数学作业本八年级上参考答案2020
- 格式:docx
- 大小:40.07 KB
- 文档页数:15
启东中学作业本八上数学答案2020宿迁专版选题范围:八年级数学题目类型:选择题1. 下列哪个小数是有限小数?A. 0.25B. 0.5C. 0.75D. 0.32. 数轴上标有点 O(-1)、A(0)、B(1)、C(2),则 AB+BC 等于A. -1B. 2C. 3D. 43. 下列函数中,与 y=x^2+2 的图象关于 y 轴对称的是A. y=x^2-2B. y=-x^2+2C. y=-x^2-2D. y=x^2-24. 已知一圆柱的底面半径为 8cm,高为 10cm,则其侧面积为A. 80π cm²B. 160π cm²C. 320π cm²D. 640π cm²5. 一化学试剂中,质量分数为31%,则100克该试剂中的溶质量是A. 31克B. 69克C. 131克D. 169克题目类型:填空题1. 下列各组数中,互质的是 __和__2. x²-4x+10= __3. 如图,A、B两点的坐标分别为(-5,-2),(-5,2),则 AB 的长为__4. 解方程 4x-7=5x+4,得 x=__5. 若两条直线的斜率分别为 2/3 和 2,则两直线的夹角为__°题目类型:解答题1. 某公司员工工资为底薪2800元加销售业绩提成3%,若某员工一个月的销售额为24000元,则这个员工这个月的工资为多少?2. 一台机器的原价为3000元,现在打八五折出售,现售价为多少?3. 如图,梯形 ABCD 中,AB∥CD,AB=8cm,BC=10cm,CD=6cm,EG∥AB,FG∥BC,FG=3cm,EG=5cm,求梯形 ABCD 的面积。
4. 已知等差数列的公差为 3,首项为 10,末项为 43,求该等差数列的和。
5. 如图,在矩形 ABCD 中,点 F 为 AB 的中点,点 E 在 AB 边上,且DE∥CB,EF=7cm,BC=12cm,求 AE 的长。
2020八年级上数学课堂作业本答案第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查[3.4]5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1保3330保3334=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后实行调查,调查的问题能够是平均每天上网的时间、内容等【4.2】1.22.2,不准确,因为样本容量太小3.C4.120千瓦2时5.8保叮玻堤猓ǖ冢堤猓(第6题)6.小王得分7035+5033+803210=66(分).同理,小孙得74保捣郑小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1保玻ㄆ椒交罚.八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161保担悖恚162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为9保赌辏众数为8年,中位数为8保的辏灰遥浩骄数为9保矗福胺值模甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这个角度看,乙组成绩更好(2)甲公司使用了众数,乙公司使用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差别大,乙组成员成绩差别较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选择的样本具有代表性7.(1)3.平均数为14保此辏中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2保6.D7.A8.A9.10,32004年(万元)5保保勃保叮勃保叮福310.不准确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6保担唱保埃唱保埃保保3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度实行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提升,但差别拉大(2)甲应增强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7保担乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)1保盖Э (2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不,只要分析有道理即可1.①⑥ 2.C。
八上数学作业本电子稿浙教版20201、27.下列计算正确的是()[单选题] *A.(﹣a3)2=a6(正确答案)B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b22、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案)C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.3、13.在海上,一座灯塔位于一艘船的北偏东40°方向,那么这艘船位于灯塔()[单选题] *A.南偏西50°方向B.南偏西40°方向(正确答案)C.北偏东50°方向D.北偏东40°方向4、15.如图所示,下列数轴的画法正确的是()[单选题] *A.B.C.(正确答案)D.5、花粉的质量很小,一粒某种植物花粉的质量约为000037毫克,已知1克=1000毫克,那么000037毫克可用科学记数法表示为[单选题] *A. 7×10??