量使其得以自由收缩,以防产生裂纹。
11.铣削方式有哪些?各有何优、缺点?答:铣削方式有:周铣法(用圆柱铣刀的圆周力齿加工平面)和端铣法(用端铣刀的端面刀齿加工平面)。
优缺点:(1)端铣的切削过程比周铣时平稳,有利于提高加工质量;(2)端铣可以达到较小的表面粗糙度。
(3)端铣时,刀具系统的刚度较好;生产效率高,加工表面质量好。
(4)周铣法的适应性广。
13.焊缝布置的工艺原则是什么?答:(1)焊缝布置应尽量分散;(2)焊缝的位置应可能对称布置;(3)焊缝应尽量避开最大应力断面和应力集中位置;(4)焊缝应尽量避开机械加工表面;(5)焊缝位置应便于焊接操作;14.焊接接头的形式有哪些?答:焊接接头形式可分为对接接头、T形接头、角形接头和搭接接头四种。
15.纤维组织是怎样形成的?有何利弊?答:铸锭在压力加工中产生塑性变形时,基体金属的晶粒形状和沿晶界分布的杂质形状都发生了变形,它们都将沿着变形方向被拉长,呈纤维状。
这种结构叫纤维组织。
纤维组织使金属在性能上具有了方向性。
金属在平行纤维方向上的塑性和韧性提高,而在垂直纤维方向上塑性和韧性降低。
在设计和制造零件时,都应使零件在工作中产生的最大正应力方向与纤维方向重合,最大切应力方向与纤维方向垂直。
并使纤维分布与零件的轮廓相符合,尽量使纤维组织不被切断。
金属工艺学1.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响?答:决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。
合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。
2.何谓合金的收縮?影响合金的收縮的因素有哪些?答:合金在浇注、凝固直至冷却至室温过程中体积和尺寸縮减的现象,称为收縮。
影响合金收縮的原因有化学成分、浇注温度、铸件的结构和铸件条件。
3.何谓同时凝固原则和定向凝固原则?答:同时凝固原则:将内浇道开在薄壁处,在远离浇道处放置冷铁,那么,薄壁处因被高温金属液加热而凝固减缓,厚壁处因冷铁激冷而凝固加快,从而达到同时凝固。
定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
4 试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。
答:石墨在灰铸铁中以片状形式存在,易引起应力集中。
石墨数量越多,形态愈粗大、分布愈不均匀,对金属的割裂就愈严重。
从而抗拉强度低、塑性差,但良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。
石墨化不充分易产生白口,铸铁硬脆难以切削加工,石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。
5 影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?答:主要因素:化学成分和冷却速度铸铁件的化学成分相同时铸铁的壁厚不同其组织和性能不同。
在厚壁处冷却速度较慢,易获得铁素体基体和粗大的石墨片,力学性能较差:而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。
6为什么普通灰铸铁热处理效果不如球墨铸铁好?普通灰铸铁常用的热处理方法有哪些?其目的是什么?答:普通灰铸铁组织中粗大的石墨片对基体的破坏程度不能依靠热处理来消除或改进:而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。
常用的热处理:时效处理,目的是消除内应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。
7试述电阻对焊和闪光对焊的过程,为什么闪光对焊为固态下的连接接头。
电阻对焊:先将焊件夹紧并加压,然后通电使接触面温度达到金属塑性变形温度,接触面金属在压力下产生塑性变形和再结晶,形成固态焊接接头闪光对焊:闪光对焊的关键是先通电后接触,当温度分布达到合适的状态后,立刻施加顶锻力,将对接处所有液态物质全部挤压,使纯净的高温金属互相接触,在压力下产生塑性变形和再结晶,形成固态连接接头。