八上数学作业本答案(配人教版)part2
- 格式:doc
- 大小:3.36 MB
- 文档页数:3
八年级上册数学作业本答案八年级上作业本同步练答案(人教版)跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。
下面是小编整理的八年级上册数学作业本答案,供大家参考。
八年级上数学作业本[人教版]答案,浙教版也可以用,参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵ AB∥CD, ∴ α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)× (2)× 3.(1)DAB(2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).∴ ∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴ ∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD.∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM ⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN ⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS). ∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵ △ADE和△FDE重合, ∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°, ∴ △ABC是直角三角形∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB. ∴ DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴ ∠A=∠B=∠C=60°.∵ DE∥BC,∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, ∴ ∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由 ∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°. ∴ ∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴ △DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32. ∴ BD2+CD2=BC2,∴ ∠BDC=90°. ∴ ∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴ ∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴ OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴ ∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.【3.2】又∵ BD=EC,∴ △ABD≌△ACE. ∴ AB=AC1.C11.482.直四棱柱3.6,712.B13.连结BC.∵ AB=AC, ∴ ∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵ ∠ABD=∠ACD,∴ ∠DBC=∠DCB. ∴ BD=CD6.表面展开图如图.它的侧面积是14.25(π15+2+2.5)×3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴ ∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12×15×2×2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.15×3×05×3×4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦·时5.8625题(第5题)(第6题)6.小王得分70×5+50×3+80×210=66(分).同理,小孙得745分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm12(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是1615cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为96年,众数为8年,中位数为85年;乙:平均数为9480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为144岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.286.D7.A8.A9.10,32004年(万元)5126268.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)65303011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是75,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)18千克(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥ 2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥ 槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30×20×08,解得x>16.所以171.(1)(2)× (3)(4)× (5)人以上买团体票更便宜2.(1)≥ (2)≥ (3)≤ (4)≥ (5)≤ (6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套5×06y≤06x<06y, ∴ 45y≤x<y5.设小颖家这个月用水量为x(m3),则5×15+2(x-5)≥15,解得x≥55数学八年级上875.至少为875m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10≥5(x-1),{解得3x+10≤5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495×140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得≥6.甲厂每天至少处理垃圾6时0≤x≤25.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30×45+6(x-30)>(30×45+6x)×09,解得x>757.(1)x>2或x<-2(2)-2≤x≤0(2)全部按甲种方式需:30×45+6×10=1410(元);全部按乙种方式需:(30×45+6×40)×09=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30×45+6×10×09=1404(元).这种付款方案最省钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则056x+028(140-x)≤053×140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m≥21.1烅,解得2(3<x≤42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2)×4≤烆202x+14x+17∵ x是2,4,7的倍数, ∴ x=28.即这个班共有28名学生3.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x)≤360,{解得30≤x≤32,即甲种鱼苗的投放量应控制在3x+10(50-x)≤290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000≤20%x,3<x≤30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0≤x≤3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16Ω1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±27.光线从点A到点B所经过的路程是7071.(1)x为任何实数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20°方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0≤t≤20(2)v=16180°后,得到图案Ⅱ5.y=1第2x2,0≤x≤107章一次函数6.(1)y=x2槡+9,x>0(2)5cm(3)8cm【7.1】【7.3(1)】1.s,t;60千米/时2.y,x;120元/立方米1.-3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=12x,是一次函数,也是正比例函数4.常量是10,110,变量是N,H.13岁需97时,14岁需96时,15岁需95时(2)y=500-3x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)220001.y=(1+306%)x;5153;存入银行5000元,定期一年后可得本息和为5.(1)y=002t+50(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃ (3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x(2)1463.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)2121.-3;2-62.B5.(1)当0≤x≤4时,y=12x;当x>4时,y=16x-16(3.(1)y=2x+3,x为任何实数(2)1(3)x<-32)12元/立方米,16元/立方米(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400≤x≤8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%×500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%×500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10≤x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x≤25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】方案一,废渣月处理费y1=005x+20,方案二,废渣月处理费y2=01x.1.C2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()0;(0,7)【p;0.053L/km;p=0053s;10.62.在3.77.5(1)】21.y=22x2.如y=-x+1等4.x≠35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0≤x≤18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x≤10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=02.所以饼干的标价为每盒1.A9元,牛奶的标价为每袋1.1元;或饼干的标价2.D3.D4.B5.B6.B7.D为每盒8.2510元,牛奶的标价为每袋02元9.3010.x>-511.40°12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元∠BAD;内错角相等,两直线平行(2)印刷费为(2.2×4+0.7×6)×2000=26000(元),总费用为26000+1500=27500(元)13.12≤x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得∠B=∠C.所以△ABC是①若4≤x<5,由题意,得1000×(2.2×4+0.7×6)x+1500≤等腰三角形60000,解得x≤4.5. ∴ 4≤x≤4.5;18.10米19.D20.C21.C22.D23.C24.B②若x≥5,由题意,得1000× (2.0×4+0.6×6)x+1500≤60000,解得x≤5.04. ∴ 5≤x≤5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5≤x≤5.04。
