最新-高考数学考前必看系列材料之三回归课本篇 精品
- 格式:doc
- 大小:350.06 KB
- 文档页数:9
高三数学回归课本(教师)整合版work Information Technology Company.2020YEAR2高三数学回归课本材料必修1:集合与函数1、(P14:10)对于集合,A B ,我们把集合{},x x A x B ∈∉且叫做集合A 与B 的差集,记做A B -,若A B -=∅,则集合A 与B 之间的关系是 .B A ⊆2、(P37:7)下列说法正确的是____________________(2)(3)(1)定义在R 上的函数f(x)满足f(2)>f(1),则函数f(x)是R 上的增函数; (2)定义在R 上的函数f(x)满足f(2)>f(1),则函数f(x)在R 上不是减函数;(3)定义在R 上的函数f(x)在区间(]0,∞-上是增函数,在区间[)+∞,0上也是增函数,则函数f(x)在R 上是增函数.(4)定义在R 上的函数f(x)在区间(]0,∞-上是增函数,在区间()+∞,0上也是增函数,则函数f(x)在R 上是增函数. 3、(P40: 4)对于定义在R 上的函数f(x),下列说法正确的是__________________(2) (1)若f(-2)=f(2),则函数f(x)是偶函数;(2)若f(-2)≠f(2),则函数f(x)不是偶函数; (3)若f(-2)=f(2),则函数f(x)不是奇函数;4、(P29:10)已知集合A=R,B={-1,1},对应法则f :当x 为有理数时,f(x)=-1;当x 为无理数时,f(x)=1.该对应 _______是___________(填是或不是)从集合A 到集合B 的函数5、(P32:6)已知A={1,2,3,4},B={1,3,5}则_____________是从集合A 到集合B 的函数答案不唯一,如0)(x x f =引申题:直线x a =和函数()y f x =的图像的公共点可能有 个. 0或1 6、(P55:11)对于任意的R x x ∈21,,若函数f(x)=x 2, 则)2(2)()(2121x x f x f x f ++与的大小关系为________;)2(2)()(2121x x f x f x f +≥+ 引申题:(P71:12)对于任意的),0(,21+∞∈x x ,若函数f(x)=lgx ,则 结论又如何呢?7、(P94:19)已知一个函数的解析式为2y x =,它的值域是{}1,4,则函数的定义域为_____{}{}{}{}{}{}{}{}{}1,2,1,2,1,2,1,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,2------------引申题(P33:13)已知一个函数的解析式为2y x =,它的值域是[1,4],则这样的函数有___________个. 无数8、(P94:22)如果f(x)=x+1,则(((())))n ff f f f x 个 = . x+n3引申题:如果f(x)=2x+1,则(((())))n ff f f f x 个 = 122222221n n n x --++++++9、(P94:18)已知函数x y a b =+的图像如图所示,则a,b 的取值范围是 .1,1a b ><-,10、(P94:28)已知定义在实数集R 上的偶函数()f x 在区间[)0,+∞ 上是单调增函数,若(1)(lg )f f x <,求x 的取值范围. 答1(0,)(10,)10x ∴∈+∞11、(P53:例5)某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,设存期是x ,本利和(本金加上利息)为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存入本金1000元,每期利率为百分之二点二五,试计算5期后的本利和.变式题:若将“按复利计算利息”改为“按单利计算利息”呢?答:(1)*∈+=N x r a y x ,)1( (2)68.11170225.110005≈⨯元12、(P95:31)研究方程lg(x -1)+lg(3-x)=lg(a -x) )(R a ∈的实数解的个数.答:当4131>≤a a 或时,原方程没有实数根;当31≤<a 或413=a 时,原方程有一个实数根;当4133<<a 时,原方程有两个不相等的实数根;南菁中学课本基础知识回归(必修2,选修2—1)1.(必修2-- p52,5)用半径为r 的半圆形铁皮卷成一个圆锥筒的高是;2.(必修2--p52, 6)一个正三棱台的两个底面的边长分别等于8cm 和18cm ,侧棱长等于13cm ,则它的侧面积 ; 4682cm3.(必修2--p57, 5)钢球由于热膨胀而使半径增加千分之一,那么它的体积增加约 ;31000b44.(必修2--p87, 8)若三条直线10x y ++=,280x y -+=和350ax y +-=共有三个不同的交点,则a 满足的条件 ;1363a a a ≠≠≠-且且5.(必修2--p97,12)直线l 经过点(−2,3),且原点到直线l 的 距离是2,直线l 的 方程_________________________512260x y +-= 或2x =-6.(必修2--p97, 21的最小值为 ;57.(必修2--p117,13)求与圆22:(5)3C x y ++=相切,且在坐标轴上的截距相等的直线方程;50y x x y =++=或 8.(必修2--p117,19)设集合{}22(,)|4M x y x y =+≤,{}222(,)|(1)(1)(0)N x y x y r r =-+-≤> 当M N N ⋂=时,求实数r 的取值范围;02r <≤9.(必修2--p117,23)若直线y x b =+与曲线1x -b 的取值范围;220b=b b -<<≠±且或10.(必修2--p108, 6) 已知一个圆经过直线:240l x y ++=与圆22:2410C x y x y ++-+=的两个交点,并且有最小面积,则此圆的方程 .221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭11. (选修2—1 P41 3改编)若双曲线离心率为2,则它的两条渐近线的夹角等于_______.60°12. (必修2—p117, 15改编)已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l :x+y -3=0的交点,则直线l 的方程为_________x -6y +11 = 0或x +2y -5 = 013、(必修2 p65, 15)P 、A 、B 、C 是球面O 上的四个点,PA 、PB 、PC 两两垂直,且PA = PB= PC = 1,求球的体积和表面积。
2019-2020年高考数学考前必看系列之三回归课本篇新人教A 版一、选择题1.如果X = {}x |x >-1 ,那么(一上40页例1(1)) (A) 0 ⊆ X (B) {0} ∈ X (C) Φ ∈ X (D) {0} ⊆ X2.ax 2+ 2x + 1 = 0至少有一个负实根的充要条件是(一上43页B 组6) (A)0<a ≤1 (B) a<1 (C) a ≤1 (D) 0<a ≤1或a<03.命题p :“a 、b 是整数”,是命题q :“ x 2+ ax + b = 0 有且仅有整数解”的 (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件4.若y = 15x + b 与y = ax + 3互为反函数,则 a + b =(A) -2 (B) 2 (C) 425(D) -105.已知x + x – 1 = 3,则 + 的值为 (A) 3 3 (B) 2 5 (C) 4 5 (D) -4 5 6.下列函数中不是奇函数的是(A) y = (a x + 1)x a x -1 (B) y = a x – a -x 2 (C) y = | x |x (D) y = log a 1 + x1-x7.下列四个函数中,不满足f (x 1 + x 22 )≤f (x 1) + f (x 2)2的是(A) f (x ) = ax + b (B) f (x ) = x 2 + ax + b (C) f (x ) = 1x(D) f (x ) = - lnx8.已知数列{a n }的前n 项的和 S n = a n - 1(a 是不为0的实数),那么{a n } (A) 一定是等差数列 (B) 一定是等比数列 (C) 或者是等差数列,或者是等比数列 (D) 既不可能是等差数列,也不可能是等比数列二、填空题9.设A = ,B =,则A ∩B =_______. (一上17页例6)10.不等式x 2-3x -132-x≥1的解集是_______. (一上43页例5(2))11.已知A = {}x || x -a |< 4 ,B = {}x || x -2 |>3 ,且A ∪B = R ,则a 的取值范围是________. (一上43页B 组2)12.函数y = 的定义域是______;值域是______. 函数y =1-( 12)x 的定义域是______;值域是______. (一上106页A 组16)13.已知数列{a n }的通项公式为a n = pn + q ,其中p ,q 是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________. (一上117页116) 14.下列命题中正确的是 。
高考冲刺回归课本(三)一、基本知识篇(九)立体几何1.画三视图时要遵循“长对正,高平齐,宽相等”的原则,同时要注意几何体中与投影垂直或平行的线段及面的位置关系。
2.用斜二测画法画直观图时 ,线段的平行性保持不变,平行于x 轴、z 轴的线段的长度不变,平行于y 轴的线段,长度变为原来的一半。
从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;3.表面积公式圆柱的表面积)(2222l r r rl r S +=+=πππ圆锥的表面积)(2l r r rl r S +=+=πππ圆台的表面积)(212221l r l r r r S +++=π球的表面积24R S π=4.体积公式柱体的体积V=sh(s 为底面面积,h 为高) 锥体的体积V=sh 31(s 为底面面积,h 为高) 台体的体积h S S S S V )(31''++=(s 为底面面积,h 为高) 球的体积343R V π= 5. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ= 6.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;(3)向量法:异面直线上的向量所夹的角为锐角或者直角时,就是异面直线所成角,异面直线上的向量所夹的角为钝角时,就是异面直线所成角的。
7.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;向量法:直线和平面的法向量所成的锐角的余角就是直线与平面所成的角。
高考冲刺回归课本篇(一)亲爱的同学们,2009年高考在即,给大家精心编写了《2009年高考数学考前12天每天必看系列材料》,每一天的材料由两个部分组成,分别为《基本知识篇》和《回归课本篇》,这些内容紧密结合2009年的数学考试大纲,真正体现狠抓双基、突出能力、回归课本、强调思想方法、讲究考试答题技术,引领你们充满自信,笑傲高考。
请每天抽出40分钟读和写。
边读边回想曾经学习过的知识,边读边思考可能的命题方向,边读边整理纷繁复杂的知识体系等非常有必要!衷心祝愿2009届考生在6月7日的高考中都取得满意的成绩。