克B. 7×10??克C. 37×10??克D. 7×10??克(正确答案)6、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.157、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)8、8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示图形,则∠BFD 的度数是( ) [单选题] *A.15°(正确答案)B.25°C.30°D.10°9、22.如图棋盘上有黑、白两色棋子若干,找出所有使三颗颜色相同的棋在同一直线上的直线,满足这种条件的直线共有()[单选题] *A.5条(正确答案)B.4条C.3条D.2条10、14.平面上有三个点A,B,C,如果AB=8,AC=5,BC=3,则()[单选题] * A.点C在线段AB上(正确答案)B.点C在线段AB的延长线上C.点C在直线AB外D.不能确定11、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数12、平面上两点A(-3,-3),B(3,5)之间的距离等于()[单选题] *A、9B、10(正确答案)C、8D、613、25.从五边形的一个顶点出发,可以画出m条对角线,它们将五边形分成n个三角形.则m、n的值分别为()[单选题] *A.1,2B.2,3(正确答案)C.3,4D.4,414、下列各角终边在第三象限的是()[单选题] *A. 60°B. 390°C. 210°(正确答案)D. -45°15、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)16、下列函数中奇函数是()[单选题] *A、y=2sin x(正确答案)B、y=3sin xC、y=2D、y=17、直线2x-y=1的斜率为()[单选题] *A、1B、2(正确答案)C、3D、418、16.“x2(x平方)-4x-5=0”是“x=5”的( ) [单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件19、11.2020·北京,1,4分)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B=( ) [单选题] * A.{-1,0,1}B.{0,1}C.{-1,1,2}D.{1,2}(正确答案)20、下列表示正确的是()[单选题] *A、0={0}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ21、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}22、15.已知命题p:“?x∈R,ex-x-1≤0”,则?p为()[单选题] *A.?x∈R,ex-x-1≥0B.?x∈R,ex-x-1>0C.?x∈R,ex-x-1>0(正确答案)D.?x∈R,ex-x-1≥023、2.线段是由线段平移得到的,点的对应点为,则点的对应点的坐标为()[单选题] *A.(2,9)B(5,3)C(1,2)(正确答案)24、一个直二面角内的一点到两个面的距离分别是3cm和4 cm ,求这个点到棱的距离为()[单选题] *A、25cmB、26cmC、5cm(正确答案)D、12cm25、5.如果某商场盈利万元,记作万元,那么亏损万元,应记作(??)[单选题] *A-8B-8万元(正确答案)C.8万元D.826、46.若a+b=7,ab=10,则a2+b2的值为()[单选题] *A.17B.29(正确答案)C.25D.4927、下列各式计算正确的是( ) [单选题] *A. (x3)3=x?B. a?·a?=a2?C. [(-x)3]3=(-x)?(正确答案)D. -(a2)?=a1?28、17.已知的x∈R那么x2(x平方)>1是x>1的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充分必要条件D.既不充分也不必要条件29、11.11点40分,时钟的时针与分针的夹角为()[单选题] * A.140°B.130°C.120°D.110°(正确答案)30、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零。
人教版2020年八年级数学上册课时作业本轴对称与等腰三角形-等腰三角形性质与判定一、选择题1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或202.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.193.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定4.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD5.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°6.如果等腰三角形的一个底角为α,那么()A.α不大于45°B.0°<α<90°C.α不大于90°D.45°<α<90°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP8.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°9.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°10.如图,已知下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③二、填空题11.