数学上册作业本初二答案参考参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=∠ADE,∠ABF=∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)×(2)×3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行)∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.义务教育课程标准实验教材作业本数学八年级上50∴∠PAB+∠PCD=180°-∠CAP-∠ACP.又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD【1.4】1.22.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m3.1保担悖怼。
人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。
(2) 无理数是不能表示为有理数的数。
(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。
(4) √2、π、e等都是无理数。
2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。
(2) 无理数是指不能表示为有理数的数,如√2、π、e等。
(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。
循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。
(4) 在实数轴上,0与正数、负数之间是有间隔的。
(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。
3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。
证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。
如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。
所以d=b,即a和b的最大公约数是b的约数。
(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。
证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。
则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。
同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。
(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。
因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。
二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。
第2课时 分式方程的应用1.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.=B.=C.=D.=600x +50450x 600x -50450x 600x 450x +50600x 450x -502.A ,B 两地相距180 km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车的平均车速提高了50%,而从A 地到B 地的时间缩短了1 h .若设原来的平均车速为x km/h ,则根据题意可列方程为( )A.-=1B.-=1180x 180(1+50%)x 180(1+50%)x 180xC.-=1D.-=1180x 180(1-50%)x 180(1-50%)x 180x3.一根蜡烛在凸透镜下成一实像,物距u (蜡烛到凸透镜中心的距离)、像距v(像到凸透镜中心的距离)和凸透镜的焦距f 满足关系+=,若u =24 cm ,v =8 cm ,则该凸透镜的1u 1v 1f焦距f =__ __.4.A ,B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用的时间与B 型机器加工300个零件所用的时间相同.求A 型机器每小时加工零件的个数.5.济宁市在“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合作,两队又共同工作了36天完成.求乙工程队单独完成这项工作需要多少天.6.[2016·聊城]为加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km 缩短至114 km ,城际铁路的设计平均时速要比现行的平均时速快110 km ,运行时间仅是现行时间的,求建成后的城际铁路在A ,B 两地的运行时25间.7.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该13项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少要施工多少天才能完成该项工程?参考答案【归类探究】例1 排球的单价为50元,篮球的单价为80元.例2 公司应选择甲工程队,付工程队费用 30 000 元.【当堂测评】1.D 2.B 3.=60x +845x 【分层作业】1.A 2.A 3.6 cm4.A 型机器每小时加工零件80个.5.乙工程队单独完成这项工作需要80天.6.建成后的城际铁路在A ,B 两地的运行时间为0.6 h.7.(1)乙队单独施工需要30天完成.(2)乙队至少要施工18天才能完成该项工程.。
八上数学作业本答案第一章:立体几何1.1 空间几何基本概念1.1.1 空间几何的基本概念空间几何是研究空间中点,线,面和体的相互位置关系的学科。
其中,点是空间中最基本的概念,即没有长度、宽度和高度的对象。
线是由一系列相互连接的点组成,具有长度但没有宽度和高度。
面是由一系列相互连接的线组成,具有长度和宽度但没有高度。
体是由一系列相互连接的面组成,具有长度、宽度和高度。
1.1.2 空间几何中的重要概念在空间几何中,有一些重要的概念需要了解:•线段:连接线上两点的部分,包括这两个端点。
•直线:无限延长的线段,没有端点。
•射线:有一个端点的延长线。
•平面:无限延伸的二维表面,由无数个相互平行的线组成。
第二章:二次根式2.1 二次根式的定义与性质2.1.1 二次根式的定义二次根式是指形如√a的根式,其中a是一个非负实数。
例如,√4就是一个二次根式。
2.1.2 二次根式的性质二次根式有一些常见的性质:•二次根式可以进行加、减、乘、除的运算。
•二次根式可以化简为最简形式。
例如,√4可以化简为2。
•二次根式可以转化为分数形式。
例如,√9可以转化为3。
2.2 提取二次根式的整数因子2.2.1 提取二次根式的整数因子的方法提取二次根式的整数因子的方法主要有两种:1.将二次根式化为最简形式后,提取其中的整数因子。
例如,提取√12的整数因子,可以先化简为2√3,再提取其中的整数因子2。
2.利用两个二次根式的乘法公式进行整数因子的提取。
例如,提取√6 * √9的整数因子,可以直接提取因子2和3。
第三章:平面几何3.1 图形的相似与全等3.1.1 图形的相似与全等的基本概念在平面几何中,相似与全等是两个重要的概念。
•相似图形:具有相同形状但可能不同大小的图形称为相似图形。
相似图形的对应边的长度成比例。
•全等图形:具有相同形状且大小相等的图形称为全等图形。
全等图形的所有对应边和对应角均相等。
3.1.2 判断图形相似与全等的条件判断两个图形相似与全等的条件有所不同。
三一文库()/初中二年级〔人教版八年级上册数学作业本答案[1]〕参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)# (2)# 3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40°2.3,90°,50°3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50°5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=1880°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵△ADE和△FDE重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)#BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m。
人教版八年级上册数学八年级上册数学作业本参考答案多些努力,仔细做八年级数学作业本习题,学会洒脱;锻炼自己的心志。
WTT整理了关于八年级上册数学作业本参考答案,希望对大家有帮助!八年级上册数学作业本参考答案(一)定义与命题(1)定义与命题(1)第1题答案C定义与命题(1)第2题答案C定义与命题(1)第3题答案(1)如果两直线平行,那么内错角相等(2)如果一个数是无限小数,那么它是个无理数定义与命题(1)第4题答案(1)(2)(3)(4)(5)(8)是命题;(6)(7)不是命题定义与命题(1)第5题答案答案不唯一,如:如果两条直线平行,那么同位角相等;如果a > b,b > c,那么a > c定义与命题(1)第6题答案三角形中有两条边相等(或有两个角相等),有两条边相等(或有两个角相等)的三角形叫做等腰三角形八年级上册数学作业本参考答案(二)三角形全等的判定(1)三角形全等的判定(1)第1题答案略三角形全等的判定(1)第2题答案略三角形全等的判定(1)第3题答案AC,已知,AD,SSS三角形全等的判定(1)第4题答案稳定性三角形全等的判定(1)第5题答案CF,EF,DE,已知,△DEF,∠E三角形全等的判定(1)第6题答案可增加条件AC = DB,理由略三角形全等的判定(1)第7题答案(1)运用SSS判定△OCE与△ODE全等,则有∠COE = ∠DOE(2)画图略八年级上册数学作业本参考答案(三)图形的轴对称图形的轴对称第1题答案①图形的轴对称第2题答案A图形的轴对称第3题答案略图形的轴对称第4题答案8 cm2图形的轴对称第5题答案(1)垂直(2)AB = 4,BC = 5(3)略图形的轴对称第6题答案(1)作线段AB,与直线l交于点D,点D就是奶吧所在位置(2)作点A关于直线l的对称点A',连结A'C,交直线l于点D,点D就是奶吧所在位置。
八年级上册数学练习册答案人教版(共9篇)八年级上册数学练习册答案人教版〔一〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔二〕: 八年级上册数学练习册积的乘方答案人教版豆丁网是芝麻开花29页的吗如果是,下面是答案等于把积的每个因式分别相乘;〔ab〕^n=a^n ·b^n ;a^n·b^n·c^n 〔1〕4a 〔2〕-27x〔1〕4*10^6 〔2〕1CDBDBB2.4*10 *1.5*10 *1.2*10原式 =2.4*1.5*1.2*10 *10 *10=4.32*10^7cm【^的意思就是xx的x次方,*是乘号如果显示乱码的话后面数是178的世平方,179是立方】八年级上册数学练习册答案人教版〔三〕: 数学八年级上册配套练习册参考答案(人民教育出版社社)第一课时根底知识;1 C2 D3 B4 B5 ∠F.DF.△EDF.6 DC.CF.7 55°8 △COD.△COD.CO.OD.PC.9 ∠DBE.AC.平行.八年级上册数学练习册答案人教版〔四〕: 请问八年级数学人教版上册配套练习册33页第13题怎么做如图〔略):四个点A(0,1)B(-3,4)C(-5,4)D(-5,1).〔1〕画出四边形ABCD关于x=-1的对称图形A"B"C"D";〔2〕你知道四边形ABCD与A"B"C"D"重叠局部是什么图形吗求出重叠局部的面积.关于x=-1对称,既对称点y轴坐标不变,x轴点为-1*2减去对应点的x轴的点,例如A(0,1)关于x=-1对称点A"为〔-1*2-0,1〕即A"为〔-2,1〕,对应的手下的就是B"〔1,4〕C"(3,4)D"(3,1)画出坐标图就可以看出来重叠的是等腰三角形,面积就很好算的了,求出AB与A"B"相交的点,h就出来的了,h-1就是高,底是2,面积不是很好求的吗···八年级上册数学练习册答案人教版〔五〕: 人教版八年级上册数学书复习题14的答案复习题14 【复习稳固】 1.小亮为赞助“希望工程〞现已存款100元他方案今后三年每月存款10元存款总数y 单位元将随时间x 单位月的变化而改变.指出其中的常量与变量自变量与函数试写出函数解析式.2.判断以下各点是否在直线y=2x+6上这条直线与坐标轴交于何处—5 — 4 — 7 ,20 27 1 32 317 3.填空〔1〕直线xy3221 经过第象限 y随x的增大而〔2〕直线y=3x — 2经过第象限 y随x的增大而 .4.根据以下条件分别确定函数y=kx+b的解析式 1 y与x成正比例 x=5时y=6 2 直线y=kx+b经过点 3,6 与点 21 21 .5.试根据函数y=3x — 15 的图象或性质确定x取何值时 1 y 0 2 y 0.【综合运用】 6.在某火车站托运物品时不超过1千克的物品需付2元以后每增加1千克缺乏1千克按1千克计需增加托运费5角设托运p千克 p为整数物品的费用为c元写出c的计算公式.7.