2009年高考数学考前12天每天必看系列材料之一(2009年5月26日)一、基本知识篇(一)集合与简易逻辑1.研究集合问题,一定要抓住集合的代表元素,如:{}x y x lg |=与{}x y y lg |=及{}x y y x lg |),(=2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;6.(1)含n 个元素的集合的子集个数为2n,真子集(非空子集)个数为2n-1; (2);B B A A B A B A =⇔=⇔⊆ (3)(),()I I I I I I C AB C A C B C A B C A C B ==。
高三数学考前回归课本复习材料004平面向量、排列组合概率1.→→b a ,是任意向量,给出:○1,→→=b a ○2→→=b a ,○3→→b a 与方向相反,○4,00→→→→==b a 或 →→b a ,都是单位向量,其中 是→→b a 与共线的充分不必要条件。
2.已知0≠-=⋅-⋅,且不垂直和,则()⋅⋅-与 ( )A 、相等B 、方向相同C 、方向相反D 、方向相同或相反3.设,,是任意的非零平面向量且互不共线,以下四个命题:①())(=⋅⋅-⋅⋅;②+ ;③()()垂直不与⋅⋅-⋅⋅ ④若与则⋅⊥,不平行其中正确命题的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个4.如果,0a b a c a ⋅=⋅≠且,那么( )A .b c =B .b c λ=C . b c ⊥D .,b c 在a 方向上的投影相等5.若()()方向在则b c c a b a ,0,7,4,3,2=+-==上的投影为 。
6.在ABC ∆中,︒===60,8,5C b a ,则⋅的值为 ( )A 20B 20-C 320D 320-7.若向量 =(cos α,sin α) , =()ββsin ,cos , 与不共线,则与一定满足( )A . 与的夹角等于α-βB .∥C .(+)⊥(-)D . ⊥ 8.设向量),(),,(2211y x y x ==,则2121y y x x =是//的( )条件。
A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要9.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( )① 存在一个实数λ,使=λ或=λ; ② |·|=|| ||;③ 2121y y x x =; ④ (+)//(-)A 、1个B 、2个C 、3个D 、4个10.向量→AB =(3,4)按向量a =(1,2)平移后为 ( )A 、(4,6)B 、(2,2)C 、(3,4)D 、(3,8)11.将函数y=2x 的图象按向量 →a 平移后得到y=2x+6的图象,给出以下四个命题:① →a 的坐标可以是(-3,0) ②→a 的坐标可以是(-3,0)和(0,6) ③→a 的坐标可以是(0,6)④→a 的坐标可以有无数种情况,其中真命题的个数是 ( )A 、1 B 、2 C 、3 D 、4 12.已知A (3,7),B (5,2),向量)21(,a AB =→→按平移后所得向量是 。
n a }一组对象的全体. ,x A ∈A的子集有真子集有2n ,A B B ⊆⊆{|x B A ={|x B A ={|U x x A =能够判断真假的语句。
原命题:p ,则q逆命题: q ,则p ,0,a b di ≠OZ,n x 的平均数是)n x +.,n x 的平均数为2()i x x -,标准差向量既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。
0向量0与任一非零向量共线】平行向量方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。
向量的模222222=+==+|,||a x y a a x y起点放在一点的两向量所成的角,范围是]0,π。
,a b 的夹角记为,a b <>。
,a b 〉锐角0a b ⇔⋅>,,a b 不同向;,a b 〉为直角0a b ⋅=;,a b 〈〉钝角0a b ⇔⋅<,,a b 不反向向量的夹角带有方向性:向量是有方向的,向量间的夹角表示两个向量正方向的夹角设a ,b 是两个非零向量,它们的夹角是,e 与b 是方向相同的单位向量,AB →=,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,—→投影,A B —→叫做向量a 在向量b 上的投影向量.记为12,e e 不共线,,)λμ,使12a e e λμ=+。
若12,e e 为,x y 的单位正交向量,a 的坐标。
一般表示坐标表示//a b (0b ≠共线⇔存在唯一实数λ,ab λ=1212x y y x ⇔-=00a b a b ⊥⇔=。
11220x y x y +=。
设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;向量加法的三角形法则可推广至多个向量相加: AB BC CD +++PQ QR ++AR =,但这时必须“首尾相连”。
1(a b x x +=+交换律a b b a +=+,结合律()()a b c a b c ++=++用“三角形法则”:设,,AB a AC b ==a b -那么AB AC CA =-=,由减向量的终点指向被减向量的终点。
高考数学考前必看系列材料之三回归课本篇《回归课本篇》(一上)一、选择题1.如果X = {}x |x >-1 ,那么(一上40页例1(1)) (A) 0 ⊆ X (B) {0} ∈ X (C) Φ ∈ X (D) {0} ⊆ X2.ax 2+ 2x + 1 = 0至少有一个负实根的充要条件是(一上43页B 组6) (A)0<a ≤1 (B) a<1 (C) a ≤1 (D) 0<a ≤1或a<03.命题p :“a 、b 是整数”,是命题q :“ x 2+ ax + b = 0 有且仅有整数解”的 (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件4.若y = 15x + b 与y = ax + 3互为反函数,则 a + b =(A) -2 (B) 2 (C) 425 (D) -105.已知x + x – 1 = 3,则23x + 23-x 的值为 (A) 3 3 (B) 2 5 (C) 4 5 (D) -4 5 6.下列函数中不是奇函数的是(A) y = (a x + 1)x a x -1 (B) y = a x – a -x 2 (C) y = | x |x (D) y = log a 1 + x1-x7.下列四个函数中,不满足f (x 1 + x 22 )≤f (x 1) + f (x 2)2的是(A) f (x ) = ax + b (B) f (x ) = x 2 + ax + b (C) f (x ) = 1x(D) f (x ) = - lnx8.已知数列{a n }的前n 项的和 S n = a n - 1(a 是不为0的实数),那么{a n } (A) 一定是等差数列 (B) 一定是等比数列 (C) 或者是等差数列,或者是等比数列 (D) 既不可能是等差数列,也不可能是等比数列二、填空题 9.设A =(){}6x 4y y ,x +-=,B =(){}3x 5y y ,x -=,则A ∩B =_______. (一上17页例6)10.不等式x 2-3x -132-x≥1的解集是_______. (一上43页例5(2))11.已知A = {}x || x -a |< 4 ,B = {}x || x -2 |>3 ,且A ∪B = R ,则a 的取值范围是________. (一上43页B 组2) 12.函数y = 1x 218-的定义域是______;值域是______. 函数y =1-( 12)x 的定义域是______;值域是______. (一上106页A 组16)13.已知数列{a n }的通项公式为a n = pn + q ,其中p ,q 是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________. (一上117页116) 14.下列命题中正确的是 。
,A B B ⊆⊆{|x B ={|U x x A =能够判断真假的语句。
原命题: p ,则q模的性质:⑴n次试验中发生了当试验的次数n很大时,发生的概率的近似值,即222,x y =+两点间的距离 )(121x y y -+-起点放在一点的两向量所成的角,范围是cos b 【注意:投影是数量】 ,e e 不共线,存在唯一的实数对(,λμ,使a e e λμ=+。
若,e e 为,x y 一般表示//a b (b≠b λ1212x y y x ⇔-=0b AB BC AC +=+=;向量加法的三角形法则可推广至多个向PQ QR ++AR ,但这时必须“首尾相连”。
a b +交换律a b b a +=+,,AC b =a b -那么CA =,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
(a b x -=-为向量,0λ>与a 方向相同, 0<与a 方向相反,a a λ=。
分配律b b a λλ++(表示。
cos ,a b a b a b =⋅<>2a =22,x y =+ab b a =,分配律(a b +()()a b a b λλ==。
向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一切记两向量不能相除(相约);(2)()()a b c a b c •≠•(),x y =,称(),x y 为向量n≥(正数a b +≥33abc (a b +b b m a a m +<+.【说明】:b b m a a m+<+(0,0a b m >>>f x为奇函数。
()这两个式子有意义的前提条件是:定义域关于原点对称。
确定奇偶性方法有定义法、图像法等;如判断函数(f②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内单调性.研究内外层函数的单调性的关系;的取值范围是数形结合函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如已知点(,)P x y 在圆221x y +=上,求2yx +的取值范围(答:33[,]33-);求22(2)(8)y x x =-++的值域(答:[10,)+∞);判别式求21x y x =+的值域(答:11[,]22-); 不等式利用基本不等式2(,)a b ab a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