一个等腰三角形的一个角为80°,则它的顶角的度数是.12.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.若等腰三角形的一个外角为70°,则它的底角为度.14.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.15.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为 cm2.16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三、解答题17.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.18.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.19.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.20.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.21.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.22.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.参考答案1.C2.C3.C4.C5.D6.B7.C8.A9.答案为:A.10.A.11.答案为:80°或20°.12.答案为:120°或20°.13.答案为:35.14.答案为:20°.15.答案为:9.16.答案为:45.17.证明:过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.18.解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.19.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE==2.5.20.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.21.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.22.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).。
八年级上册数学作业本答案人教版2020第一章有理数课后作业答案1.有理数的概念1)真分数是指分子比分母小的分数。
2)带分数是由一个整数和一个真分数组成的混合数。
3)整数是正整数、负整数和零的统称。
2.有理数的比较与排序1)负有理数比较大小时,绝对值大的数较小。
2)正有理数和负有理数比较大小时,正数较大。
3)相同绝对值的正有理数和负有理数比较大小时,正数较大。
4)相同绝对值的两个负有理数比较大小时,绝对值较小的数较大。
3.有理数的四则运算1)有理数的加法–同号的两个有理数相加,保留符号,绝对值相加。
–异号的两个有理数相加,取绝对值较大的数的符号,绝对值相减。
2)有理数的减法–有理数的减法可以转化为加法。
–两个有理数相减,加上被减数的相反数即可。
3)有理数的乘法–同号的两个有理数相乘,结果为正。
–异号的两个有理数相乘,结果为负。
4)有理数的除法–一个非零有理数除以另一个非零有理数,结果为正。
–一个非零有理数除以0,结果为无意义。
–0除以任何非零有理数,结果为0。
4.数轴1)数轴上,数值越大,位置越右边。
2)数轴上,数与数之间间隔相等。
5.乘方与算术运算1)a的2次方可以写为a²。
2)a的3次方可以写为a³。
3)a的n次方可以写为aⁿ。
4)一个数的0次方等于1。
5)零的任何次方(除0⁰)等于0。
6)一个数的负指数等于其倒数的正指数。
7)两个幂运算的乘方运算法则:以相同的底数,幂相加。
8)两个幂运算的除法运算法则:以相同的底数,幂相减。
第二章整式与分式课后作业答案1.代数式的介绍1)代数式是由数、字母和运算符号组成的式子。
2)字母代表数,称为未知数。
2.整式的概念1)整数的加法和减法运算。
2)字母和数的乘法运算。
3.单项式、多项式1)只有一个项的代数式称为单项式。
2)多个项的代数式称为多项式。
4.公因式、最大公因式1)能够同时整除几个整数的最大整数称为这几个数的公因数。
2)几个数的公因数中最大的一个称为这几个数的最大公因数。
八年级上册数学作业本参考答案多些努力,仔细做八年级数学作业本习题,学会洒脱;锻炼自己的心志。
小编整理了关于八年级上册数学作业本参考答案,希望对大家有帮助!八年级上册数学作业本参考答案(一)定义与命题(1)定义与命题(1)第1题答案C定义与命题(1)第2题答案C定义与命题(1)第3题答案(1)如果两直线平行,那么内错角相等(2)如果一个数是无限小数,那么它是个无理数定义与命题(1)第4题答案(1)(2)(3)(4)(5)(8)是命题;(6)(7)不是命题定义与命题(1)第5题答案答案不唯一,如:如果两条直线平行,那么同位角相等;如果a > b,b > c,那么a > c定义与命题(1)第6题答案三角形中有两条边相等(或有两个角相等),有两条边相等(或有两个角相等)的三角形叫做等腰三角形八年级上册数学作业本参考答案(二)三角形全等的判定(1)三角形全等的判定(1)第1题答案略三角形全等的判定(1)第2题答案略三角形全等的判定(1)第3题答案AC,已知,AD,SSS三角形全等的判定(1)第4题答案稳定性三角形全等的判定(1)第5题答案CF,EF,DE,已知,△DEF,∠E三角形全等的判定(1)第6题答案可增加条件AC = DB,理由略三角形全等的判定(1)第7题答案(1)运用SSS判定△OCE与△ODE全等,则有∠COE = ∠DOE(2)画图略八年级上册数学作业本参考答案(三)图形的轴对称图形的轴对称第1题答案①图形的轴对称第2题答案A图形的轴对称第3题答案略图形的轴对称第4题答案8 cm2图形的轴对称第5题答案(1)垂直(2)AB = 4,BC = 5(3)略图形的轴对称第6题答案(1)作线段AB,与直线l交于点D,点D 就是奶吧所在位置(2)作点A关于直线l的对称点A',连结A'C,交直线l于点D,点D就是奶吧所在位置。