某水果批发市场规定批发苹果不少于100千克时批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果并以批发价买进.如果购置的苹果为x千克小王付款后还剩余现金y元试写出y关于x的函数解析式并指出自变量x的取值范围.8.均匀地向一个容器注水最后把容器注满.在注水过程中水面高度h随时间t的变化规律如下图图中OABC为一折线这个容器的形状是图中哪一个你能画出向另两个容器注水时水面高度h随时间t变化的图象草图吗9.等腰三角形周长为20. 1 写出底边长y关于腰长x的函数解析式 x为自变量 2 写出自变量取值范围 3 在直角坐标系中画出函数图象.10.A 8,0 及在第一象限的动点P x y 且x+y=10 设△OPA的面积为S 1 求S 关于x的函数解析式 2 求x的取值范围 3 求S=12时P点坐标 4 画出函数S 的图象.11. 1 画出函数y=|x—1|的图象不要告诉我买什么教材,我的教材丢了,现在买也来不及了、、1.常量已存款100元,三年,每月存款10元;变量总数y ,时间x;自变量x;函数y;函数解析式:y=10x+1002. —5 — 4在交于0,6;32 317 在交于付三,03.1 2 4,减小;〔2〕1 3 4 增大4.〔1〕y=五分之六x 〔2)y=五分之十三x+五分之九5.(1) x大于5 〔2〕x小于五6.分两种情况第一种:p 小于1 c=2第二种:p大于1 c=(p-1)0.5+27.y=3000-2.5x x大于等于100小于等于12008.图三9.1 y=-2x+20 2 x大于5小于10 3.略 10.s=-4x+40 x大于0小于10 p(7,3) 略 11.用列表法和图象法八年级上册数学练习册答案人教版〔六〕: 义务教育教科书配套练习册数学八年级下册人民教育出版社 101-104个人认为人民教育出版社出版的义务教育课程标准实验教科书数学八年级下册第83页例2解答不完整,应该有两个答案,一个是西北方向,一个是东南方向.附上原题——例2 “远航〞号、“海天〞号轮船同时离开港口,各自沿一固定...八年级上册数学练习册答案人教版〔七〕: 求人教版数学八年级上册数学书上P137和138页的答案大神们帮帮助求人教版数学八年级上册数学书上复习题14P137和138页的答案【八年级上册数学练习册答案人教版】1.常数100,10;自变量x,函数y.y=10x+100(0≤x≤36,x为整数〕2.(-5,-4),(2/3,22/3)在直线y=2x+6上;〔-7,20〕,(-7/2,1)不在直线y=2x+6上.直线y=2x+6与x轴交与〔0,6〕3.(1)一、二、四,减小;〔2〕一、三、四,增...八年级上册数学练习册答案人教版〔八〕: 求八年级上册的数学练习题给我八年级上册的数学题要完整的无论什么题都行只要是八年级上册的数学题选一选(每题3分,共30分) 如果一个正方形的面积是,那么它的对角线长为( ) A. B. C. D. 2.算术平方根比原数大的数是( ) A.正实数 B.负实数 C.大于0而小于1的数 D.不存在 3.以下图形中,绕某个占旋转1800后能与自身重合的有( ) ①..推荐程度:授权方式:免费软件软件大小:未知下载:4442023-10-22 八年级数学期中试卷一,选择题:(此题有8小题,每题3分,共24分.) 如图,:AB‖CD,假设∠1=50°,那么∠2的度数是( )A,50° B,60° C,130 D,120° 如图,在以下条件中,能够直接判断‖的是( )A.∠1=∠4 B.∠3=∠4 C.∠2+∠3=180°D.∠1=∠2 等腰三角形一边是3,一边是6,那么它的周长等于( )A.12 B.12 或15 C.15 D.18或15 以下各组数据能作为..推荐程度:授权方式:免费软件软件大小:未知下载:2362023-01-31 八年级函数及其图象测试题八年级数学《函数及其图象》测试题姓名:___班级:___考号:___分数:___一、精心选一选!(每题2分,共30分) 1、函数的自变量x 的取值范围是__. A、 B、且 C、 D、且 2、在直角坐标系中,点P(1,-1) 一定在___上. A.、抛物线y=x2上 B、双曲线y= 上 C、直线y=x上 D、直线y=-..推荐程度:授权方式:免费软件软件大小:未知下载:442023-01-31 八年级数学(上)函数同步练习题及答案八年级数学上学期函数同步练习题附答案☆我能选 1.假设y与x的关系式为y=30x-6,当x= 时,y的值为〔〕 A.5 B.10 C.4 D.-4 2.以下函数中,自变量的取值范围选取错误的选项是〔〕 A.y=2x2中,x取全体实数B.y= 中,x取x≠-1的实数 C.y= 中,x取x≥2的实数 D.y= 中..推荐程度:授权方式:免费软件软件大小:未知下载:412023-01-31 八年级上学期数学一次函数测试题八年级数学(上)一次函数试题姓名一. 填空〔每题4分,共32分〕 1.一个正比例函数的图象经过点〔-2,4〕,那么这个正比例函数的表达式是 . 2.一次函数y=kx+5的图象经过点〔-1,2〕,那么k= . 3.一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是图象与坐..推荐程度:授权方式:免费软件软件大小:未知下载:302023-01-31 北师大版八年级数学单元测试题第六章一次函数测试北师大彼八年级(上)第六章一次函数测试题一填空题: 1、某晚报的售价是每份0.50元,y表示销售x份报纸的总价,那么y与x的函数关系式是〔〕.假设直线y=kx经过点〔1,2〕,那么k的值是〔〕 2、假设函数y=〔m—2〕x+5—m是一次函数,那么m满足的条件是〔〕假设此函数是正比例函数,那么m 的值是〔〕,..推荐程度:授权方式:免费软件软件大小:未知下载:202023-01-31 八年级上一次函数图象训练题北师大版八年级上一次函数图象习题一.选择题: 1.点A( , )关于轴的对称点的坐标是〔〕 (A) ( , ) (B) ( , ) (C) ( , ) (D) ( , ) 2.以下函数中,自变量的取值范围不正确的选项是〔 ..推荐程度:授权方式:免费软件软件大小:未知下载:232023-01-31 八年级数学反比例函数测试题人教版八年级(下)数学反比例函数测试题一选择题:〔每题5分,共25分〕1、以下函数中,y是x的反比例函数的是〔〕 A B C D 2、y与x成正比例,z 与y成反比例,那么z与x之间的关系是〔〕 A 成正比例 B 成反比例 C 有可能成正比例也有可能是反比例 D 无法确..推荐程度:授权方式:免费软件软件大小:未知下载:172023-01-31 八年级分式函数测试题八年级分式函数测试题〔考试时间:100分钟:总分值:100分〕一.细心填一填,〔每题2分,共30分〕 1.假设分式的值为零,那么; 2.分式 , , 的最简公分母为; 3.计算:; 4.假设 ,那么必须满足的条件是; 5. 点A〔-3,2〕关于y轴对称的点的坐标是 ..推荐程度:授权方式:免费软件软件大小:未知下载:102023-01-31 北师大版八年级数学(上)一次函数测试题八年级上学期数学(北师大版)一次函数试题推荐程度:授权方式:免费软件软件大小:未知下载:182023-01-31 八年级数学应用题 31道八年级数学分式方程应用题班级姓名 1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量. 2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是..推荐程度:授权方式:免费软件软件大小:未知下载:202023-11-21 八年级数学(上)期末检测题班级姓名评分 (卷面总分:120分;测试时间:120分钟) 一,填空题:(每题3分,共30分) 1,的绝对值是 ,= ,= ; 2,两个无理数的乘积是有理数,试写出这样的两个无理数 ; 3,一个多边形的内角和……推荐程度:授权方式:免费软件软件大小:未知下载:7412023-11-21 8年级数学上学期期末试卷2023-2023学年上学期期末水平测试8年级数学试卷 (考试时间120分钟,总分值100分) 一,填空题:(简洁的结果,表达的是你敏锐的思维,需要的是细心!每题3分,共30分) 1,8的立方根是……推荐程度:授权方式:免费软件软件大小:未知下载:3432023-11-21 八年级数学上学期期末检测试卷惠安县2023—2023学年度上学期八年级数学期末检测试卷一,填空题.(每题2分,共24分) 1,计算:= . 2,不等式>5的解...ABCD中,E,F分别是对角线AC,CA延长线上的点,且CE=AF,试说明四边形BEDF是平行四边形. 23,(5分)如图,在梯形...推荐程度:授权方式:免费软件软件大小:未知下载:2502023-11-21 八年级上学期期末考试数学试卷澧县2023年上学期八年级期末考试数学试卷班次_______ 姓名_______ 计分______ 一,填空题:每空2分,共30分 1,计算:① =_____.② =______. 2,当x______时, 有意义. 3,图1……推荐程度:授权方式:免费软件软件大小:未知下载:2592023-11-21 八年级上学期期末数学试题05—06学年度上学期八年级数学期末试题数学说明:本试卷分第一卷和第二卷两局部,第一卷36分,第二卷84分,共120分;答题时间120分钟. 第I卷(共45分) 一,请你选一选.(每题3分,共45分) 1.假设,一次函数的图象大致形状是 ( ) 2.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB的角平分线,且相交于点F,那么图中的等..推荐程度:授权方式:免费软件软件大小:未知下载:2262023-11-19 华师大版八年级数学(上)期末复习试题一华师大数学八年级上学期期末复习试题一班级:____________姓名:____________评价:____________ 一. 选择题:在下面四个选项中只有一个是正确的.(此题共18分,每题3分) 1. 以下计算正确的选项是( ) ……推荐程度:授权方式:免费软件软件大小:未知下载:2572023-11-19 八年级(上)数学期末试题八年级数学(上)期末试题(10) 本卷总分值100分,考试时间100分钟姓名: . 班别: .座号: .评分: . 选择题:(此题共8小题,每题2分,共16分,每题给出的4个答案中,只有一个是正确的,请你把所选的答案的编号填入该题后面的括号内.) 1.16的平方根是 [ ] A. 4 B. ±4 C.……八年级上册数学练习册答案人教版〔九〕: 八年级上册数学126页的练习答案1.自变量X的取值满足什么条件时,函数Y=3X+8的值满足以下条件(1)Y=0(2)Y=-7 (3)Y>0 (4)Y〔1〕x=-8/3〔2〕x=-5〔3〕3x+8>0 3x>-8 x>-8/3〔4〕3x+8。
参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)³(2)³3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.1 5cm4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=1 5cm7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°(2)100°,40°2.3,90°,50°3.略4.(1)90°(2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50°5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BDC=∠CEB=90°,BC=CB,∴△BDC≌△CEB(AAS).∴BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵△ADE和△FDE重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)²BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32.∴BD2+CD2=BC2,∴∠BDC=90°.∴∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.【3.2】又∵BD=EC,∴△ABD≌△ACE.∴AB=AC1.C11.4 82.直四棱柱3.6,712.B13.连结BC.∵AB=AC,∴∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD6.表面展开图如图.它的侧面积是14.25(π1 5+2+2.5)³3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12³1 5³2³2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,①2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1 5³3³0 5³3³4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦²时5.8 625题(第5题)(第6题)6.小王得分70³5+50³3+80³210=66(分).