函数基本概念回归课本复习材料1一.考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.二.基础知识:1.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠.2..解连不等式()N f x M <<3.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在 ),(21k k 内,等价于0)()(21<k f k f4.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a b x 2-=处及区间的两端点处取得,具体如下:当a>0时,若[]q p ab x ,2∈-=,则 {}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p ab x ,2∉-=,{}max max ()(),()f x f p f q =, {}min min ()(),()f x f p f q =.当a<0时,若[]q p ab x ,2∈-=,则 {}min()min (),()f x f p f q =,若 []q p ab x ,2∉-=,则 {}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .6.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩. 7.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.7.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.8.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.9.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.10.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称. 11.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.13.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.14.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.15.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.16.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.17.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 18.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α= '()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,(5)三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-。
高考数学回归课本必备1.区分集合中元素的形式:如:|lg x y x —函数的定义域;|lg y y x —函数的值域;(,)|lg x y yx —函数图象上的点集。
2.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况. 3,含n 个元素的集合的子集个数为2n ,真子集个数为2n -1; 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
(答:7) 4、C U (A ∩B)=C U A ∪C U B; C U (A ∪B)=C U A ∩C U B;card(A ∪B)=? 5、A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U 6、命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝;命题“p 或q ”的否定是“┐P 且┐Q”,“p 且q ”的否定是“┐P 或┐Q”7、指数式、对数式:m n mna a=1m nm naa -=,,01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log (0,1,0)ba a N Nb a a N =⇔=>≠>,log a N a N =。
8、二次函数①三种形式:一般式f(x)=ax 2+bx+c(轴-b/2a,a ≠0,顶点?);顶点f(x)=a(x-h)2+k;零点式f(x)=a(x-x 1)(x-x 2)(轴?);b=0偶函数;③区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系; 如:若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2) ④实根分布:先画图再研究△>0、轴与区间关系、区间端点函数值符号;方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件。
江苏省江阴高级中学2008届高三数学回归课本材料集合与函数(必修1)一、重点知识1、集合的概念、运算、性质①理解集合中元素的意义.....是解决集合问题的关键,区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集;②已知集合A 、B ,当∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;B A ⊆或求集合的子集时是否忘记∅?③含n 个元素的集合的子集个数为2n ,真子集个数为2n -1;④A∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A∩C U B=∅⇔C U A ∪B=U ;⑤补集思想常运用于解决否定型或正面较复杂的有关问题;⑥数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决。
2、映射的概念:关键词:每 唯一 单值对应3、函数的概念、三要素及其相互关系,函数的表示方法(列表法、图象法、解析法)Ⅰ判定相同函数:定义域相同且对应法则相同Ⅱ求函数解析式的常用方法:⑴待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--)。
如P93.13⑵代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式. 这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域。
⑶方程的思想――对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。
Ⅲ求定义域:使函数解析式有意义(如:分母?;偶次根式被开方数?;对数真数?,底数?;零指数幂的底数?);实际问题有意义;若f(x)定义域为[a,b],复合函数f[g(x)]定义域由a ≤g(x)≤b 解出;若f[g(x)]定义域为[a,b],则f(x)定义域相当于x ∈[a,b]时g(x)的值域.Ⅳ求值域: ①配方法: ②逆求法(反求法): ③换元法: ④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑤不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值。
20XX 届高三数学考前回归课本(必修I )姓名 得分一、填空题 1.若{}{}{},3,,31,,32,U Z A x x k k Z B x x k k Z C x x k k Z ===∈==+∈==+∈,则U C A = ,U C B = ,U C C = 。
2.设全集为U ,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。
(1)______________ (2)_________________3.对于集合,A B ,我们把集合{},x x A x B ∈∉且叫做集合A 与B 的差集,记做A B -,若A B -=∅,则集合A 与B 之间的关系是 。
4.若满足{}{},,,a b A a b c =的集合A 的个数为 。
5.设集合2{|1,},{|1,}M y yx x R N y y x x R ==+∈==+∈,则M∩N= 。
6.已知{|35}A x x =-<<,{|},B x x a A B =>⊆,则实数a 的取值范围是 。
7.符合条件{1}{1,2,3}A ⊂⊆的集合A 有 个 8.下列对应为函数的正确序号为 。
①1,2x x x R →-∈; ②x y →,其中,,y x x R y R =∈∈; ③t s →,其中2,,s t t R s R =∈∈;④x y →,其中y 为不大于x 的最大整数,,x R y Z ∈∈.9.直线x a =和函数()y f x =的图像的公共点可能有 个。
10.已知一个函数的解析式是21y x =+,它的值域为[]2,5,这样的函数有 个11.已知一个函数的解析式为2y x =,它的值域是{}1,4,则函数的定义域为.12.当a = 时,函数1()41x f x a =++是奇函数. 13.如果()21f x x =+,则(((())n ff f f f x 个= 。
14.已知函数xy a b =+的图像如图所示,则a,b 的取值范围是 . 二、解答题15.已知定义在实数集R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,若(1)(lg )f f x <,求x 的取值范围.b回归课本(必修I )答案1.,,BC A C A B ,2.()U A C B ⋂,[()]()U C A B A B ⋂⋃⋃,3.A B =∅4.4,5.{|1}y y ≥,6.3a ≤-,7.3,8.①②③④,9.0或1,10.无数, 11.{}{}{}{}{}{}{}{}{}1,2,1,2,1,2,1,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,2------------12.12-,13.122222221n n n x --++++++.14.1,1a b ><-,15. ()f x 是R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,()f x 在(],0-∞上是单调减函数,又(1)(lg )f f x <,lg 1x ∴>或lg 1x <-,1(0,)(10,)10x ∴∈+∞。