八年级上册数学作业本答案2020浙教版定义与命题(2)定义与命题(2)第1题答案C定义与命题(2)第2题答案(1)定理(2)定义定义与命题(2)第3题答案A定义与命题(2)第4题答案(1)真命题。
分成的两个三角形等底同高(2)假命题。
如a=130°,β=20°,则a-β=110°>90°(3)真命题。
∠1的对顶角与∠2相等,根据同位角相等,两直线平行可以判定a∥b定义与命题(2)第5题答案由∠FAB=∠ABC+∠ACB,得∠ACB=35°,由AB∥CD,得∠BCD=∠ABC=35°,因此∠ACB=∠BCD,所以CE平分∠ACD定义与命题(2)第6题答案(1)答案不唯一,例如,垂直于同一条直线的;平行于同一条直线的;不相交的(2)90(3)<证明(2)证明(2)第1题答案45°证明(2)第2题答案∠a=∠PBA=40°证明(2)第3题答案(1)>(2)∠ADB>∠DCB>∠CDE,所以∠ADB>∠CDE证明(2)第4题答案由∠EAC=∠B+∠C,得∠C=1/2∠EAC=∠DAC,∴AD∥BC证明(2)第5题答案已知:直线AB,CD被直线EF所截,AB∥CD,EG平分∠BEF,FH 平分∠EFC求证:EG∥FH。
证明:略证明(2)第6题答案答案不唯一。
例如:方法一:连结BD,证△ABD≌△CDB;方法二:延长BC至E,证∠DCE=∠B=∠D三角形全等的判定(2)三角形全等的判定(2)第1题答案∠ABC=∠EBD或∠ABE=∠CBD三角形全等的判定(2)第2题答案3,线段垂直平分线上的点到线段两端点的距离相等三角形全等的判定(2)第3题答案∠CBD,已知,公共边,△ABD,△CDB,SAS三角形全等的判定(2)第4题答案周长为6三角形全等的判定(2)第5题答案(1)△AED≌△ACD(SAS)(2)由DC=DE=2cm,得BC=BD+DC=5cm三角形全等的判定(2)第6题答案方法1:BO是线段AC的垂直平分线,所以BA=BC;方法2:△AOB≌△COB(SAS),所以BA=BC。
八年级数学课后作业本上册答案浙教版20201 1.C 2.C 3.C 4.B 5.a∥b 6.1.8 7.100°8.112°9.AB∥CD理由如下:因为∠ABC=120°,∠BCD=60°所以∠ABC+∠BCD=180°所以AB∥CD10.AB∥CD两直线平行,同位角相等,∠1+∠2=180°,同旁内角互补,两直线平行11.①y=-x+180°;②BD⊥EC2 1.C 2.B 3.C 4.C 5.70° 6.2 7.360°8.70 9.m∥n内错角相等,两直线平行∠3=∠4两直线平行,同位角相等、120°10.GM⊥HM理由如下:因为AB∥CD所以∠BGH+∠DHG=180°又因为GMHM分别是∠BGH与∠DHG的角平分线所以∠MGH=1112∠BGH,∠MHG=2∠DHG所以∠MGH+∠MHG=2(∠BGH+∠DHG)=90°所以∠M=180°-∠MGH-∠MHG=90°所以GM⊥HM11.(1)能,理由如下:延长AP交NB于点C,因为MA∥NB所以∠A=∠ACB又因为∠APB=∠ACB+∠B所以∠APB=∠MAP+∠NBP(2)∠MAP=∠APB+∠NBP3 1.B 2.D 3.D 4.D 5.等腰 6.2 7.70°8.10°9.25 10.135°11.(1)△BCF≌△CAE理由如下:因为BF⊥CF,AC⊥BC所以∠CBF+∠BCF=,90°,∠ACE+∠BCF=90°所以∠CBF=∠ACE又因为AE⊥CF所以△BCF和△CAE中∠BFC=∠CEA=90°∠CBF=∠ACEBC=AC所以△BCF≌△CAE(2)△ADC是等腰三角形,理由如下:因为∠CBF+∠BCF=90°∠ABF+∠BDF=90°又因为∠ABF=∠BCF所以∠CBF=∠BDF因为∠BDF=∠ADE所以∠CBF=∠ADE又因为△ACE≌△CBF所以∠ACE=∠CBF所以∠ACE=∠ADE所以△ADC是等腰三角形4 1.C 2.D 3.B 4.A 5.13或119 6.等腰7.70°,70°,40°或70°,55°,55°8.1 9.略10.137∠A=30°11.(1)15°(2)20°(3)∠EDC=112∠BAD(4)有∠EDC=2∠BAD,理由如下:因为AD=AE所以∠ADE=∠AED又因为∠AED=∠C+∠EDC又因为∠ADC=∠BAD+∠B即∠ADE+∠EDC=∠BAD+∠B所以∠ADE=∠BAD+∠B-∠EDC所以∠C+∠EDC=∠BAD+∠B-∠EDC又因为AB=AC所以∠B=∠C所以∠EDC=∠BAD-∠EDC即∠EDC=12∠BAD5 1.D 2.B 3.B 4.B 5.正方体或球体 6.直四棱柱或长方体7.成8.4,32 9.略10.(1)8 12(2)18(3)长方形240cm211.36cm2 11.(1)直棱柱(2)侧面积为6ab,全面积为6ab+33b26 1.D 2.D 3.A 4.C 5.5 6.乙7.2 8.8.4 9.(1)63(2)8 6 6 中位数,因为中位数只表示所有者所捐书本的居中者,既不能反映总量,也不能反映其他人捐书情况。