同理,小孙得74 5分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1 2(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161 5cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为9 6年,众数为8年,中位数为8 5年;乙:平均数为9 480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为14 4岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2 86.D7.A8.A9.10,32004年(万元)5 12 62 68.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6 53 03 011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7 5,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)1 8千克(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30³20³0 8,解得x>16.所以171.(1) (2)³(3) (4)³(5) 人以上买团体票更便宜2.(1)≥(2)≥(3)≤(4)≥(5)≤(6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套5³0 6y≤0 6x<0 6y,∴45y≤x<y5.设小颖家这个月用水量为x(m3),则5³1 5+2(x-5)≥15,解得x≥55数学八年级上8 75.至少为8 75m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10≥5(x-1),{解得3x+10≤5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495³140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得≥6.甲厂每天至少处理垃圾6时0≤x≤2 5.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30³45+6(x-30)>(30³45+6x)³0 9,解得x>757.(1)x>2或x<-2(2)-2≤x≤0(2)全部按甲种方式需:30³45+6³10=1410(元);全部按乙种方式需:(30³45+6³40)³0 9=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30³45+6³10³0 9=1404(元).这种付款方案最省钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则0 56x+0 28(140-x)≤0 53³140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m≥21.1烅,解得2(3<x≤42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2)³4≤烆202x+14x+17∵x是2,4,7的倍数,∴x=28.即这个班共有28名学生3.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x)≤360,{解得30≤x≤32,即甲种鱼苗的投放量应控制在3x+10(50-x)≤290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000≤20%x,3<x≤30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0≤x≤3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16Ω1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±27.光线从点A到点B所经过的路程是7 071.(1)x为任何实数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20°方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0≤t≤20(2)v=16180°后,得到图案Ⅱ5.y=1第2x2,0≤x≤106.(1)y=x2槡+9,x>0(2)5cm(3)8cm第7章一次函数【7.1】【7.3(1)】1.s,t;60千米/时2.y,x;1 20元/立方米1.-3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=1 2x,是一次函数,也是正比例函数4.常量是10,110,变量是N,H.13岁需9 7时,14岁需9 6时,15岁需9 5时(2)y=500-3x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)220001.y=(1+3 06%)x;5153;存入银行5000元,定期一年后可得本息和为5.(1)y=0 02t+50(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃(3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x(2)14 63.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)212 1.-3;2-62.B5.(1)当0≤x≤4时,y=1 2x;当x>4时,y=1 6x-1 6(3.(1)y=2x+3,x为任何实数(2)1(3)x<-32)1 2元/立方米,1 6元/立方米(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400≤x≤8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%³500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%³500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10≤x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x≤25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】方案一,废渣月处理费y1=0 05x+20,方案二,废渣月处理费y2=0 1x.1.C2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()0;(0,7)【p;0.053L/km;p=0 053s;10.62.在3.77.5(1)】21.y=2 2x2.如y=-x+1等4.x≠35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0≤x≤18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x≤10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=0 2.所以饼干的标价为每盒1.A9元,牛奶的标价为每袋1.1元;或饼干的标价2.D3.D4.B5.B6.B7.D为每盒8.2510元,牛奶的标价为每袋0 2元9.3010.x>-511.40°12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元∠BAD;内错角相等,两直线平行(2)印刷费为(2.2³4+0.7³6)³2000=26000(元),总费用为26000+1500=27500(元)13.12≤x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得∠B=∠C.所以△ABC是①若4≤x<5,由题意,得1000³(2.2³4+0.7³6)x+1500≤等腰三角形60000,解得x≤4.5.∴4≤x≤4.5;18.10米19.D20.C21.C22.D23.C24.B②若x≥5,由题意,得1000³(2.0³4+0.6³6)x+1500≤60000,解得x≤5.04.∴5≤x≤5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5≤x≤5.04。
【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵△ADE和△FDE重合,∴∠ADE=∠FDE.4.∵∠B+∠C=90°,∴△ABC是直角三角形∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100°(2)把60°分成20°和40°∴∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)²BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴△DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32.∴BD2+CD2=BC2,∴∠BDC=90°.∴∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.【3.2】又∵BD=EC,∴△ABD≌△ACE.∴AB=AC1.C11.4 82.直四棱柱3.6,712.B13.连结BC.∵AB=AC,∴∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD6.表面展开图如图.它的侧面积是14.25(π1 5+2+2.5)³3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12³1 5³2³2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,①2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1 5³3³0 5³3³4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦²时5.8 625题(第5题)(第6题)6.小王得分70³5+50³3+80³210=66(分).同理,小孙得74 5分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1 2(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161 5cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为9 6年,众数为8年,中位数为8 5年;乙:平均数为9 480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为14 4岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2 86.D7.A8.A9.10,32004年(万元)5 12 62 68.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6 53 03 011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7 5,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)1 8千克(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30³20³0 8,解得x>16.所以171.(1) (2)³(3) (4)³(5) 人以上买团体票更便宜2.(1)≥(2)≥(3)≤(4)≥(5)≤(6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套5³0 6y≤0 6x<0 6y,∴45y≤x<y5.设小颖家这个月用水量为x(m3),则5³1 5+2(x-5)≥15,解得x≥55数学八年级上8 75.至少为8 75m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10≥5(x-1),{解得3x+10≤5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495³140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得≥6.甲厂每天至少处理垃圾6时0≤x≤2 5.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30³45+6(x-30)>(30³45+6x)³0 9,解得x>757.(1)x>2或x<-2(2)-2≤x≤0(2)全部按甲种方式需:30³45+6³10=1410(元);全部按乙种方式需:(30³45+6³40)³0 9=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30³45+6³10³0 9=1404(元).