2016年四川省眉山市中考数学试题(含答案)-精品
- 格式:doc
- 大小:606.86 KB
- 文档页数:6
【中考数学试题汇编】2013—2018年四川省眉山市中考数学试题汇编(含参考答案与解析)1、2013年四川省眉山市中考数学试题及参考答案与解析 (2)2、2014年四川省眉山市中考数学试题及参考答案与解析 (24)3、2015年四川省眉山市中考数学试题及参考答案与解析 (45)4、2016年四川省眉山市中考数学试题及参考答案与解析 (66)5、2017年四川省眉山市中考数学试题及参考答案与解析 (87)6、2018年四川省眉山市中考数学试题及参考答案与解析 (104)2013年四川省眉山市中考数学试题及参考答案与解析A卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.2 B.12C.12D.﹣0.22.下列计算正确的是()A.a4+a2=a6B.2a•4a=8a C.a5÷a2=a3D.(a2)3=a53.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.0.93×106万元D.9.3×104万元4.下列图形是中心对称图形的是()A.B.C.D.5.一个正多边形的每个外角都是36°,这个正多边形的边数是()A.9 B.10 C.11 D.126.下列命题,其中真命题是()A.方程x2=x的解是x=1B.6的平方根是±3C.有两边和一个角分别对应相等的两个三角形全等D.连接任意四边形各边中点的四边形是平行四边形7.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.8.王明同学随机抽查某市10个小区所得到的绿化率情况,结果如下表:则关于这10个小区的绿化率情况,下列说法错误的是()A.极差是13% B.众数是25% C.中位数是25% D.平均数是26.2%9.用一圆心角为120°,半径为6cm 的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是( ) A .1cm B .2cm C .3cm D .4cm10.不等式组324313x x x x +⎧⎪+⎨--⎪⎩<≤的解集在数轴上表示为( )A .B .C .D .11.若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是( )A .B .C .D .12.如图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE+DC >DE ;④BE 2+DC 2=DE 2, 其中正确的有( )个.A .1B .2C .3D .4 二、填空题(6小题,每小题3分)13.函数12y x =-中,自变量x 的取值范围是 . 14.如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且12AE AF EB FC ==,若△AEF 的面积为2,则四边形EBCF 的面积为 .15.为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 决定(在横线上填写:平均数或中位数或众数).16.已知关于x 的一元二次方程x 2﹣x ﹣3=0的两个实数根分别为α、β,则(α+3)(β+3)= . 17.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 .(结果保留π)18.如图,在函数11k y x =(x <0)和22ky x=(x >0)的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =12,S △BOC =92,则线段AB 的长度= .三、计算题(2小题,每小题6分)19.(6分)计算:()1012sin 45 3.144π-⎛⎫︒-+- ⎪⎝⎭.20.(6分)先化简,再求值:()2111211x x x ⎛⎫+÷+- ⎪+-⎝⎭,其中x = 21.(8分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求A 与A 1,B 与B 1,C 与C 1相对应) (2)作出△ABC 绕点C 顺时针方向旋转90°后得到的△A 2B 2C ;(3)在(2)的条件下直接写出点B 旋转到B 2所经过的路径的长.(结果保留π)22.(8分)如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)五、(2个小题,每小题9分)23.(9分)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)李老师采取的调查方式是(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共件,其中B班征集到作品,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)24.(9分)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?B卷一、(本题9分)25.(9分)在矩形ABCD中,DC=CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.二、本题11分26.(11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.(3)请直接写出将该抛物线沿射线AD参考答案与解析A卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.2 B.12C.12-D.﹣0.2【知识考点】倒数.【思路分析】根据乘积为1的两数互为倒数,即可得出答案.【解答过程】解:﹣2的倒数为12 -.故选C.【总结归纳】此题考查了倒数的定义,属于基础题,关键是掌握乘积为1的两数互为倒数.2.下列计算正确的是()A.a4+a2=a6B.2a•4a=8a C.a5÷a2=a3D.(a2)3=a5【知识考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【思路分析】A、原式不能合并,错误;B、利用单项式乘单项式法则计算得到结果,即可作出判断;C、利用同底数幂的除法法则计算得到结果,即可作出判断;D、利用幂的乘方运算法则计算得到结果,即可作出判断.【解答过程】解:A、原式不能合并,错误;B、2a•4a=8a2,本选项错误;C、a5÷a2=a3,本选项正确;D、(a2)3=a6,本选项错误,故选C【总结归纳】此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.3.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A.9.3×105万元B.9.3×106万元C.0.93×106万元D.9.3×104万元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将930000用科学记数法表示为9.3×105.故选B.。
四川省眉山市xx年中考数学真题试题一、选择题1. 绝对值为1的实数共有().A. 0个B. 1个C. 2个D. 4个【答案】C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.2. 据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为().A. 65×106B. 0.65×108C. 6.5×106D. 6.5×107【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n是负数.详解:65000000=6.5×107,故选:D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是().A. (x+y)2=x2+y2B. (-xy2)3=- x3y6C. x6÷x3=x2D. =2【答案】D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选:D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4. 下列立体图形中,主视图是三角形的是().A. B. C. D.【答案】B【解析】分析:根据从正面看得到的图形是主视图,可得图形的主视图.详解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.