数学八年级上作业本答案参考2020参考答案第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴ ∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴ OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴ ∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵ AD=AE,∴ ∠ADE=∠AED,∴ ∠ADB=∠AEC.【3.2】又∵ BD=EC,∴ △ABD≌△ACE.∴ AB=AC1.C11.4保2.直四棱柱3.6,712.B13.连结BC.∵ AB=AC,∴ ∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵ ∠ABD=∠ACD,∴ ∠DBC=∠DCB.∴ BD=CD6.表面展开图如图.它的侧面积是14.25(π1保担2+2.5)33=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴ ∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+1231保3232=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)。
人教版2020年八年级数学上册课时作业本全等三角形-角平分线的性质一、选择题1.下列命题中真命题是( )A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等2.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③3.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:56.如图,AB⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=CEC.BF﹣DE=CDD.DF∥BC7.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤38.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.29.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定10.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题11.如图,△ACB中,∠C=90°,BD平分∠ABC交AC于点D,若AB=12,CD=6,则S△ABD为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.13.如图,在△ABC中,∠BAC=56°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF= 。
八年级上学期数学配套练习册答案参考2020第1 ~ 3页一、计算1、解:因为三角形ACF全等于三角形DBE。
所以AD-BC=DC-BC。
即AB=CD。
因为AB+CD+BC=AD 所以AB=(11-7)÷2=22、解:设∠BEF和∠FEM为X,则∠CEN和∠NEM为2X,得X+X+2X+2X=180 所以∠FEM+∠NEM=∠FEN ; 6X=180 所以∠FEN=30+60=90 X=30二、填空1~ 8 2 相反数正负7 负当a∠CBD,∠ADB>∠CDB,所所以AB+AD>BC+CD 五、1、AD=AB+BD=AC+CD=AB+BC+CD 2、AB=AD-BD=AC-BC=AD-BC-CD 3、BC+CD=AD-AB 4、BD-CD=BC课外拓展1、(1)1、2、3、4、5 (2)Y=n (3)100第28 ~ 30页一、1、6 2、8二、=-x+5+4x+5x-4+2x^2 =x^2+9x-1 三、BDCDDB四、解:BE=DE=1.7cm课外拓展 2、3分=180秒他们相遇5次第31 ~ 33页一、1、误差0 (2)2.6X=21 X=35四、1、(1)1:1 (2)略 2、(1)Y=40X (2)Y=35X+80(3)2+(1620-80)÷35=2+44=46五、125的立方根=5(cm) (5×5)÷8=8分之25六、对应点:D、D E、C C、A F、B课外拓展 1、23个第52 ~ 63页一、 (1)证明:Y是X的正比例函数 Z是Y的正比例函数 Z是X的正比例函数 (2)Z=4分之1X二、根号81=正负9 (-2)的平方=4=正负2 所以X+Y=11或-11或7或-7三、DBA 四、略五、解:设宽为X 2XX=1600 3X=1600 X≈533一、1、Y=X 2、X=3分之1 二、ACC三、1、-7ab(4a-3b+s) 2、=3ab4c-3ab3ab =3ab(4c-3ab)3、=a(a^2 -4ab+4b^2 ) =a(a-2b)的平方4、=9(Y-X)的平方-6(Y-X)+1 =[3(Y-X)-3(Y-X)]的平方一、DDCDB 二、1、X(X+2)(X-2) 2、d15 a2 c6。
八年级数学课堂作业本上答案2020(3)解:在同一平面直角坐标系中分别画出y=(m>0)与y=2m(m>0)的图象.由图象可得,当m≥1时,y≤2m.七、解(1)由△=(k+2)2-4k· >0 ∴k>-1又∵k≠0 ∴k的取值范围是k>-1,且k≠0(2)不存有符合条件的实数k理由:设方程kx2+(k+2)x+ =0的两根分别为x1、x2,由根与系数关系有:x1+x2= ,x1·x2= ,又则 =0 ∴ 由(1)知,时,△《三角函数》专项训练一、选择题B AD A A B DCD B11.4 +3或4 -3。