这种付款方案最省钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则0 56x+0 28(140-x)≤0 53³140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m≥21.1烅,解得2(3<x≤42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2)³4≤烆202x+14x+17∵x是2,4,7的倍数,∴x=28.即这个班共有28名学生3.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x)≤360,{解得30≤x≤32,即甲种鱼苗的投放量应控制在3x+10(50-x)≤290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000≤20%x,3<x≤30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0≤x≤3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16Ω1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±27.光线从点A到点B所经过的路程是7 071.(1)x为任何实数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20°方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0≤t≤20(2)v=16180°后,得到图案Ⅱ5.y=1第2x2,0≤x≤107章一次函数6.(1)y=x2槡+9,x>0(2)5cm(3)8cm【7.1】【7.3(1)】1.s,t;60千米/时2.y,x;1 20元/立方米1.-3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=1 2x,是一次函数,也是正比例函数4.常量是10,110,变量是N,H.13岁需9 7时,14岁需9 6时,15岁需9 5时(2)y=500-3x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)220001.y=(1+3 06%)x;5153;存入银行5000元,定期一年后可得本息和为5.(1)y=0 02t+50(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃(3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x(2)14 63.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)212 1.-3;2-62.B5.(1)当0≤x≤4时,y=1 2x;当x>4时,y=1 6x-1 6(3.(1)y=2x+3,x为任何实数(2)1(3)x<-32)1 2元/立方米,1 6元/立方米(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400≤x≤8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%³500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%³500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10≤x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x≤25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】方案一,废渣月处理费y1=0 05x+20,方案二,废渣月处理费y2=0 1x.1.C2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()0;(0,7)【p;0.053L/km;p=0 053s;10.62.在3.77.5(1)】21.y=2 2x2.如y=-x+1等4.x≠35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0≤x≤18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x≤10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=0 2.所以饼干的标价为每盒1.A9元,牛奶的标价为每袋1.1元;或饼干的标价2.D3.D4.B5.B6.B7.D为每盒8.2510元,牛奶的标价为每袋0 2元9.3010.x>-511.40°12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元∠BAD;内错角相等,两直线平行(2)印刷费为(2.2³4+0.7³6)³2000=26000(元),总费用为26000+1500=27500(元)13.12≤x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得∠B=∠C.所以△ABC是①若4≤x<5,由题意,得1000³(2.2³4+0.7³6)x+1500≤等腰三角形60000,解得x≤4.5.∴4≤x≤4.5;18.10米19.D20.C21.C22.D23.C24.B②若x≥5,由题意,得1000³(2.0³4+0.6³6)x+1500≤60000,解得x≤5.04.∴5≤x≤5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5≤x≤5.04。
八上数学作业本答案数学作业,一直是学生们最头疼的问题之一。
每天放学后,又要去额外做数学题,想想就头疼。
而现在,有些人却能轻松地搞定数学作业——他们拥有一份八上数学作业本答案。
这究竟是怎么回事呢?首先,我们要知道,数学作业,是老师教授知识点后巩固学生对知识的掌握程度的过程。
它不仅可以检验学生们的学习成果,也是学生们还未掌握的部分,在这个过程中通过老师的帮助逐步学习的过程。
但是,获取答案后,学生们往往会直接去抄袭,这种行为严重影响了学生们对知识的掌握程度。
其次,每个人对数学的理解和学习方法都不相同,所以对于一道题,每个人的解法和答案也都不相同。
但是拥有答案后,往往会出现这样的情况:学生们不去思考、不去理解题目,却直接抄袭,这种行为不仅会让学生们失去对知识点的理解,还会对进一步学习造成不良影响。
当然,对于一些学生来说,数学作业也可能是难以完成的。
而这时,拥有一份八上数学作业本的答案可以帮助他们更好地理解、掌握知识点。
但是,在学习过程中,学生们还是要秉持理解、掌握知识点的态度,不要只是为了完成作业而抄袭答案。
最后,我们不得不提到作业本答案泄露的问题。
作业本答案一旦泄露,就会严重影响教育教学的公平性。
考虑到学生们的利益,学校应在保障学生难题解答的同时,对作业本答案的管理加强,防止答案泄露。
总之,拥有一份八上数学作业本答案,对于学生们来说,既有优势又有劣势。
我们要摆正心态,不断去理解掌握知识,避免陷入单纯的抄袭答案的行为中来。
同时,学校也应该对学生的作业本答案泄露管理加强,保障教育教学的公平性。
八年级上册数学作业本答案人教版只要功夫深,铁杆磨成针。
做八年级数学作业本题目应知难而进。
小编整理了关于八年级上册数学作业本答案人教版,希望对大家有帮助!八年级上册数学作业本答案人教版(一)样本与数据分析初步【4.1】 (第1.抽样调查5题)(第6题) 2.D 3.B4.(1)抽样调查 (2)普查(3)抽样调查[3.4]5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取 4.长方体.1?53330?53334=27(cm2) 5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】 1.2 2.2,不正确,因为样本容量太小 3.C4.120千瓦2时5.8?625题(第5题)(第6题)6.小王得分7035+5033+803210=66(分).同理,小孙得74?5分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C 2.15,5,10 3.直三棱柱1.5,4 2.B 3.C 4.中位数是2,众数是1和253 数学八年级上5.(1)平均身高为161cm1?2(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161?5cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm 的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm 比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲【4.4】舒服1.C 2.B 3.2 4.S2=2 5.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为14?4岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2?8 6.D 7.A 8.A 9.10,32004年(万元)5?12?62?68.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6?53?03?011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7?5,乙的平均数、中位数、投中9个以上次数分1.方差或标准差 2.400 3.(1)1?8千克 (2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54 甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥ 2.C八年级上册数学作业本答案人教版(二)一元一次不等式3.(1)x>3 (2)x<-3 (3)无数;如x=9,x 槡= 3,x=-3等8【5.1】(4)x≥ 槡- 24.(1)x≥1 (2)x <4 5.x>2.最小整数解为31.(1)> (2)> (3)< (4)< (5)≥2.(1)x+2>0 (2)x2-7<5 (3)5+x≤3x (4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,4 7.a<-323.(1)< (2)> (3)< (4)> (5)>【5.3(2)】4.1.(1)x≤0 (2)x<43 (3)x<3(第4题)2.(1)x>2 (2)x<-73.(1)x≤5 (2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165 (2)x<-1[6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2](2)设x人时买团体票便宜,则30x>3032030?8,解得x>16.所以171.(1)? (2)3 (3)? (4)3 (5)?人以上买团体票更便宜2.(1)≥ (2)≥ (3)≤ (4)≥ (5)≤ (6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2 (2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2 (4)y<-1,不等式的基本性质1.B 2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+3 5.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x 套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套530?6y≤0?6x<0?6y,∴ 45y≤x30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30345+6(x-30)>(30345+6x)30?9,解得x>757.(1)x>2或x<-2 (2)-2≤x≤0(2)全部按甲种方式需:30345+6310=1410(元);全部按乙种方式需:(30345+6340)30?9=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30345+631030?9=1404(元).这种付款方案最省钱1.x<12 2.7cm 【5.4(1)】5.x=1,2,3,4 6.0,17.(1)3x-2<-1 (2)y+12x≤0 (3)2x>-x21.B 2.(1)x>0 (2)x<13 (3)-2≤x<槡 3 (4)无解8.(1)x>73.(1)1≤x<4 (2)x>-1 4.无解5.C2 (2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得90,烄13.m≥21. 