点睛:本题考查了简单几何体的三视图,圆锥的主视图是三角形.5. 将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A. 45°B. 60°C. 75°D. 85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.6. 如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于().【答案】A【解析】分析:直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.详解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.点睛:此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.7. 某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A. 众数 B. 中位数 C. 平均数 D. 方差【答案】B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数8. 若α,β是一元二次方程3x2+2x-9=0的两根,则的值是().A. B. - C. - D.【答案】C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选:C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.9. 下列命题为真命题的是().A. 两条直线被一组平行线所截,所得的对应线段成比例B. 相似三角形面积之比等于相似比C. 对角线互相垂直的四边形是菱形D. 顺次连结矩形各边的中点所得的四边形是正方形【答案】A【解析】分析:根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.详解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;故选:A.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10. 我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8%B. 9%C. 10%D. 11%【答案】C【解析】分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.详解:设平均每次下调的百分率为x,由题意,得6000(1-x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.11. 已知关于x的不等式组仅有三个整数解,则a的取值范围是().A. ≤a<1B. ≤a≤1C. <a≤1D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案。
四川省眉山市中考数学试卷及答案第1卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分.共36分.在每个小题给出的四个选项中只 有一项是正确的.请把正确选项的字母填涂在答题卡上相应的位置1.计算3-1的结果是( ).A .31B .—31C .3D .—3 2.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9 ÷(一x)3=x 6D .(-2a 3)2=4a 63.下列二次根式中与2是同类二次根式的是( ).A .12B .23C .32 D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:m1 2 3 4 v 0.01 2.9 8.03 15.1 A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十1 6.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根区县东坡区 仁寿县 彭山县 洪雅县 青神县 丹棱县 人口数(万人) 83 160 33 34 20 16 则眉山市各区、县人口数的极差和中位数分别是( ).A .160万人,33.5万人 B.144万人,33.5万人C .144万人,34万人D .144万人,33万人8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟B .b a +8分钟C .b b a +-8分钟D .bb a --8分钟 10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21B .41 C.81 D .161 11.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l第II 卷 (非选择题 共84分)二、填空题:本大题共6个小题,每小题4分.共24分 将正确答案直接填在题中横线上.)13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14)17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______.18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.18题图 22题图三、本大题共2个小题.每小题5分,共10分.19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤) 20.计算:ba b -2十a 十b 四、本大题共3个小题,每小题7分.共21分.21 在如图所示的5×6方格中(每个方格的边长为1)画一圆,要求所画的圆经过四个格点,并求出你画的圆的半径.22.如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.23.黄金周长假推动了旅游经济的发展.下图是根据国家旅游局提供的近年来历次黄金周旅游收入变化图.(1)根据图中提供的信息.请你写出两条结论;(2)根据图中数据,求至的“十一”黄金周全国旅游收入平均每年增长的百分率(精确到0.1)五、本大题共2个小题,每小题9分,共18分24.如图.在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连结EG并延长交DC于M,过M作MN⊥AB.垂足为N,MN交BD于P(1)找出图中—对全等三角形.并加以证明(正方形的对角线分正方形得到的两个三角形除外);(2)设正方形ABCD的边长为1,按照题设方法作出的四边形BGMP若是菱形,求BE的长.25.某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:占地面积(m2/个)沼气池修建费用(万元/个) 可供使用户数(户/个)A型 3 20 48B型 2 3 6政府相关部门批给该村沼气池修建用地708m2.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.六、本大题共1个小题,共11分26.如图,矩形A’BC’O’是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的.O’点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O、O’两点且图象顶点M的纵坐标为—1.求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得ΔPOM为直角三角形?若存在,请求出P点的坐标和ΔPOM的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.。