高中数学考前回归教材资料亲爱的高三同学,当您即将迈进考场时,对于以下100个问题,您是否有清醒的认识? 1.集合中的元素具有无序性和互异性.如集合{},2a 隐含条件2a ≠,集合{}|(1)()0x x x a --=不能直接化成{}1,a .2.研究集合问题,一定要抓住集合中的代表元素,如:{x y x lg |=}与{x y y lg |=}及{x y y x lg |),(=}三集合并不表示同一集合;再如:“设A={直线},B={圆},问A ∩B 中元素有几个?能回答是一个,两个或没有吗?”与“A={(x, y )| x + 2y = 3},B={(x, y )|x 2 + y 2 = 2}, A ∩B 中元素有几个?”有无区别?过关题:设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则MN =___(答:[1,)+∞)3 .进行集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和韦恩图进行求解;若AB=φ,则说明集合A 和集合B 没公共元素,你注意到两种极端情况了吗?A φ=或B φ=;对于含有n 个元素的有限集合M ,其子集、真子集、和非空真子集的个数分别是2n、21n-和22n-,你知道吗?你会用补集法求解吗?A 是B 的子集⇔A ∪B=B ⇔A ∩B=A ⇔ A B ⊆,你可要注意A φ=的情况.过关题:已知集合A={-1, 2}, B={x| m x + 1 = 0},若A ∩B=B ,则所有实数m 组成的集合为 .答:1{0,1,}2m =-已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围.答:3(3,)2-)4 .(1)求不等式(方程)的解集,或求定义域时,你按要求写成集合或区间的形式了吗?(2)你会求分式函数的对称中心吗? 过关题:已知函数()1a xf x x a -=--的对称中心是(3, -1),则不等式f (x ) > 0的解集是 .答:{|23}x x <<5 .求一个函数的解析式,你注明了该函数的定义域了吗?6 .四种命题是指原命题、逆命题、否命题和逆否命题,它们之间有哪三种关系?只有互为逆否的命题同真假!复合命题的真值表你记住了吗?命题的否定和否命题不一样,差别在哪呢?充分条件、必要条件和充要条件的概念记住了吗?如何判断?反证法证题的三部曲你还记得吗?假设、推矛、得果.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件)若p q ⇒且q p ≠;则p 是q 的充分非必要条件(或q 是p 的必要非充分条件);注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝命题“p 或q ”的否定是“┐P 且┐Q ”,“p 且q ”的否定是“┐P 或┐Q ”注意:如 “,a b Z ∈,若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”;否定是“若a 和b 都是偶数,则b a +是奇数”7.绝对值的几何意义是什么?不等式c b ax <+||,c b ax >+||)0(>c 的解法掌握了吗? 过关题:| x | + | x – 1|<a 的解集非空,则a 的取值范围是 ,| x | – | x – 1|<a 恒成立,则a 的取值范围是 .有解,则a 的取值范围是 .答:1a >;1a >;1a >-8.如何利用二次函数求最值?注意对2x 项的系数进行讨论了吗?若2(2)2(2)10a x a x -+--<恒成立,你对2a -=0的情况进行讨论了吗? 若改为二次不等式2(2)2(2)10a x a x -+--<恒成立,情况又怎么样呢? 9. (1)二次函数的三种形式:一般式、交点式、和顶点式,你了解各自的特点吗?(2)二次函数与二次方程及一元二次不等式之间的关系你清楚吗?你能相互转化吗?(3)方程有解问题,你会求解吗?处理的方法有几种? 过关题:不等式a x 2 + b x + 2 > 0的解集为11{|}23x x -<<,则a + b = . 答:14-过关题:方程2sin 2 x – sinx + a – 1 = 0有实数解,则a 的取值范围是 . 答:9[2,]8-特别提醒:二次方程02=++c bx ax 的两根即为不等式02>++c bx ax )0(<解集的端点值,也是二次函数c bx ax y ++=2的图象与x 轴的交点的横坐标.对二次函数c bx ax y ++=2,你了解系数,,a b c 对图象开口方向、在y 轴上的截距、对称轴等的影响吗?对函数2lg(21)y x ax =-+若定义域为R ,则221x ax -+的判别式小于零;若值域为R ,则221x ax -+的判别式大于或等于零,你了解其道理吗?例如:y = lg(x 2 + 1)的值域为 ,y = lg(x 2 – 1) 的值域为 ,你有点体会吗? 答:[0,);(,)+∞-∞+∞10求函数的单调区间,你考虑函数的定义域了吗?如求函数22log (23)y x x =--的单调增区间?再如已知函数2log (21)a y x ax =--在区间[2,3]上单调减,你会求a 的范围吗? 答:304a <<若函数222y x ax =-+的单调增区间为[)2,+∞,则a 的范围是什么? 答:2a =若函数222y x ax =-+在x ∈[)2,+∞上单调递增,则a 的范围是什么? 答:2a ≤ 两题结果为什么不一样呢?11.函数单调性的证明方法是什么?(定义法、导数法)判定和证明是两回事呀!判断方法:图象法、复合函数法等. 还记得函数单调性与奇偶性逆用的例子吗?(⑴ 比较大小;⑵ 解不等式;⑶ 求参数的范围.)如已知3()5sin f x x x =+,(1,1)x ∈-,2(1)(1)0f a f a -+-<,求a 的范围. 答:求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间是区间不能用集合或不等式表示.12.判断函数的奇偶性时,注意到定义域的特点了吗?(定义域关于原点对称这个函数具有奇偶性的必要非充分条件).过关题:f (x ) = a x 2 + b x + 3 a + b 是偶函数,其定义域为[a – 1, 2a ],则a = , b = .答:1;0313.常见函数的图象作法你掌握了吗?哪三种图象变换法?(平移、对称、伸缩变换) 函数的图象不可能关于x 轴对称,(为什么?)如:y 2 = 4x 是函数吗?函数图象与x 轴的垂线至多一个公共点,但与y 轴的垂线的公共点可能没有,也可能任意个; 函数图象一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图象;如圆;图象关于y 轴对称的函数是偶函数,图象关于原点对称的函数是奇函数.指数函数与对数函数关于直线y x =对称,你知道吗?过关题:函数y = 2f (x – 1)的图象可以由函数y = f (x )的图象经过怎样的变换得到?已知函数y = f (x ) (a ≤x ≤b ),则集合{(x, y )| y = f (x ) ,a ≤x ≤b } ∩{(x, y )| x = 0}中,含有元素的个数为( ) A. 0或1 B. 0 C. 1 D. 无数个 答:A14.由函数()y f x =图象怎么得到函数()y f x =-的图象? 答:以y 轴为对称轴翻折 由函数()y f x =图象怎么得到函数()y f x =-的图象? 答:以x 轴为对称轴翻折 由函数()y f x =图象怎么得到函数()y f x =--的图象? 答:以(0,0)为对称中心翻折 由函数()y f x =图象怎么得到函数(||)y f x =的图象? 答:去左翻右过关题:f (x ) = log 2 x 关于直线y x =的对称函数(反函数) .答:2x y =15.函数)0(>+=k xkx y 的图象及单调区间掌握了吗?如何利用它求函数的最值?与利用基本不等式求最值的联系是什么?若k <0呢? 你知道函数的单调区间吗?(该函数在],(ab--∞或),[+∞a b 上单调递增;在],0(a b 或)0,[ab -上单调递减)这可是一个应用广泛的函数! 求函数的最值,一般要指出取得最值时相应的自变量的值.16.(1)切记:研究函数性质注意一定在该函数的定义域内进行!一般是先求定义域,后化简,再研究性质.过关题:()212log 2y x x =-+的单调递增区间是________(答:(1,2)).已知函数f (x ) = log 3 x + 2, x ∈[1, 9],则函数g (x ) = [f (x )] 2 + f (x 2)的最大值为 . 答:13 求解中你注意到函数g (x )的定义域吗?(2)抽象函数在填空题中,你会用特殊函数去验证吗?(即找函数原型)过关题12:已知)(x f 是定义在R 上的奇函数,且为周期函数,若它的最小正周期为T ,则=-)2(Tf __(答:0)几类常见的抽象函数 :①正比例函数型:()(0)f x kx k =≠ ---------------()()()f x y f x f y ±=±; ②幂函数型:2()f x x = --------------()()()f xy f x f y =,()()()x f x f y f y =; ③指数函数型:()x f x a = ----------()()()f x y f x f y +=,()()()f x f x y f y -=; ④对数函数型:()log a f x x = ---()()()f xy f x f y =+,()()()x f f x f y y=-; ⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-.17.解对数函数问题时注意到真数与底数的限制条件了吗?指数、对数函数的图象特征与性质明确了吗?对指数函数x y a =,底数a 与1的接近程度确定了其图象与直线1y =接近程度;对数函数log a y x =呢? 你还记得对数恒等式(N a Na =log )和换底公式吗?知道:log log m n a a nN N m=吗?指数式、对数式:m na =1m nm naa -=,01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =⇔=>≠>,log a N a N =.如2log1()2的值为________(答:164) 18.你还记得什么叫终边相同的角?若角α与β的终边相同,则2,()k k Z αβπ=+∈ 若角α与β的终边共线,则:,()k k Z αβπ=+∈若角α与β的终边关于x 轴对称,则:2,()k k Z αβπ=-+∈ 若角α与β的终边关于y 轴对称,则:2,()k k Z απβπ=-+∈ 若角α与β的终边关于原点对称,则:(21),()k k Z αβπ=++∈ 若角α与β的终边关于直线y x =对称,则:2,()2k k Z παβπ=-+∈各象限三角函数值的符号:一全正,二正弦,三两切,四余弦;15,75︒︒角的正弦、余弦、正切值还记得吗? 19.三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出它们的单调区间、对称中心、对称轴及其取得最值时的x 值的集合吗?(别忘了Z k ∈) 函数y =2sin(6π– 2x )的单调递增区间是[,]()63k k k Z ππππ-++∈吗?你知道错误的原因吗?tan y x =图象的对称中心是点(,0)2k π,而不是点(,0)k π()k Z ∈你可不能搞错了! 你会用单位圆比较sinx 与cosx 的大小吗?当(0,)2x π∈时,x, sinx, tanx 的大小关系如何?过关题:函数tan y x =与函数sin y x =图象在x ∈[-2π,2π]上的交点的个数有 个? 答:520.三角函数中,两角αβ、的和、差公式及其逆用、变形用都掌握了吗?倍角公式、降次公式呢?sin cos )a x b x x ϕ+=+中ϕ角是如何确定的?(可由cos sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩确定,也可由tan b a ϕ=及,a b 的符号来确定)公式的作用太多了,有此体会吗?重要公式: 22cos 1sin 2αα-=;22cos 1cos 2αα+=.;αααααααs i n c o s 1c o s 1s i n c o s 1c o s 12t a n -=+=+-±=; 2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±等,你还记住哪些变形公式?特殊角三角函数值你记清楚了吗?如:函数25f (x )sin xcos x x =-x R )∈的单调递增区间为___________(答:51212[k ,k ](k Z )ππππ-+∈) 巧变角:如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____(答:322); (2)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<) (3)若x =6π是函数y = a sinx – b cosx 的一条对称轴,则函数y = b sinx – a cosx 的一条对称轴是 A.6π B.3π C. 2πD. π ( )答:B 21.