1烅,解得2(310%x,{解得 33331x-3000≤20%x,3八年级上册数学作业本答案人教版(三)图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5) 2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D 的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y 轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略 (2)B 6.(1)略 (2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3 (2)(-3,3) (3)(x,1)(0≤x≤3) 2.略7.在(2,7)处落子3.(1)把点A 向下平移6个单位得到点B(2)把点A 向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C 向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,2 2.C 3.(1)平行 (2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0) (2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4) (2)-25.(1)(-2,2) (2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A 代表“长颈鹿馆”(8,9),B 代表“大象馆”(4,2)(2)将AB 向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A 变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A 向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A 先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A 且垂直于AB 的直线为y 轴建立坐标系,A(0,0),B(5,0),C(5,③把点A 向右平移2个单位到点(3,2);5),D(0,5)④把点A 先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A 先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t (2)220,表示汽车行驶2时后距离B 地220km6.(1)R,I (2)是(3)16Ω1.(1)四 (2)(0,1) (3)1 2.(2,5,2)7.(1)(从下至上)8,32 (2)573.(1)k=2,t=2 (2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±2 7.光线从点A 到点B 所经过的路程是7?071.(1)x为任何实数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1) (2)1429.南偏东20°方向,距离小华86米2.(1)-4;5 (2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,40 (2)5cm (3)8cm。
八上数学课堂作业本答案第一章:有理数1. 有理数的概念和分类1.1 有理数的定义有理数指的是可以用两个整数的比表示的数。
在有理数中,可以分为正整数、负整数、零、分数等几类。
1.2 有理数的分类有理数可以分为以下几类:•正整数:1, 2, 3, …•负整数:-1, -2, -3, …•零:0•正分数:1/2, 3/4, 5/6, …•负分数:-1/2, -3/4, -5/6, …•假分数:7/5, 8/3, 11/4, …•数字1是正整数、负整数、正分数、负分数和零的公共元素。
2. 有理数的运算2.1 有理数的加法有理数的加法满足以下规则:•正数加正数等于正数•负数加负数等于负数•正数加负数等于零或负数•零加零等于零2.2 有理数的减法有理数的减法可以通过加上相反数求解。
例如,求解5-3可以转化为5+(-3),然后根据加法规则计算。
2.3 有理数的乘法有理数的乘法满足以下规则:•正数乘正数等于正数•负数乘负数等于正数•正数乘负数等于负数•零乘任何数等于零2.4 有理数的除法有理数的除法可以通过乘上倒数求解。
例如,求解5÷2可以转化为5×(1/2),然后根据乘法规则计算。
3. 有理数的比较3.1 有理数的大小比较有理数的大小比较可以根据绝对值来进行判断。
•如果两个有理数的绝对值相等,则它们大小相等。
•如果一个有理数的绝对值大于另一个有理数的绝对值,则它们的大小关系与它们的符号相同。
4. 有理数的绝对值4.1 有理数的绝对值定义有理数的绝对值指的是该有理数到0的距离。
对于正数和零来说,它们的绝对值等于它们本身;对于负数来说,它的绝对值等于它的相反数。
5. 有理数的应用5.1 有理数在实际生活中的应用有理数在实际生活中有很多应用。
例如,温度、海拔、银行存款、负债等都可以用有理数来表示。
有理数可以帮助我们进行计算和判断,例如计算温度差、海拔差,或者用有理数来表示财务状况等。
总结数学中的有理数是我们日常生活中常常使用的数,它可以表示整数、分数等。
菱形的判定一、选择题1.A2.A二、填空题1.AB=AD(答案不)2.菱形三、解答题1.证明:(1)∵AB∥CD,CE∥AD∴四边形AECD是平行四边形又∵AC平分∠BAD∴∠BAC=∠DAC∵CE∥AD∴∠ECA=∠CAD∴∠EAC=∠ECA∴AE=EC∴四边形AECD是菱形(2)⊿ABC是直角三角形,理由是:∵AE=EC,E是AB的中点∴AE=BE=EC∴∠ACB=90°∴⊿ABC是直角三角形2.证明:∵DF⊥BC,∠B=90°,∴AB∥DF,∵∠B=90°,∠A=60°,∴∠C=30°,∵∠EDF=∠A=60°,DF⊥BC,∴∠EDB=30°,∴AF∥DE,∴四边形AEDF是平行四边形,由折叠可得AE=ED,∴四边形AEDF是菱形.3.证明:(1)在矩形ABCD中,BO=DO,AB∥CD∴AE∥CF∴∠E=∠F又∵∠BOE=∠DOF,∴⊿BOE≌⊿DOF.(2)当EF⊥AC时,以A、E、C、F为顶点的四边形是菱形∵⊿BOE≌⊿DOF.∴EO=FO在矩形ABCD中,AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形等腰梯形的判定一、选择题1.B2.D二、填空题1.等腰梯形2.43.③,④三、解答题1.证明:∵AB=AC∴∠ABC=∠ACB又∵BD⊥AC,CE⊥AB,BC=BC∴⊿BCE≌⊿CBD∴EB=CD∴AE=AD∴∠AED=∠ADB∵∠A+∠AED+∠ADE=∠A+∠ABC+∠ACB∴∠AED=∠ABC∴DE∥BC ∴四边形BCDE是等腰梯形.2.证明:在菱形ABCD中,∠CAB=∠DAB=30°,AD=BC,∵CE⊥AC,∴∠E=60°,又∵DA∥BC,∴∠CBE=∠DAB=60°∴CB=CE,∴AD=CE,∴四边形AECD是等腰梯形.3.在等腰梯形ABCD中,AD∥BC,∴∠B=∠BCD,∵GE∥DC,∴∠GEB=∠BCD,∴∠B=∠GEB,∴BG=EG,又∵GE∥DC,∴∠EGF=∠H,∵EF=FC,∠EFG=∠CFH,∴⊿GEF≌⊿HCF,∴EG=CH,∴BG=CH.。
参考答案第十一章 三角形11.1与三角形有关的线段11.1.1三角形的边1.(1)3;әA B C,әA B D,әA D C(2)A B,B D,A D;A,B,D(3)øA D C,øD C A,øC A D2.(1)3(2)123.(1)> (2)> (3)> (4)<4.(1)能.理由略(2)不能.理由略(3)能.理由略(4)不能.理由略5.a=5c m或7c m,周长为17c m或19c m6.35c m的长铁条合适,10c m的长铁条不合适.理由略11.1.2三角形的高㊁中线与角平分线11.1.3三角形的稳定性1.略2.(1)4c m2(2)30ʎ(3)2.4c m3.(1)D (2)B4.14c m5.(1)C D,B C(2)әA B C,әA B E,әA E C(3)әD B C,әD B E,әD E C6.25ʎ,25ʎ*7.(1)S1=S2.理由略(2)S3=S5,因为S3+S6=S5+S6=12S(3)S7=S8=S9=S10=S11=S1211.2与三角形有关的角11.2.1三角形的内角(1)1.(1)180ʎ,75ʎ(2)30ʎ,60ʎ,90ʎ2.(1)77ʎ(2)70ʎ3.33ʎ4.ø2=50ʎ,øB=50ʎ,øA C B=90ʎ5.(1)120ʎ(2)1256.øA B P=30ʎ+25ʎ=55ʎ,øB A P=80ʎ11.2.1三角形的内角(2)1.302.(1)3(2)43.D4.115ʎ5.42ʎ6.R tәA B D,R tәA C D,R tәA D E.理由略11.2.2三角形的外角1.C2.60ʎ3.145ʎ4.(1)øA B C=90ʎ,øC=45ʎ(2)40ʎ,50ʎ,90ʎ5.40ʎ.理由:ø3=ø2+180ʎ-140ʎ6.74ʎ*7.øC A D=30ʎ,øA E D=80ʎ,øE A D=10ʎ11.3多边形及其内角和11.3.1多边形1.(1)首尾顺次相接,n边形(2)顶点,对角线,n(n-3)2(3)相等,相等2.1;øB C D;2;øD C E,øB C F3.略4.①④5.(1)⑤ (2)①ˑ ②ˑ ③6.(1)图略,3,4(2)4,5,5,6(3)n-3,n-211.3.2多边形的内角和1.(1)720ʎ(2)八(3)45ʎ2.53.36ʎ,72ʎ,108ʎ,144ʎ4.1165.116.160ʎ复习题1.A B C,A D E2.①3.1,图略4.125.62ʎ,118ʎ6.(1)由A CʅB C,得ø1+øB C D=90ʎ,又因为ø1=øB,所以øB+øB C D=90ʎ,所以C D是әA B C的高(2)2c m7.118.øA E B=øC.理由略9.(1)26ʎ(2)略10.(1)øI=90ʎ+12øA,øO=12øA,øP=90ʎ-12øA.理由略(2)125ʎ,35ʎ,55ʎ11.(1)19,0(2)0<x<19第十二章 全等三角形12.1全等三角形1.(1) (2)ˑ (3)ˑ (4)2.C,øA,A C3.97,104.B C与D E,A C与A E,øB A C与øD A E,øC与øE5.直线B C,逆时针旋转180ʎ,平移B C长度6.(1)øE D C,E C(2)6,90ʎ12.2三角形全等的判定(1)1.S S S2.A B=B C,A B D,C B E3.提示:由әA B DɸәB A C(S S S),得øD=øC4.略5.øB A D=øC A D,理由略.提示:әA O EɸәA O F(S S S)6.(1)略(2)A BʊD E,A CʊD F,理由略*7.提示:由әA B DɸәA C D(S S S),可得A DʅB C,A D平分øB A C12.2三角形全等的判定(2)1.øB E D,D E,әB D E,S A S2.øE A D=øB A C或øE A B=øD A C或E D=B C3.B4.由әE DHɸәF DH,得E H=F H.还能得如下结论:øD E H=øD F H,øDH E=øDH F5.由әB C AɸәD E B(S A S),得B C=D E6.由әA B CɸәA B D(S A S),得øA B C=øA B D, ʑ øC B E=øD B E7.(1)A B=A C,A D=A D,øB=øC*(2)不全等.两边及一边的对角对应相等的两个三角形不一定全等12.2三角形全等的判定(3)1.C2.(1)øB C A=øE F D(2)øB=øE3.提示:由øC B A=øF E D,øB C A=øE F D,A B=D E,得әB A CɸәE D F(A A S)4.提示:由әA B CɸәE D C(A S A),得D E=A B5.提示:由әB C DɸәC B E(A S A),得B E=C D6.提示:可先证明әA O DɸәA O E,得出O D=O E;再证明әB O DɸәC O E,从而得出O B=O C12.2三角形全等的判定(4)1.D2.(1) (2)ˑ (3)ˑ (4)3.(1)A C=D C(2)øA=øD或øB=øE(3)A C=D C4.(1)提示:әA B CɸәA D C(A A S)(2)由(1)得C B=C D5.提示:әA O DɸәC O B(S A S),әA O EɸәC O F(A A S)6.全等三角形有әA B CɸәD C B(S A S),әA B OɸәD C O(A A S).理由略12.2三角形全等的判定(5)1.D2.A C=D F或B C=E F或øA=øD或øB=øE3.提示:由R tәA D EɸR tәA D F(H L),得øD A E=øD A F,即A D是øB A C的平分线4.(1)A E=D F,A BʊC D(2)略5.(1)ȵ A D=B D,A C=B E,øA D C=øB D E, ʑ әB E DɸәA C D(H L)(2)提示:由әB E DɸәA C D,得D E=D C6.当A P=A C=10c m,即点P与点C重合时,或A P=B C=5c m,即P是A C的中点时,әA B C与әA P Q全等*7.正确. ȵ R tәO C PɸR tәO D P, ʑ øC O P=øD O P,即O P平分øA O B12.2三角形全等的判定(6)1.(1)A A S(2)A S A (3)S A S(4)H L2.