12. 60. 13. 14. 15. 16. 10 17. 18. 或19. . 20. AB=24.三、解答题21. 22. (1) 提示:作CF⊥BE于F点,设AE=CE=x,则EF 由CE2=CF2+EF2得 (2) 提示:设AD=y,则CD=y,OD=12-y,由OC2+OD2=CD2可得23.(1)∵AC⊥BD ∴四边形ABCD的面积=40(2)过点A分别作AE⊥BD,垂足为E∵四边形ABCD为平行四边形在Rt⊿AOE中,∴ …………4分∴ ………………………………5分∴四边形ABCD的面积……………………………………6分(3)如图所示过点A,C分别作AE⊥BD,CF⊥BD,垂足分别为E,F …………7分在R t⊿AOE中, ∴同理可得………………………………8分∴四边形ABCD的面积《反比例函数》专项训练一.选择题:C D B C C C A C二.填空题:1.( ),( )2. 且在每一象限内;3. ;4. ①②④5.6.7. 4三.解答题:1.解:(1) 设点的坐标为( , ),则 .∴ .∵ ,∴ .∴ .∴反比例函数的解析式为 .(2) 由得 ∴ 为( , ).设点关于轴的对称点为,则点的坐标为( , ).令直线的解析式为 .∵ 为( , )∴ ∴ ∴ 的解析式为当时, .∴ 点为( , ).2.解:(1)在中,令得 ∴点D的坐标为(0,2)(2)∵ AP∥OD ∴Rt△PAC ∽ Rt△DOC∵ ∴ ∴AP=6又∵BD= ∴由S△PBD=4可得BP=2∴P(2,6) …………4分把P(2,6)分别代入与可得一次函数解析式为:y=2x+2反比例函数解析式为: (3)由图可得x>2。
人教版2020年八年级数学上册课时作业本全等三角形-全等三角形的判定一、选择题1.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是( )A.SSSB.SASC.ASAD.HL2.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DFB.∠A=∠DC.AC=DFD.∠ACB=∠F3.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD4.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个 B.2个 C.3个 D.4个5.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=EDB.AB=FDC.AC=FDD.∠A=∠F6.下列判断中错误..的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①②③去9.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对10.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题11.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).12.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE= 度.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .14.如图,已知AB=AD,要使△ABC≌△ADC,那么可以添加条件.15.如图,已知△ABC≌△DBC,∠A=45°,∠ACD=76°,则∠DBC的度数为°.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.三、解答题17.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.18.如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.19.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.20.已知△ABN和△ACM位置如图所示,AB=AC,∠1=∠2,∠M=∠N.求证:AD=AE.21.如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)22.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.参考答案1.B.2.C.3.A4.B5.C6.B7.C8.C9.答案为:C.10.D11.答案为:①②③.12.答案为:90.13.答案为:55°.14.答案为:DC=BC(或∠DAC=∠BAC或AC平分∠DAB等)15.答案为:97.16.答案为:4.17.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.18.解:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS)∴∠BAC=∠DAC即AC平分∠BAD;(2)由(1)∠BAE=∠DAE在△BAE与△DAE中,得∴△BAE≌△DAE(SAS)∴BE=DE19.证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).20.证明:∵∠M=∠N,∴∠MDO=∠NEO,∴∠BDA=∠CEA,∴在△ABD和△ACE中,∵,∴△ABD≌△ACE(AAS),∴AD=AE.21.解:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,求证:∠1=∠2.证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠CAE,∴∠1=∠2.22.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.。