会用五点法画)sin(ϕω+=x A y 的草图吗?哪五点?会根据图象求参数A 、ω、ϕ的值吗?什么是振幅、初相、相位、频率? 答:||,,,2A wx ωϕϕπ+ 22.同角三角函数的三个基本关系,你记住了吗?三角函数诱导公式的本质是:“奇变偶不变,符号看象限” 函数522y sin x π⎛⎫=-⎪⎝⎭的奇偶性是______(答:偶函数) 23.正弦定理、余弦定理的各种表达形式你还记得吗?会用它们解斜三角形吗?如何实现边角互化?(用:面积公式,正弦定理,余弦定理,大角对大边等实现转化),三角形解的个数题型你熟悉吗(一解、两解、无解)?24.你对三角变换中的几种常见变换清楚吗?(1)角的变换:和差、倍角公式、异角化同角、单复角互化; (2)名的变换:见切化弦; (3)次的变换:降幂公式;(4)形的变换:通分、去根式、1的代换221sin cos αα=+=tan sin cos042ππ==)等,这些统称为1的代换.25.在已知三角函数中求一个角时,你(1)注意考虑两方面了吗?(先判定角的范围,再求出某一个三角函数值)(2)注意考虑到函数的单调性吗?过关题:1sin cos ,82ππααααα=<<且,则cos -sin 的值为4 .答:过关题: sin 510αβαβ==且,为锐角, 则αβ+= .答:4π26.形如)sin(ϕω+=x A y +b ,)tan(ϕω+=x A y 的最小正周期会求吗?有关周期函数的结论还记得多少? 周期函数对定义域有什么要求吗?求三角函数周期的几种方法你记得吗?怎么证明函数为周期函数?27、)sin(ϕω+=x A y +b 与y =sinx 变换关系:φ正左移负右移;b 正上移负下移;)sin()sin(sin 1||Φ+=−−−−−−−→−Φ+=−−−−→−=Φx y x y x y ωω倍横坐标伸缩到原来的左或右平移)sin(sin sin ||1Φ+=−−−−→−=−−−−−−−→−=Φx y x y x y ωωωω左或右平移倍横坐标伸缩到原来的b x A y x A y b A +Φ+=−−−−→−Φ+=−−−−−−−→−)sin()sin(||ωω上或下平移倍纵坐标伸缩到原来的28.在解含有正余弦函数的问题时,你深入挖出正余弦的有界性了吗? 过关题:已知21cos sin =βα,求αβcos sin 的变化范围.答:11[,]22-提示:整体换元,令αβcos sin = t ,然后与sin cos αβ相加、相减,求交集. 29.请记住αα±(sin cos )与sin cos αα之间的关系.过关题:求函数y = sin 2x + sinx + cosx 的值域.答:5[1]4- 30 常见角的范围①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是]2,0(π,]2,0[π,],0[π; ②直线的倾斜角、与的夹角的取值范围依次是[0,)π, [0,]2π31以下几个结论你记住了吗?⑴ 如果函数)(x f 的图象关于直线a x =对称,那么函数)(x f 满足关系式为 , 且函数)(x f 若为奇函数,则函数)(x f 的周期为 . 答:()(),4||f a x f a x a +=-⑵ 如果函数)(x f 满足关于点(a,b )中心对称,那么函数)(x f 满足关系式为 ; 答:()()2f a x f a x b ++-=⑶ 如果函数)(x f 的图象既关于直线a x =成轴对称,又关于点),(c b 成中心对称, 那么)(x f 是周期函数,周期是T =||4b a -. (4)()()f x a f b x +=-,则()f x 的图象关于2a bx +=对称.过关题:已知函数f (x )是偶函数,g (x )是奇函数,且满足g (x ) = f (x – 1),则f (2006) + f (2007) + f (2008) = . 答:032.你还记得弧度制下的弧长公式和扇形面积公式吗?1||,2l r S lr α==若α是角度,公式又是什么形式呢?过关题: 已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积.(答:22cm ), 曲线2cos 2sin x y θθ=⎧⎨=⎩(θ为参数,且3ππθ-≤≤-)的长度为 . 答:43π33.三角形中的三角函数的几个结论你还记得吗?⑴ 内角和定理:三角形三内角和为π, sin sin()A B C =+,cos cos()A B C =-+,sin cos()22A B C+= ⑵ 正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径), 注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解⑶ 余弦定理:2222cos a b c bc A =+-,222cos 2b c a A bc +-=22()12b c a bc+-=-等,常选用余弦定理鉴定三角形的类型. ⑷ 面积公式:11sin 224a abcS ah ab C R===,内切圆半径r=c b a S ABC ++∆2(5)两边之和大于第三边,两边之差小于第三边,大角对大边,大边对大角,你注意到了吗?sin sin A B A B >⇔>,你会证明吗?(6)已知A b a ,,时三角形解的个数的判定:(7)三角形为锐角三角形满足什么条件? 34.常见的三角换元法:已知222a y x =+,可设θθsin ,cos a y a x ==;已知122≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r );已知12222=+by a x ,可设θθsin ,cos b y a x ==;35.重要不等式的指哪几个不等式?AC其中h=bsinA,⑴A 为锐角时:①a<h 时,无解;②a=h 时,一解(直角);③h<a<b 时,两解(一锐角,一钝角);④a ≥ b 时,一解(一锐角).⑵A 为直角或钝角时:①a ≤ b 时,无解;②a>b 时,一解(锐角).若0,>b a ,(12211a b +≥≥≥+(当且仅当b a =时取等号) ; (2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题). 36.倒数法则还记得吗?(指110,ab a b a b >>⇒<,常用如下形式:1100a b a b>>⇒<<,1100a b a b <<⇒>>)用此求值域的注意点是什么?如求函数121x y =-的值域,求函数112x y -=的值域呢?37.不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法及放缩法)(222()2||2a b a b ab ++≥≥)等号成立的条件是什么?基本变形:①≥+b a ;≥+2)2(b a ; 38利用重要不等式求函数的最值时,是否注意到一正,二定,三相等? 如:①函数)21(4294>--=x x x y 的最小值 .(答:8)②若若21x y +=,则24xy+的最小值是______(答:; ③正数,x y 满足21x y +=,则yx 11+的最小值为______(答:3+; 39.二元函数求最值的三种方法掌握了吗?方法一:转化为一元问题,用消元或换元的方法;方法二:利用基本不等式;方法三:数形结合法,距离型、截距型、斜率型)过关题:若正数a, b 满足a b = a + b + 3, 则a + b 的取值范围是 .(答:[)6,+∞) 40不等式的大小比较,你会用特殊值比较吗? 过关题:已知a > b > 0,且a b = 1,设2,log ,log ,log c c c c P a N b M ab a b====+, 则 A. P < M < N B. M < P < N C. N < P < M D. P < N < M ( ) 答:A41不等式解集的规范格式是什么?(一般要写成区间或集合的形式),另外“序轴标根法”解不等式的注意事项是什么?将不等式整理成一边为零的形式,将非零的那边因式分解,要求每个因式中未知量x 的最高次数项的系数均为正值,求各因式的零点,画轴,穿线,注意零点的重数,在写解集时还得考虑解集中是否包含零点. 如:解不等式32(3)(1)(2)0x x x +-+≥.(答:{|13x x x ≥≤-或或2}x =-);42.解分式不等式)0()()(≠>a a x g x f 应注意什么问题?(在不能肯定分母正负的情况下, 一般不能去分母而是移项通分)43.解含参数不等式怎样讨论?注意解完之后要写上:“综上,原不等式的解集是…”解不等式2()1ax x a R ax >∈- (综上,当0a =时,原不等式的解集是{|x 0}x <; 当0a >时,原不等式的解集是1{|x x a>或0}x <; 当0a <时,原不等式的解集是1{|0x x a<<}) 过关题:解关于x1>,(| a |≠1) 答:1,{|01}1,01,{|10}a x x x a a x x >><-∅<<-<<=或; ; 44.含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化) 45.解对数不等式应注意什么问题?(化成同底,利用单调性,底数和真数都大于零)过关题:解关于x的不等式:211421log (2)log 2x x -->. 答: (2,3)46.会用不等式||||||||||||a b a b a b -≤±≤+证一些简单问题吗?取等号需满足什么条件的? 47.不等式恒成立问题有哪几种处理方式?(特别注意一次函数型和二次函数型,还有恒成立理论) 过关题:对任意的a ∈[-1, 1],函数f (x ) = x 2 + (a – 4) x + 4 – 2a 的值总大于0,则x 的取值范围是 .答:(,1)(3,)-∞+∞过关题:当P(m, n )为圆x 2 + (y – 1) 2 = 1上任意一点时,不等式m + n + c ≥0恒成立,则c 的取值范围是 .答:1,)-+∞48.等差、等比数列的重要性质你记得吗?证明方法是什么? (等差数列中的重要性质:若,则;等差数列的通项公式:n a kn b =+型 前n 项和:2n S An Bn =+型 等比数列中的重要性质:若,则用等比数列求前n 项和时一定要注意公比q 是否为1?(时,;时,)过关题:求和:2323n n S x x x nx =++++ 要注意什么?49.等差数列、等比数列的重要性质:11()n n a a d a +--=为常数的数列有什么性质?若{}n a 为等差数列,则21{}{}n n a ka b -+,也是等差数列,它们的公差是什么? 50.数列通项公式的常见求法:观察法(通过观察数列前几项与项数之间的关系归纳出第n 项n a 与项数n 之间的关系)公式法(利用等差、等比数列的通项公式或利用11n n n S a S S -⎧=⎨-⎩12n n =≥直接写出所求数列的通项公式)叠加法(适用于递推关系为1()n n a a f n +-=型) 连乘法(适用于递推关系为1()n na f n a +=型) 构造新数列法(如递推关系11;()n n n n n n a pa q a pab b ++=+=+为等差数列或等比数列型) 51.