②④3.D4.提示:先证明әA B EɸәA C D,再证明әO B DɸәO C E5.提示:先证明әA O DɸәB O C,再证明әO C EɸәO D F6.提示:延长A M到点N,使MN=A M,连接B N.先证明әA C MɸәN B M,得到B N=A C,再由әA B N的三边关系得到A N<A B+B N, ʑ 2A M<A B+A C12.3角的平分线的性质(1)1.(1)略(2)5c m2.(1)B C,C D(2)A B,A D3.P B=P C,A B=A C4.提示:根据角平分线的性质可得A E=E F,D E=E F,故A E=D E5.提示:由әP DMɸәP E N(S A S),得P M=P N6.(1)提示:两个三角形的边A B,A C上的高相等(2)方法一:ȵ B D=C D,ʑ SәA B D=SәA C D. ʑ A B=A C方法二:过点D分别作A B,A C的垂线段,通过三角形全等证明12.3角的平分线的性质(2)1.A2.253.略4.21ʎ5.提示:可证明әC O EɸәB O D,得O E=O D6.(1)略(2)作图略,A DʅA E复习题1.A2.4对:әA F DɸәA F E,әB D FɸәC E F,әA F BɸәA F C,әA B EɸәA C D3.由әA B CɸәA'B'C',得B C=B'C',即影子一样长4.点P为øA和øB的平分线的交点,图略5.提示:由әB D FɸәC D E(S A S),得øF=øD E C,故B FʊC E6.3c m,37ʎ7.由R tәA B DɸR tәC B E(H L),得øB A D=øB C E.ȵøE+øB C E= 90ʎ, ʑ øE+øB A D=90ʎ, ʑ A FʅC E8.(1)提示:证明әC B DɸәE F C,D B=C F(2)2(3)2第十三章 轴对称13.1轴对称13.1.1轴对称1.B2.A DʅB C,中点,垂直平分线3.(1) (2)ˑ4.①和③是轴对称图形.对称轴及对称点略5.(1)点D ,E ,F (2)l 垂直平分线段A D (3)交点在直线l 上6.图略.正三㊁四㊁五㊁ n 边形分别有3,4,5, ,n 条对称轴13.1.2 线段的垂直平分线的性质(1)1.(1)B M (2)90 (3)2c m 2.A D +D E +A E =B D +D E +E C =B C =5c m3.ȵ A C =A D , ʑ 点A 在C D 的垂直平分线上.同理,点B 在C D 的垂直平分线上, ʑ AB 垂直平分CD 4.以点A 为圆心㊁适当长为半径作弧,交l 于点B 和C ,再分别以点B 和C 为圆心㊁大于12B C 的长为半径作弧,两弧交于点D ,连接D A ,直线D A 就是所求作的垂线5.ȵ A B =A C ,B D =D C , ʑ 直线A D 是线段B C 的垂直平分线.ȵ 点E 在A D 上, ʑ E B =E C6.A C =A E =12A B =3c m13.1.2 线段的垂直平分线的性质(2)1.对应点,垂直平分线2.连接A B ,分别以点A 和B 为圆心㊁大于12A B 的长为半径画弧,两弧交于点C 和D ,连接C D ,C D 就是所求作的直线3.①②③⑤是轴对称图形.图略 4.略5.提示:作出三角形任意一边的中线即可6.方案一:两组对边中点的连线;方案二:两条对角线13.2 画轴对称图形(1)1.(1)略 (2)A 'B 2.略 3.略 4.略 5.略 6.略13.2 画轴对称图形(2)1.C 2.点P 的坐标(2,3)(1,-4)(-2.5,-6)0,-72点P 关于x 轴对称的点的坐标(2,-3)(1,4)(-2.5,6)0,72 点P 关于y 轴对称的点的坐标(-2,3)(-1,-4)(2.5,-6)0,-723.1,24.略5.(1)图略.-3,5,-1,1,-3,3 (2)图略.-1,5,-3,1,-1,3 (3)是.图略6.A 2(1,-3),B 2(4,-1),C 2-12,-2.图略13.3 等腰三角形13.3.1 等腰三角形(1)1.(1)50ʎ (2)66ʎ 2.50 3.3,904.øB C D =25ʎ,øA D C =50ʎ,øA C B =90ʎ5.由әA B C ɸәA E D (S A S ),得A C =A D .又AM ʅC D , ʑ C M =MD .ʑ M 是C D 的中点6.提示:连接A P ,证明әA D P ɸәA E P 或әB D P ɸәC E P ,得P D =P E*7.(1)15ʎ (2)20ʎ (3)øE D C =12øB A D ,理由略13.3.1 等腰三角形(2)1.70,等腰 2.(1)30ʎ (2)30ʎ或75ʎ或120ʎ3.提示:由øD B C =øD C B ,得әB C D 是等腰三角形4.30海里5.øC =30ʎ,C D =3c m 6.ȵ øB =øC =12(180ʎ-øA ), ʑ A B =A C .ȵ B D =C E , ʑ A D =A E , ʑ øA D E =øA E D =12(180ʎ-øA ),ʑ øA D E =øB , ʑ D E ʊB C*7.(第7题)13.3.2 等边三角形(1)1.(1)0.5c m (2)3 2.D 3.90ʎ4.提示: ȵ әA D F ɸәB E D ɸәC F E , ʑ A D =B E =C F5.(1)ȵ әA B C 是等边三角形,ʑ AC =C B ,øA =øE C B =60ʎ.又AD =CE ,ʑ әA D C ɸәC E B (S A S ), ʑ øC B E =øA C D(2)øC F E =øC B E +øD C B =øA C D +øD C B =øA C B =60ʎ6.提示:可证明әA B D ɸәA C E (S A S ), ʑ A D =A E ,øD A E =øB A C =60ʎ,ʑ әA D E 是等边三角形13.3.2等边三角形(2)1.2402.30ʎ,4c m,2c m3.ȵ øA=90ʎ-60ʎ=30ʎ,øC=90ʎ, ʑ A B=2B C.又ȵ A B-B C=5c m, ʑ B C=5c m4.øB=15ʎ,øD A C=øB+øA C B=30ʎ,C D=12A C=12A B=25c m5.(1)略(2)(12+43)c m6.ȵ B'D=B'E, ʑ B B'平分øA B C, ʑ øB'B D=30ʎ,ʑ B B'=2B'D=5ˑ2=10c m7.根据әA B D的画法,有A B=A C=B C=C D,ʑәA B C是等边三角形, *øA B C=øA C B=60ʎ,øD=øC B D=12øA C B=30ʎ.ʑ øA B D=60ʎ+30ʎ=90ʎ, ʑ әA B D就是所要画的三角形13.3.2等边三角形(3)1.12.60,1203.74.әO D E是等边三角形.提示:证明øD O E=2øA O B=60ʎ,O D=O C=O E即可5.(1)15时30分(2)17时30分6.(1)连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可*(2)әD E F仍为等腰直角三角形.连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可13.4课题学习最短路径问题1.提示:作点O关于A B的对称点O',连接O'C,交A B于点P2.提示:作点O关于A B的对称点O',点M关于B C的对称点M',连接O'M',交A B,B C于点P和Q3.提示:利用平移,将点C移动到边C D上的点C'处,C C'=2c m,作点O关于A B对称点O',连接O'C',交A B于点P复习题1.C2.5c m,50ʎ3.18ʎ4.略5.ȵ E DʅB C, ʑ øE+øB=90ʎ,øD F C+øC=90ʎ.ȵ A B=A C, ʑ øB=øC.又øD F C=øA F E, ʑ øE=øA F E, ʑ A E=A F.ʑ әA E F是等腰三角形6.ȵ әA C E与әA D E关于直线A E对称, ʑ D E=E C,A D=A C=C B,ʑ D E+E B+D B=E C+E B+D B=C B+D B=10c m7.ȵ øA=60ʎ,A D=12A B=A C, ʑ әA C D是等边三角形,øD C B=90ʎ-øA C D=30ʎ.øA C E=90ʎ-øA=30ʎ,øE C D=30ʎ,ʑøA C E=øE C D =øD C B8.ȵ E B=E C, ʑ øE B C=øE C B. ȵ øA B E=øA C E,ʑ øA B C=øA C B, ʑ A B=A C.又ȵ E B=E C,ʑ 点A和E在B C的垂直平分线上. ʑ A DʅB C9.(1)a=2,b=3(2)(-6,-2)10.(第10题)11.(1)略(2)P(a,b)关于直线m对称的点的坐标为(-a-4,b);P(a,b)关于直线n对称的点的坐标为(b,a)12.(1)由әA B EɸәD B C(S A S),得A E=D C(2)成立(3)等边三角形第十四章 整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.(1)不正确.a6(2)正确(3)不正确.-79(4)不正确.-2102.(1)108(2)1211(3)-127(4)5103.(1)m6(2)x2m+1(3)a6(4)-x54.1020次5.(1)(a+b)3(2)(x-y)7(3)b9(4)(a-b)56.1.2ˑ1011m 14.1.2幂的乘方14.1.3积的乘方1.B2.(1)26(2)b9(3)1012(4)-x153.(1)不正确.8x3(2)不正确.a3b6(3)不正确.9a6(4)不正确.-127x3y64.(1)-a6(2)9ˑ1010(3)a12b6(4)-8x6y35.54a2,27a36.5.14ˑ108k m214.1.4整式的乘法(1)1.(1)15a5(2)-72a3b6(3)6ˑ107(4)-3x5y42.(1)不正确.3x3y2(2)不正确.-2x2-2x y3.(1)2x2+2x(2)6x2-18x y(3)-2a+2b-2c(4)-15a4+43a34.a b-b25.3x3-5x2+6x,-146.(1)2x y,4x y-2y(2)15x y+y14.1.4整式的乘法(2)1.(1)x2+3x+2(2)2x2-x-12.(1)x2-4(2)6x2+x-1(3)x2+4x y-21y2(4)6x2+11x y-10y23.(1)x2-y2(2)4x2-9(3)x2+2x y+y2(4)4x2-12x+94.(1)3m2-m n-5m+2n-2(2)6x-9,35.(a-b)(a-2b)=a2-3a b+2b26.小丽说得对,理由略14.1.4整式的乘法(3)1.(1)a2(2)a2(3)a3b3(4)12.C3.(1)100(2)a6(3)-b3(4)-a b4.(1)1(2)-1(3)1(4)15.(1)a4(2)-m3(3)1(4)2a76.104s14.1.4整式的乘法(4)1.(1)2a(2)-5y2(3)-2ˑ103(4)r32.自上而下:-x3y,6x z,-12x3.D4.(1)-14a b(2)3x+1(3)3a+4(4)-6x+2y-15.(1)-y+2x y2(2)-2a2+4a+8,26.(8.47ˑ1010)ː(2.75ˑ103ˑ105)=308年14.2乘法公式14.2.1平方差公式1.(1)a2-1(2)y-32.(1) (2) (3) (4) (5)ˑ3.(1)a2-4(2)9a2-b2(3)y2-0.09x2(4)a2-14b24.(1)(100+3)(100-3)=9991(2)(60-0.2)(60+0.2)=3599.965.(1)二,去括号后未变号(2)略6.(1)-8a2(2)5x2-34y2(3)-2a2+7a+27.(1)a2-b2(2)a-b,a+b,(a-b)(a+b)(3)(a-b)(a+b)=a2-b2 *(4)略14.2.2 完全平方公式(1)1.D2.(1)9+6x +x 2(2)y 2-14y +49 (3)x 2-10x +25 (4)9+2t +19t 23.(1)10000 (2)38809 4.(1)14x 2-2x y +4y 2 (2)-4a 2-12a -95.(1)略 (2)(a -b )2+4a b =(a +b )2(3)69 ʃ11 6.8a b14.2.2 完全平方公式(2)1.D 2.(1)y +z (2)y -z (3)2b -c ,2b -c3.(1)4x 2+12x y +9y 2 (2)4x 2-4x +14.(1)4x 2+y 2+z 2-4x y +4x z -2y z (2)a 2-4b 2+4b -15.x 2-3,1 6.(1)a 5+5a 4b +10a 3b 2+10a 2b 3+5a b 4+b 5(2)24314.3 因式分解14.3.1 提公因式法1.C2.(1)3 (2)x (3)2a 2(4)a -b 3.(1)2x 2(x +3) (2)3p q (q 2+5p 2) (3)x y (x +y -1) (4)-2a b 3(4a -3c )4.(1)(a -b )(2a -2b -1) (2)(x -y )2(3-x +y )(3)(a -b )(7+a )5.-24 6.(1)998 (2)-1020197.2r h +12πr 2,分解因式得r 2h +12πr,64πm 214.3.2 公式法(1)1.B2.(1)2x ,3y ,(2x +3y )(2x -3y )(2)5b ,4a ,(5b +4a )(5b -4a )(3)x 2-y 2,x y (x +y )(x -y )3.