数列求和的常用方法:公式法:⑴ 等差数列的求和公式(两种形式),⑵ 等比数列的求和公式 ⑶(1)122n n n ++++=, 2135(21)n n ++++-=,2135(21)(1)n n +++++=+;22221123(1)(21)6n n n n ++++=++ 分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和(如:通项中含n(-1)因式,周期数列等等)倒序相加法:在数列求和中,如果和式到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,那么常可考虑选用倒序相加法,(等差数列求和公式)错位相减法:(“差比数列”的求和)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,常用裂项形式有: ⑴111(1)1n n n n =-++ ⑵1111()()n n k k n n k=-++ ⑶2211111()1211k k k k <=---+ 211111111(1)(1)1k k k k k k k k k-=<<=-++-- ⑷1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ⑸ ()()111!!1!n nn n =-++⑹<< ⑺ 1--=n n n S S a (2)n ≥ ⑻ 1111m m m m m m n n n n n nC C C C C C --+++=⇒=-(理科) 分组法求数列的和:如a n =2n+3n 、错位相减法求和:如a n =(2n-1)2n 、裂项法求和:如求和:111112123123n++++=+++++++ (答:21nn +)、 倒序相加法求和:如①求证:01235(21)(1)2nn n n n n C C C n C n +++++=+;(理科) ②已知22()1x f x x=+,则111(1)(2)(3)(4)()()()234f f f f f f f ++++++=___(答:72) 求数列{a n }的最大、最小项的方法(函数思想):① a n+1-a n =……⎪⎩⎪⎨⎧<=>000如a n = -2n 2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 nn a a (a n >0) 如a n =nn n 10)1(9+ ③ a n =f(n) 研究函数f(n)的增减性 如a n =1562+n n求通项常法: (1)可利用公式: 11n n n S a S S -⎧=⎨-⎩12n n =≥如:数列{}n a 满足12211125222n n a a a n +++=+,求n a (答:{114,12,2n n n a n +==≥) (2)先猜后证(3)递推式为1n a +=n a +f(n) (采用累加法);1n a +=n a ×f(n) (采用累积法); 如已知数列{}n a 满足11a =,nn a a n n ++=--111(2)n ≥,则n a =________(答:1n a =)(4)构造法形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列 如已知111,32n n a a a -==+,求n a (答:1231n n a -=-);(5)涉及递推公式的问题,常借助于“迭代法”解决,适当注意以下2个公式的合理运用a n =(a n -a n-1)+(a n-1-a n-2)+……+(a 2-a 1)+a 1 ;a n =1122n 1n 1n n a a a a a a a ---⋅ (0i a ≠) (6)倒数法形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项.如①已知1111,31n n n a a a a --==+,求n a (答:132n a n =-);②已知数列满足1a =1=n a (答:21n a n =),已知函数f (x ) =214x+-, 数列{a n }的前n 项和为S n , 点P n (a n , 11+-n a )(n ∈N*)在曲线y = f (x )上, 且a 1 = 1, a n > 0.(1)求数列{a n }的通项公式; (2)求证: S n >1142++n n (n ∈N*);(3)若数列{b n }的前n 项和为T n , 且满足381622121--+=++n n a T a T n n nn , 试确定b 1的值, 使得数列{b n }是等差数列. 答:(1)n a =(2)提示:n a ==>3)11b = 由1--=n n n S S a ,求数列通项时注意到2≥n 了吗?一般情况是:11n n n S a S S -⎧=⎨-⎩12n n =≥52.立体几何中平行、垂直关系证明思路明确了吗?各种平行、垂直转换的条件是什么? ①空间两直线:平行、相交、异面;判定异面直线用定义或反证法 ②直线与平面: a ∥α、a ∩α=A (a ⊄α) 、a ⊂α ③平面与平面:α∥β、α∩β=a线//线⇔线//面⇔面//面,线⊥线⇔线⊥面⇔面⊥面.常用定理:①线面平行ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂;αββα////a a ⇒⎭⎬⎫⊂;ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:b a b a a ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα;b a b a //⇒⎭⎬⎫⊥⊥αα;b a b a ////⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα;b c c a b a //////⇒⎭⎬⎫③面面平行:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂b a O b a b a ;βαβα//⇒⎭⎬⎫⊥⊥a a ;γαβγβα//////⇒⎭⎬⎫④线线垂直:b a b a ⊥⇒⎭⎬⎫⊂⊥αα;所成角900;PAa AO a a PO ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα(三垂线);逆定理? ⑤线面垂直:ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l b l a l Ob a b a ,,;βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l ,;βαβα⊥⇒⎭⎬⎫⊥a a //;αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900;βααβ⊥⇒⎭⎬⎫⊥⊂a a ;βααβ⊥⇒⎭⎬⎫⊥a a // 53.异面直线所成的角如何求?(异面问题相交化,即转化到同一平面上去求解),范围是什么?过关题:在正方体ABCD – A 1B 1C 1D 1中,点P 在线段A 1C 1上运动,异面直线BP 与AD 1所成的角为θ,则角θ的取值范围是 .两条异面直线所成的角、直线与平面所成的角及二面角的平面角的取值范围依次是:(0,]2π、[0,]2π、[0,]π.(3)在用向量法求异面直线所成的角、线面角、二面角的平面角时,应注意什么问题? “作、证、算”三个步骤可一个都不能少啊!(理科) 求空间角①异面直线所成角θ的求法: (1)范围:(0,]2πθ∈;(2)求法:平移以及补形法、向量法.如(1)正四棱锥ABCD P -的所有棱长相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于____(答:33); (2)在正方体AC 1中,M 是侧棱DD 1的中点,O 是底面ABCD 的中心,P 是棱A 1B 1上的一点,则OP 与AM 所成的角的大小为____(答:90°); ②直线和平面所成的角:(1)范围[0,]2π;(2)斜线与平面中所有直线所成角中最小的角.:(3)求法:作垂线找射影或求点线距离 (向量法);如(理)(1)在正三棱柱ABC-A 1B 1C 1中,已知AB=1,D 在棱BB 1上,BD=1,则AD 与平面AA 1C 1C 所成的角正弦为______(答:46); (2)正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则棱 A 1B 1 与截面A 1ECF 所成的角的余弦值是______; 如(1)正方形ABCD-A 1B 1C 1D 1中,二面角B-A 1C-A 的大小为________(答:60);(2)正四棱柱ABCD —A 1B 1C 1D 1中对角线BD 1=8,BD 1与侧面B 1BCC 1所成的为30°,则二面角C 1—BD 1—B 1的正弦为______(答:3; (3)从点P 出发引三条射线PA 、PB 、PC ,每两条的夹角都是60°,则二面角B-PA-C 的余弦值是______(答:13); 54.(1)有关长方体的性质和结论,你记得吗?过关题:平面α、β、γ两两互相垂直,直线l 与平面α、β所成的角分别为30o 、45o ,则直线l 与平面γ所成的角为 .答: 30︒(2)有关正四面体的性质和结论,你记得吗?正方体中有一个正四面体的模型,你知道吗?你能灵活运用吗?侧棱与底面所成的角的余弦值为 ;侧面与底面所成的二面角的余弦值为 ;正四面体的内切球半径r 与外接球的半径R 之比为 ,它们与正四面体的高h 之间的关系分别为 、 .答:113;;;;33344h h r R == (3)正三棱锥、正四棱锥的性质,你记得吗?它们的特征直角三角形,你会应用吗? (4)求点到面的距离的常规方法是什么?(直接法、等体积法、换点法) (5)求多面体体积的常规方法有哪些?(直接法、等体积法、割补法) 55.球的表面积、柱、锥、球的表面积会求吗?体积公式都记得吗?,四个顶点在同一球面上,则此球的表面积为 .答:3π 56.平行六面体→直平行六面体→长方体→正四棱柱→正方体间联系三棱锥中:侧棱长相等(侧棱与底面所成角相等)⇔顶点在底面射影为底面外心;侧棱两两垂直(两对对棱垂直)⇔顶点在底面射影为底面垂心;斜高相等(侧面与底面所成相等)⇔顶点在底面射影为底面内心;正棱锥各侧面与底面所成角相等为θ,则S 侧cos θ=S 底;正三角形四心?内切外接圆半径?; 57.向量运算的几何形式和坐标形式,请注意:向量运算中向量的起点、终点及其坐标的特征⑴ 几个概念:零向量、单位向量、与a 同方向的单位向量,平行向量,相等向量,相反向量,以及一个向量在另一向量上的投影(a 在b 方向上的投影是||cos ||a ba b θ⋅=, θ为向量a 与b 的夹角)一定要记住! 过关题:在直角坐标平面上,向量(4,1)OA =与(2,3)OB =-在直线l 上的射影长度相等,则l 的斜率为 . 答:12-⑵ 0和0是有区别的了,0的模是0,它不是没有方向,而是方向不确定;0可以看成与任意向量平行,但与任意向量都不垂直.⑶ 若0a =,则0a b ⋅=,但是由0a b ⋅=,不能得到0a =或0b =,你知道理由吗? 还有:a c =时,a b c b ⋅=⋅成立,但是由a b c b ⋅=⋅不能得到a c =,即消去律不成立. 58.向量中的重要结论记住了吗?如:在三角形ABC 中,点D 为边AB 的中点,则1()2CD CA CB =+;已知直线AB 外一点O ,点C 在直线AB 上的充要条件为(1)OC tOA t OB =+-.(三点共线) 59你会用向量法证明垂直、平行和共线及判断三角形的形状吗?60.向量运算的有关性质你记住了吗?数乘向量,向量的内积,向量的平行,向量的垂直,向量夹角的求法,两向量的夹角为锐角等价于其数量积大于零吗?(不等价)向量定义、向量模、零向量、单位向量、相反向量(长度相等方向相反的向量叫做相反向量.的相反向量是-.)、共线向量、相等向量注意:不能说向量就是有向线段,为什么?