(1)(x +1)(x -1) (2)3(2+a )(2-a ) (3)(a +b +c )(a +b -c )(4)(a 2+9b 2)(a +3b )(a -3b )4.(1)2013 (2)-15.a 2-4b 2=(a +2b )(a -2b )=128c m26.(1)34 (2)23 (3)58 (4)10120014.3.2 公式法(2)1.D 2.(1)3a +2 (2)9y 2,3y (3)-2m n 3.(1)(x -3)2 (2)(2a +b )2 (3)-(3x -2y )2 (4)a +12b24.(5x+y)2,4255.(1)-3x(x-1)2(2)(2a+b-4)2(3)(a+2b)2(a-2b)2(4)(a+2)(a-2)6.(1)1ˑ104(2)1ˑ1047.(1)(x+2y-1)2(2)(a+b-2)2*复习题1.D2.(1)3x4y4(2)-4a b3.a2+4a b+4b2,a2-4b2,4b2-a2,-a2-4a b-4b24.(1)2a3b3c3+12a3b c3(2)-3a b+8b(3)14x2-16a2(4)16m2+8m+15.②6.(1)(x+2)(x-2)(2)(8-a)2(3)(x-y)(2+a)(4)(0.7x+0.2y)(0.7x-0.2y)7.(1)2x5(2)-7x3y2+2x2(3)-4x-12(4)x-y8.(1)(x-y)(5x-4y)(2)-a2(b-1)2(3)4a(x+2y)(x-2y)(4)(x-2)(x-3)(x+3)9.吃亏了,少了25m2,理由略10.(1)(a+2b)(2a+b)=2a2+5a b+2b2(2)如图(3)答案不唯一.如图,(a+2b)(a+b)=a2+3a b+2b2[第10(2)题][第10(3)题]11.原式=(2-1)ˑ(2+1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22-1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22048-1)ˑ(22048+1)=24096-112.(1)C(2)(x-2)4(3)设x2-2x=y,原式=y(y+2)+1=(y+1)2=(x2-2x+1)2=(x-1)4第十五章 分式15.1 分式15.1.1 从分数到分式1.(1)3t (2)nm +12.m ,x 5,13a 2b ,23,5π整式集合 2a ,x x -3,x 2-x +1y,x +1x -1分式集合3.(1)x ʂ0 (2)x ʂ2 (3)x ʂ0且x ʂ1 (4)x ʂʃ34.(1)m +n x +y千克 (2)b45a 5.(1)x =43 (2)x =-12 (3)-3 6.x -5x 2-3615.1.2 分式的基本性质(1)1.(1)x (2)3a 2-3a b (3)y -2 (4)1 2.(1)ˑ (2) (3)ˑ (4)ˑ 3.(1)12x (2)-x 3y(3)2a5b 4.(1)相等.因为把第一个分式的分子㊁分母同乘以3x 就是第二个分式(2)相等.因为把第一个分式的分子㊁分母同乘以3b 2就是第二个分式5.(1)5x -103x +20 (2)x -23x -1 6.(1)A (2)3y (答案不唯一) 15.1.2 分式的基本性质(2)1.B 2.A 3.(1)c b (2)-4x 5y (3)34(x -y )4.(1)x +2x -2 (2)1m (m -2) (3)x +2x -25.(1)x +2y 4x ,34 (2)a +3a -3,46.答案不唯一,例如:x 2-1x 2+x=x -1x ,1215.1.2 分式的基本性质(3)1.(1)5a (2)a 2b 22.D3.(1)412x 2与5x 12x 2 (2)3b c a 2b 2与2a c a 2b 2 (3)5a 2c 21a c 与35c 21a c (4)3a b 23b 2与a 3b24.(1)a c +c (a -1)(a +1)与a c -c (a -1)(a +1) (2)2y 2x y (y +1)与3x 2x y (y +1)5.(1)a -2a 与a 2-2a a (2)x 2-y 2x +y 与2y 2x +y6.(1)c -a (a -b )(b -c )(c -a ),a -b (a -b )(b -c )(c -a )与c -b(a -b )(b -c )(c -a )(2)2a (a -3)(a +3)(a -3)2与3(a +3)(a +3)(a -3)215.2 分式的运算15.2.1 分式的乘除(1)1.C 2.(1)不正确.-3x (2)不正确.8x 23a 2 3.(1)1 (2)-5a14x 4.(1)-1a c (2)1a (a -2) (3)2x -2x +2 (4)-13m5.s a ːm s b =b a m6.300x ㊃2x m =600m 个15.2.1 分式的乘除(2)1.B2.(1)a b (2)a 2b 2 (3)(x -1)2(4)4a 2c 4 (5)4c 2d 2a 2b 6 (6)(2a +b )2(a -b )23.(1)3c a b (2)49x 2y 2 (3)m 2n 24.(1)1b (2)-y (x +y )5.32倍15.2.2 分式的加减(1)1.(1)3x (2)x -y a (3)1 (4)-b a2.C3.(1)5y -4x 6x 2y 2 (2)3b c 3+2a36a 2b 2c 24.(1)2 (2)a b a -b (3)3x +4 (4)4x +25.(1)2a a +2 (2)1m -1 (3)2a 2a -2 6.3000a -30003a =2000a时15.2.2 分式的加减(2)1.D 2.(1)2 (2)-1a 3.(1)b 2a3 (2)1a -2 (3)1x +1 (4)1x -14.aa -3,a 可选除0,2,3以外的任意数5.方法一:原式=2x (x +4)(x -2)(x +2)㊃x 2-4x =2x +8;方法二:原式=3x x -2㊃x 2-4x -x x +2㊃x 2-4x =2x +8*6.(1)100(x +y ),100x +100y ,x +y 2,2xy x +y(2)乙购买粮食的方式更合算,理由略15.2.3 整数指数幂(1)1.(1)25,1,125 (2)25,1,1252.(1)不正确.1 (2)不正确.-1 (3)不正确.19 (4)正确3.(1)1100 (2)127 (3)1000 (4)94 4.(1)6a2c 4 (2)y 2x 6z45.(1)8m 8n 7 (2)b 138a 8 6.原式=y -9x 3,8915.2.3 整数指数幂(2)1.C 2.A3.(1)1.0ˑ105 (2)1.0ˑ10-5 (3)-1.12ˑ105 (4)-1.12ˑ10-44.(1)75 (2)3.6ˑ10-135.(1)0.00001 (2)0.000236.3.1ˑ10-315.3 分式方程(1)1.C 2.(1)x =73(2)x =4 3.m =14 4.(1)x =12 (2)x =35.(1)x =1 (2)x =-1*6.设原分式为x -16x ,则x -15x +1=12,解得原分数为153115.3 分式方程(2)1.A 2.90x +6=60x 3.设乙单独做,x 天完成,则46+4x=1,解得x =124.120元5.设原计划每天铺设x m 管道,则3000x -3000(1+25%)x =30,解得x =20,(1+25%)x =25.实际每天铺设管道25m 6.(1)70m /m i n (2)李明能在联欢会开始前赶到学校15.3 分式方程(3)1.10 2.B 3.35.6mm4.设乙每分钟输入x 名学生的成绩,则26402x =2640x-2ˑ60,解得x =11,2x =22.乙每分钟输入11名学生的成绩,甲每分钟输入22名学生的成绩5.设货车的速度是x km /h ,由题意得14401.5x +6=1440x,解得x =80.货车的速度是80k m /h ,客车的速度是120k m /h *6.255p -1元 复习题1.B2.C3.C4.3ˑ10-4微米 5.(1)1.2ˑ104 (2)10-46.(1)y 29x 6 (2)x -5 7.(1)x =1 (2)无解 8.设甲的速度为x k m /h ,则8-0.5x x =122x,解得x =4,所以甲的速度是4k m /h ,乙的速度是8k m /h9.设该市去年居民用水的价格为x 元/米3,则今年居民用水的价格为(1+25%)x元/米3.根据题意,得36(1+25%)x -18x=6,解得x =1.8,(1+25%)x =2.25.该市今年居民用水的价格为2.25元/米310.王师傅这次运输所花时间为180v h ,180v ˑ29v +14+180v ˑ20=176,解得v =45.王师傅这次运输的平均速度为45k m /h 11.(1)取a =1,b =1,得M =N =1;取a =2,b =12,得M =N =1.猜想:M =N (2)M =a a +1+b b +1=a a +a b +b b +a b =1b +1+1a +1=N ,因此M =N 总复习题1.C2.C3.D4.B5.A6.1.83ˑ10-77.538.5409.所有图案都是轴对称图形,图略10.(1)3x2-20x+26(2)-111.(1)2x(3-2y)(2)y(y+2x)(y-2x)(3)(a+3)2(a-3)2(4)(a-b)(2a-2b+3)(2a-2b-3)12.(1)无解(2)x=-713.ȵ øA=50ʎ,øB D C=85ʎ,ʑøA B D=35ʎ.又ȵB D平分øA B C,D EʊB C,得øB D E=35ʎ, ʑ øBE D=110ʎ. ʑ әB D E各内角度数分别为35ʎ,35ʎ,110ʎ14.әA B C,әA B D,әA C D;øB=36ʎ15.B E=A B-A E=7c m,在әB E F中,øB E F=øG E F=øA E G=60ʎ,得E F=2B E=14c m16.øA B C=øA D C.提示:连接B D,证明øA D B=øA B D,øC D B=øC B D,得øA D B+øC D B=øA B D+øC B D,即øA D C=øA B C17.设甲公司单独完成需要x天,则12x+121.5x=1,解得x=20,1.5x=30.甲㊁乙两公司单独完成此项工程,分别需要20天和30天18.(1)在R tәA D B与R tәC E A中,A B=A C,øB A D=øA C E, ʑ әA D BɸәC E A, ʑ A D=C E,A E=B D. ʑ D E=B D+C E(2)D E=B D+C E(3)D E=C E-B D19.(1)øA+øD=øB+øC(2)6(3)øP=45ʎ(4)øP=øB+øD2,理由略20.(1)32(2)ʃ321.略期末综合练习1.D2.D3.A4.A5.B6.D7.B8.C9.C 10.A 11.4.2ˑ10-712.23b13.3x(x+2y)(x-2y)14.ʃ4 15.116.917.= 18.24ʎ19.20ʎ或35ʎ或80ʎ或50ʎ20.2 21.a+1,选取a=2,所求的值为322.略23.提示:(1)由әB O DɸәC O E可得(2)提示:证明A B=A C,得点A,O都在B C的垂直平分线上24.(1)甲工程队每月修建绿道1.5k m,乙工程队每月修建绿道1k m(2)甲工程队至少修建绿道8个月25.(1)①30 ②|60ʎ-2α|(2)①略 ②|8-2n|。
初二数学作业本人教版答案1.初二数学作业本人教版答案篇一平均数作业本1答案基础练习1、22、203、C4、120千瓦时综合运用5、8.625题6、小王得分:(70×5+50×3+80×2)/10=66(分).同理可得:小孙得74.5分,小李得65分.所以小孙得分中位数和众数作业本2答案基础练习1、5,42、B3、C4、中位数是2,众数是1和2综合运用5、(1)平均身高为161cm(2)这10名*的身高的中位数、众数分别是161.5cm,162cm (3)答案不。
如:可先将九年级身高为162cm的所有*挑选出来作为参加方队的人选。
如果不够,则挑选身高与162cm比较接近的*,直至挑选到40人为止。
6、(1)甲:平均数为9.6年,众数为8年,中位数为8.5年;乙:平均数为9.4年,众数为4年,中位数为8年。
(2)甲公司选用了众数,乙公司选用了中位数。
(3)此题答案不,只要说出理由即可。
例如,选用甲公司的产品,因为它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定2.初二数学作业本人教版答案篇二一元二次方程作业本答案基础练习1、D2、A3、一般形式二次项系数一次项系数常数项3x2-5x+1=03-51x2+x-8=011-87x2-4=070-44、(1)x1=-1是方程的根(2)a2=-4/3是方程的根综合运用5、(22-x)(17-x)=300,是一元二次方程,x2-39x+74=06、m-n=1,x=1一元二次方程的解法业本答案基础练习1、(1)x1=-2,x2=2(2)a1=0,a2=22、x2-x=0,x(x-1),x,x-1,0,13、(1)x1=0,x2=-5/3(2)a1=a2=1/2(3)x1=4,x2=1(4)x1=1/3,x2=-14、错,因为x-1有可能为零.应为3x(x-1)-(x-1)=0,(x-1)(3x-1)=0解得x1=1,x2=1/3综合运用5、a=2,x=7/26、(1)y1=y2=-5/2(2)x1=3,x2=6(3)x1=x2=3/23.初二数学作业本人教版答案篇三三角形的外角(1)答案1、65°2、120°3、>4、360°5、答:命题正确。