(向量可以平移)61、加、减法的平行四边形与三角形法则:AC BC AB =+;CB AC AB =-; ±62、向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则:①0a b a b ⊥⇔∙=;②当a ,b 同向时,a ∙b =a b ,特别地,222,a a a a a a =∙==; 当与反向时,∙=-a b ;当θ为锐角时,∙>0,且 a b 、不同向,0a b ⋅>是θ为锐角的充要条件; 当θ为钝角时,a ∙b <0,且 a b 、不反向,0a b ⋅<是θ为钝角的充要条件;③||||||a b a b ∙≤.如已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠); ④向量b 在方向上的投影︱b ︱cos θ⑤→1e 和→2e 是平面一组基底,则该平面任一向量→→→+=2211e e a λλ(21,λλ唯一)特别:=12OA OB λλ+则121λλ+=是三点P 、A 、B 共线的充要条件,向量基本定理是什么?如(1)平面直角坐标系中,O 为坐标原点,已知两点)1,3(A ,)3,1(-B ,若点C 满足=−→−OC −→−−→−+OB OA 21λλ,其中R ∈21,λλ且121=+λλ,则点C 的轨迹是___(答:直线AB )(2)在ABC ∆中,①1()3PG PA PB PC =++⇔G 为ABC ∆的重心,特别地0PA PB PC P ++=⇔为ABC ∆的重心;②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心;③向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);如:(1)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(2)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___(答:2);(3)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为__(答:120);63.任何直线都有倾斜角,但只有倾斜角不等于直角的直线才有斜率,直线的斜率公式、点到直线的距离公式、两平行直线间的距离公式记住了吗?直线的倾斜角的范围是什么?有关直线的倾斜角及范围,你会求吗? 如:直线x cos θ+ y – 1 = 0 (θ∈R)的倾斜角的范围是 . 答:3[0,][,)44πππ 倾斜角α∈[0,)π,α=900斜率不存在;斜率k=tan α=1212x x y y -- 对不重合的两条直线,,有12122112//0,,l l A B A B l l ⇔-=且不重合;64.何为直线的方向向量?法向量?直线的方向向量与直线的斜率有何关系? 如:经过点(6 ,– 2)且方向向量为e = (3 ,– 2)的直线方程为 .65.在用点斜式、斜截式求直线方程时,你是否注意到了所设直线是否有斜率k 不存在的情况?方程:00()y y k x x -=-只能表示过点00(,)x y 斜率存在的直线,而方程:00()x x t y y -=-则能表示过点00(,)x y 且斜率不为零的直线,具体在什么情况下选选择哪种形式?你清楚吗? 直线方程:点斜式 y-y 1=k(x-x 1);斜截式y=kx+b; 一般式:Ax+By+C=0 两点式:121121x x x x y y y y --=--;截距式:1=+b y a x (a ≠0;b ≠0);求直线方程时要防止由于零截距和无斜率造成丢解,直线Ax+By+C=0的方向向量为=(B,-A)66.方程:,y kx b x my a =+=+中,,,k b m a 的几何意义是啥?67.截距是距离吗?“截距相等”意味什么?什么样的直线其方程有截距式?(斜率存在,斜率不为零,且不过原点)直线在坐标轴上的截距可正、可负、也可为零,直线在两轴上的截距相等⇔直线的斜率为1-或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线在两轴上的截距绝对值相等⇔直线的斜率为1±或直线过原点.平行线系、垂直线系、经过两直线交点的直线系方程你都知道吗?过关题:过点(1, 2)且在坐标轴上截距相等的直线方程为 . 答: 2,30y x x y =+-=68.(1)方程x 2 + y 2 +D x + E y + F = 0表示圆的充要条件是什么?二元二次方程表示圆的充要条件是什么?(2)点和圆的位置关系怎么判断?当点在圆上、圆外时怎么求切线的?当点在圆外时,切线长、切点弦所在直线的方程,你记得求法吗?如:过点(1, 2)总可以作两条直线与圆x 2 + y 2 +k x + 2y + 5 = 0相切,则实数k 的取值范围是 ,在求解时,你注意到x 2 + y 2 +k x + 2y + 5 = 0表示圆的充要条件吗?过点P (2, 3)向圆 (x – 1) 2 + (y – 1) 2 = 1引切线,则切点弦方程为 . 答: (14,4)(4,);240x y --+∞+-=(3)直线和圆的位置关系利用什么方法判定?(圆心到直线的距离与圆的半径的比较或用代数方法)直线与圆锥曲线的位置关系怎样判断?(4)圆:标准方程(x -a)2+(y -b)2=r 2;一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0) 参数方程:⎩⎨⎧+=+=θθsin r b y cos r a x ;直径式方程(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0(5)若(x 0-a)2+(y 0-b)2<r 2(=r 2,>r 2),则 P(x 0,y 0)在圆(x-a)2+(y-b)2=r 2内(上、外)(6)直线与圆关系,常化为线心距与半径关系,如:用垂径定理,构造Rt △解决弦长问题,又:d>r ⇔相离;d=r ⇔相切;d<r ⇔相交.。
高考数学第三阶段复习策略——回归课本备战高考一年一度的高考即将来临,在这最后的冲刺阶段,考生由于时间紧迫,考试频繁,压力增大,导致精神疲惫,夜不足眠,审题时总是概念模糊,思维迟钝,解题时总是丢三落四的不规范,计算时总是粗枝大叶,心里焦急万分,困惑不已.也就是说,这阶段学生头脑有些“乱”、“紧张”、所以,这阶段,当务之急就是我们给予他们大力的安慰和支持,帮他们排忧解难,分析困惑的理由,让学生有信心走完最后的路程.回顾一年来的总复习,大致经过三个阶段,第一阶段(第一轮复习),主要是夯实基础,把高中数学的所有知识点重温一遍,把每一个知识点解读细化,重新认识数学的每一个概念、定义、公理、定理、公式等基础知识.我们可以把它理解为“走进课本,细化知识”,第二阶段(第二轮复习)主要以专题为主,把知识归纳综合,强化基础知识,限时限量完成,特别是注重大题的解题策略和规范答题.我们可以把它理解为“综合课本,强化规范”,从省质检后到高考这最后的冲刺阶段,时间短、内容多,针对于以上出现的困惑问题,结合高考说明以及省质检出现的问题,主要是“回归课本,精化模练”,具体有几个方面:1、回归课本,查缺补漏,构建知识网络高考命题从来都是以教材为蓝本编制的.回归课本,对课本的知识体系做一个系统的回顾与归纳,理解每个知识点的内涵、延伸与联系,对前后知识进行纵向、横向比较,加深对各部分知识间的理解,使之建立一个完整的知识体系.其次重视教材中重要定理的叙述与证明.2、重视对数学思想和方法的复习《考试说明》提出:“对数学能力的考查要以数学基础知识、数学思想和方法为基础”.新的《考试说明》对数学思想的要求由原来的四种增加到七种:①函数与方程的思想;②数形结合思想;③分类与整合思想;④化归或转化的思想;⑤特殊与一般思想;⑥有限与无限的思想;⑦必然与或然思想.掌握基本数学思想和数学方法,确保能力素质的提高.3、明确高考对各种能力的要求新《考试说明》依据《课程标准》中对数学能力的要求,提出了“空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识”等7个方面的能力要求,而旧《考试说明》只提出“思维能力、运算能力、空间想象能力、实践能力和创新意识”等5个方面的要求.比较之下,可以看出,原来的三大能力“思维能力、运算能力、空间想象能力”增加为五个“空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力”,而将“实践能力”改作了“应用意识”.“发现问题、提出问题”是新《考试说明》能力要求方面最核心的体现,数据处理能力是新《考试说明》提出的一个新的能力要求,新《考试说明》用抽象概括能力和推理论证能力替代旧《考试说明》中的思维能力,新《考试说明》对空间想象能力的要求略低于旧《考试说明》,在运算(求解)能力方面,新、旧《考试说明》也有区别.4、专项训练与模拟训练相结合,强调答题的规范化和运算的准确度一方面针对于高考的大题(如函数、数列、向量和三角函数、导数的应用、概率和统计、立体几何、解析几何等)设计专项训练,选题时应注意题目的量不宜过多,难度不宜过难,注重题型的多样性,要有利于基础知识和基本方法的巩固与掌握,有利于加强综合知识的沟通,精选精炼,答题时,要求学生表达规范,运算准确;另一方面是设计模拟试卷,设计试卷时不宜把外地的模拟试卷照搬照抄,应该根据本校学生的特点,精挑细选,避免重复性,减少学生的负担.答题时,要求学生科学安排时间,特别是选择题的时间安排要限时限量,在方法方面,解选择题除了通解通法(直接法)之外,还应利用数形结合法、特殊化法、逐一验证法、排除法等等,提高做选择题的速度和准确率.正所谓的“精化模练”.5、重新翻阅过去的试卷和练习,纠错改正对于学生还应该建议他们把总复习以来练过的试卷和考题重新整理归类,把容易错的题目重新过目一遍,甚至有的题目还应该重新做一遍,这样可以更加深刻印记.6、劳逸结合,科学安排时间.“回归课本,查缺补漏,构建知识网络”,这方面谈谈自己的一些看法和做法,首先简单介绍回归课本的重要性,其次介绍具体怎样做.一、回归课本的意义在实际复习中,有的老师觉得回归课本没有实际意义,是空的,只要“从各地模拟卷中挑选、精选让学生多练多积累,自然而然熟能生巧,经验就丰富了”,好像这样就尽了我们老师的责任.而学生方面到了最后阶段有点“麻木”,以前学习的知识有的忘得一干二净,甚至有的知识点还不清楚,以致出现以上的困惑问题,所以如果老师这样做法是有些盲目性和愚导性,当务之急是引导学生过最后这一关——回归课本.1、课本教材是高考命题的最有效的源泉高考命题“源于教材,高于教材”,大量题目来源于课本,是对课本基础知识、例题及习题的加工、综合、类比、延伸和拓展的结果.因此,建议老师引导学生利用好课本,重视教材中的基础知识和基本方法,然后加以引申、变化,做到举一反三,训练中,一旦理解题意后,应立即思考问题属于数学哪一学科?哪一章节?与这一章节的哪个类型的题目比较接近?解决这个类型的题目的方法有哪些?哪个方法可以首先拿来试用?回顾近四年高考数学命题,有一个惊人发现:理科平均约90分左右,文科约100分左右,都可在教材中找到命题的影子,甚至有的就是由例题、习题引申、变化而来.就以福建省09年理科高考来看:第1题:函数f (x )=sin x cos x 最小值是( )A .-1 B. -12 C. 12D.1 必修4-P 142练习4求下列函数的最小正周期,递增区间及最大值⑴y =sin2x cos2x .第3题:等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( )A .1 B. 53C. -2D. 3 来源于必修5-P 46习题A 组,2根据下列条件,求相应的等差数列{a n }的有关未知数. 第8题:已知某运动员每次投篮命中的概率都为40%。
高考数学考前10天每天必看系列材料之一一、基本知识篇(一)集合与简易逻辑1.研究集合问题,一定要抓住集合的代表元素,如:{}x y x lg |=与{}x y y lg |=及{}x y y x lg |),(=2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;6.(1)含n 个元素的集合的子集个数为2n,真子集(非空子集)个数为2n-1; (2);B B A A B A B A =⇔=⇔⊆(3)(),()I I I I I I C A B C A C B C A B C A C B == 。
二、思想方法篇 (一)函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成函数方程思想。
高三文科数学考前回归课本复习材料
向量的数量积公式(有两个,要熟练应用); a 在b 方向上的投影:cos a θ(或
a b b
)
任意角三角函数定义(,cos ,tan y x r r ααα=
==同角三角函数的基本公式; 3.诱导公式(奇变偶不变,符号看象限)两角和(差)的正弦、余弦和正切公式,二倍角公式与降幂公式,熟练掌握辅助角公式(合一变形)
n
q 的差比数列)s r a +; 也成等差数列(等长片段和也成等差)s r +,则n s r a a a a = 也成等比数列(等长片段和也成等比)柱、锥、台、球及其组合体的结构特征、直观图、三视图、表面积与体积;为原图面积)2.四个公理(学会证明四点共面)线线、线面及面面平行(学会用严格的格式表达)。
【高2018级“零诊”数学考前必备】回归教材(高一上)一、 选择题1.如果X = {}x |x >-1 ,那么 (A) 0 ⊆ X (B) {0} ∈ X(C) Φ ∈ X (D) {0} ⊆ X2.ax 2+ 2x + 1 = 0至少有一个负实根的充要条件是 (A)0<a ≤1 (B) a<1 (C) a ≤1(D) 0<a ≤1或a<03.命题p :“a 、b 是整数”,是命题q :“ x 2+ ax + b = 0 有且仅有整数解”的 (A)充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件4.若y = 15x + b 与y = ax + 3互为反函数,则 a + b =(A) -2 (B) 2 (C) 425(D) -105.已知x + x – 1 = 3,则23x+ 23-x的值为 (A) 3 3 (B) 2 5 (C) 4 5 (D) -4 5 6.下列函数中不是奇函数的是(A) y = (a x + 1)x a x -1 (B) y = a x – a -x 2 (C) y = | x |x (D) y = log a 1 + x1-x7.下列四个函数中,不满足f (x 1 + x 22 )≤f (x 1) + f (x 2)2的是(A) f (x ) = ax + b (B) f (x ) = x 2 + ax + b (C) f (x ) = 1x(D) f (x ) = - lnx8.已知数列{a n }的前n 项的和 S n = a n - 1(a 是不为0的实数),那么{a n } (A) 一定是等差数列 (B) 一定是等比数列 (C) 或者是等差数列,或者是等比数列 (D) 既不可能是等差数列,也不可能是等比数列二、 填空题 9.设A =(){}6x 4y y ,x +-=,B =(){}3x 5y y ,x -=,则A ∩B =_______.10.不等式x 2-3x -132-x≥1的解集是_______.11.已知A = {}x || x -a |< 4 ,B = {}x || x -2 |>3 ,且A ∪B = R ,则a 的取值范围是________.12.函数y =1x 218-的定义域是______;值域是______. 函数y =1-( 12)x 的定义域是______;值域是______.13.已知数列{a n }的通项公式为a n = pn + q ,其中p ,q 是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________.14.下列命题中正确的是 。
(把正确的题号都写上) (1)如果已知一个数列的递推公式,那么可以写出这个数列的任何一项; (2)如果{a n }是等差数列,那么{a n 2}也是等差数列; (3)任何两个不为0的实数均有等比中项; (4)已知{a n }是等比数列,那么{3na }也是等比数列三、 解答题15.如图,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上.写出这个梯形周长y 和腰长x 间的函数式,并求出它的定义域.16.已知函数y = 10x – 10 – x 2 (x ∈ R )(1)求反函数 y = f -1(x ) ;(2)判断函数y = f -1(x ) 是奇函数还是偶函数. D B A C E O17.已知函数f(x) = log a 1 + x1-x(a>0, a ≠ 1)。
(1)求f(x)的定义域;(2)求使f(x)>0的x 取值范围。
18.已知S n 是等比数列 {a n } 的前项和S 3,S 9,S 6,成等差数列,求证a 2,a 8,a 5成等差数列。
19 .在数列{a n }中,a 1 = 1,a n+1 = 3S n (n ≥1),求证:a 2,a 3,┅,a n 是等比数列。
回归教材(高一下)1、若一个6000的角的终边上有一点P(-4 , a),则a 的值为(A) 4 3 (B) -4 3 (C) ± 4 3 (D) 32、 sin 1100sin 20cos 21550-sin 21550 =(A)-12 (B) 12 ( C) 3 2 (D)- 3 23、1 + tan 1501-tan 150 =(A) - 3 (B) -3 3(C)3 3(D)34、cos α +3 sin α =(A) 2sin(π6 + α ) (B) 2sin(π3 + α ) (C) 2cos (π3 + α ) (D) 2cos(π6 -α )5、tan200 + tan400 + 3 tan200 tan400= _________。
6、(1 + tan440)(1 + tan10) = ______; (1 + tan430)(1 + tan20) = ______;(1 + tan420)(1 + tan30) = ______; (1 + tan α )(1 + tan β ) = ______ (其中α + β = 45 0)。
7、化简sin500(1 + 3 tan100) 。
8、已知tan α = 12,则sin2α + sin 2α = __________。
9、求证(1)1 + cos α =2cos 2 α 2 ;(2) 1-cos α =2sin 2 α 2 ;(3) 1 + sin α = (sin α 2 +cos α2)2 ;(4) 1-sin α = (sin α 2 -cos α 2 )2 ;(5) 1-cos α 1 + cos α= tan 2α2 .10、cos(3k + 13 π + α ) + cos(3k -13π -α )(其中k ∈ Z) = _________。
11、已知cos(π4 + x) = 35 ,17π12 <x<7π4 ,求sin 2x + 2sin 2x 1-tanx的值。
12、如图,三个相同的正方形相接,则α +β = .13、已知函数y = 3sin(2x + π3),x ∈ R 。
(1) 用五点作图法画出简图;(2) 如何变化可以得到函数y = sinx 的图象;(3) 写出其递减区间;(4) 写出y 取得最小值的x 的集合;(5)写出不等式3 sin(2x + π3 )>3 32的解集。
14、已知函数y = Asin(ωx + ϕ ),x ∈ R (其中A>0,ω >0)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M(2,2 2 ),与x 轴在原点右侧的第一个交点为N(6,0),求这个函数的解析式。
15、下列各式能否成立?为什么?(A) cos 2x = 2 (B) sinx -cosx = 32 (C) tanx + 1tanx = 2 (D) sin 3x = -π416、求函数y = lgcos (2x -π3)tanx -1的定义域。
17、如图是周期为2π 的三角函数 y = f (x ) 的图象,则 f (x ) 可以写成(A) sin [2 (1-x )] (B) cos (1-x ) (C) sin (x -1) (D) sin (1-x )18、与正弦函数)(sin R x x y ∈=关于直线x = 32 π对称的曲线是(A)x y sin = (B)x y cos =(C)x y sin -=(D)x y cos -=19、 x cos 1-y sin 1=0的倾斜角是(A) 1 (B) 1+π2(C) 1-π2(D) -1+π220、函数)0)(sin()(>+=ωϕωx A x f 在区间[a ,b]是减函数,且Ab f A a f =-=)(,)(,则函数],[)c o s ()(b a x A x g 在ϕω+=上(A)可以取得最大值-A (B)可以取得最小值-A (C)可以取得最大值A (D)可以取得最小值A21、已知→ a , →b 为两个单位向量,下列四个命题中正确的是(A) → a = → b (B) 如果→ a 与 → b 平行,则→ a = → b(C) → a · → b = 1 (D) → a 2 = →b 2 22、和向量→a = (6,8)共线的单位向量是__________。
23、已知→ a = (1,2),→ b = (-3,2),当k 为何值时,(1)k → a +→ b 与→ a -3→b 垂直?(2) k → a +→ b 与→ a -3→ b 平行?平行时它们是同向还是反向?24、已知 |a |=1,|b |=2。
(I )若a //b ,求a ·b ;(II )若a ,b 的夹角为135°,求 |a +b | .(2004广州一模)回归教材(高二上)一、 选择题1、下列命题中正确的是(A) ac 2>bc 2 ⇔ a>b (B) a>b ⇔ a 3>b 3(C){ a >bc >d ⇔a + c>b + d (D) log a 2<log b 2<0 ⇔ 0<a<b<12、如果关于x 的不等式ax 2 + bx + c<0的解集是{}x |x <m ,或x >n (m<n<0),则关于x 的不等式cx 2-bx + a>0的解集是(A) ⎩⎨⎧⎭⎬⎫x |-1m <x <-1n (B) ⎩⎨⎧⎭⎬⎫x |1n <x < 1m (C) ⎩⎨⎧⎭⎬⎫x |x > 1m 或x < 1n (D) ⎩⎨⎧⎭⎬⎫x |x <-1m 或x >-1n3、若x<0,则2 + 3x + 4x的最大值是(A) 2 + 4 3 (B) 2±4 3 (C) 2-4 3 (D) 以上都不对4、已知目标函数z =2x +y ,且变量x 、y 满足下列条件:4335251x y x y x -≤-⎧⎪+<⎨⎪≥⎩,则 (A ) z 最大值=12,z 无最小值 (B ) z 最小值=3,z 无最大值(C ) z 最大值=12,z 最小值=3(D ) z 最小值=265,z 无最大值 5、将大小不同的两种钢板截成A 、B 两种规格的成品,每张钢板可同时解得这两种规格的成品的块数如下表所示:若现在需要A 、B 两种规格的成品分别为12块和10块,则至少需要这两种钢板张数 (A)6 (B) 7 (C) 8 (D) 96、 函数f(θ ) = sin θ -1cos θ -2 的最大值和最小值分别是7、 (A) 最大值 43 和最小值0 (B) 最大值不存在和最小值 34(C) 最大值 -43 和最小值0 (D) 最大值不存在和最小值-34二、 填空题7、当点(x ,y)在以原点为圆心,a 为半径的圆上运动时,点(x + y ,xy)的轨迹方程是_______。