2016年四川省眉山市仁寿县中考数学二模试卷一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A.2.653×105 B.2.653×106 C.2.653×107 D.2.653×1082.﹣的绝对值为()A.﹣2 B.﹣C.D.13.下面的三视图所对应的物体是()A.B.C.D.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a26.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm28.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.49.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C. D.4.5二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有个绿球.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2015次,点P依次落在点P1,P2,P3,…P2015的位置,则点P2015的横坐标为.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.四、解答题(本题14分)21.2014年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.2016年四川省眉山市仁寿县中考数学二模试卷参考答案与试题解析一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是( )A .2.653×105B .2.653×106C .2.653×107D .2.653×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:265.3=2 653 000=2.653×106.故选B .2.﹣的绝对值为( )A .﹣2B .﹣C .D .1【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C .3.下面的三视图所对应的物体是( )A .B .C .D .【考点】由三视图判断几何体.【分析】本题可利用排除法解答.从主视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B ,C ,D .【解答】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选A.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣1,所以不等式组的解集是﹣1<x<2,故选C.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,积的乘方的性质,幂的乘方的性质,同底数幂的除法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、错误,应为(ab)2=a2b2;C、错误,应为(a3)2=a6;D、错误,应为a6÷a3=a3.故选A.6.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小【考点】方差.【分析】比较两组数值哪组较好,不只要比较平均数,还要比较方差,方差越小数据的波动越小.由此可得出答案.【解答】解:因为甲的方差大于乙的,因此乙组数据波动较小.故选D.7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm2【考点】圆锥的计算.【分析】利用圆锥的底面周长易得圆锥的底面半径,那么利用勾股定理易得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵底面周长是6π,∴底面圆的半径为3cm,∵高为4cm,∴母线长5cm,∴S=15πcm2.故选B.8.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】由a、b、c的符号可判断开口方程,对称轴,顶点坐标,再结合一元二次方程根与系数的关系逐项判断,可得出答案.【解答】解:∵a>0,∴二次函数图象开口向上,故①正确;∵a>0,b>0,c<0,∴﹣<0,<0,∴其顶点坐标一定在第二象限,故②不正确;在y=ax2+bx+c中,令y=0可得ax2+bx+c=0,设该方程的两根分别为x1和x2,由根与系数的关系可知x1x2=<0,∴x1和x2中必有一个为正值,∴二次函数图象与x轴的交点至少有一个在y轴的右侧;故③正确;∵ax2+bx=x(ax+b)=0,∴方程的两根为x=0或x=﹣,∴b≠0,∴﹣≠0,∴方程ax2+bx=0有两个不相等的实数根,故④正确;综上可知正确的有3个,故选C.9.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】因为前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,由此即可求出答案.【解答】解:根据题意:分为3个阶段:1、前进一段路程后,位移增大;2、部队通过短暂休整,位移不变;3、部队步行前进,位移增大,但变慢;故选A.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C. D.4.5【考点】等边三角形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】首先以CD为边作等边△CDE,连接AE,利用全等三角形的判定得出△BCD≌△ACE,进而求出DE的长即可.【解答】解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是x>2.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义,分母不为0;二次根式的被开方数是非负数进行解答.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有3个绿球.【考点】概率公式.【分析】设袋中有x个绿球,再根据概率公式求出x的值即可.【解答】解:设袋中有x个绿球,∵袋中有红球4个,黄球2个,从中任意摸出一个球是绿球的概率为,∴=,解得:x=3,故答案为:3.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的几何意义,可知图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为3.【考点】勾股定理;相似三角形的判定与性质.【分析】根据相似三角形的性质,相似三角形的对应边成比例,即可求GF的长.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,从而推出对应边成比例:,又∵AE=BE,∴AE2=AG•BF=2,推出AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3.故答案为:3.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【考点】圆周角定理.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2015次,点P依次落在点P1,P2,P3,…P2015的位置,则点P2015的横坐标为2014.【考点】规律型:点的坐标;旋转的性质.【分析】根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,因为2013÷3=671,×3+2.5=2012.5,所以P2013的横坐标为2012.5.P2014、P2015的横坐标是2014.故答案为:2014.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.【考点】分式的化简求值;分母有理化.【分析】本题考查了化简与代值计算,关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式=÷=﹣=﹣;当a=+1,b=﹣1时,原式=﹣=﹣.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.【考点】分式方程的应用.【分析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间﹣吉普车的时间=.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.答:抢修车的速度为20千米/时,吉普车的速度为30千米/时.四、解答题(本题14分)21.2014年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先求出总人数为50人,再计算不愿意去的学生的人数的百分比即可;(2)由C的总人数和总人数作比值再乘以360°,即可得到C所在的扇形圆心角的度数;(3)用2000乘以特别愿意去加油助威的学生所占的百分比即可;(4)列出所有情况,然后求出两次的数字之和大于等于10的情况计算即可.【解答】解:(1)25÷50%=50(人),2÷50=4%,不愿意去的学生的人数占被调查总人数的百分比为4%;(2)(10÷50)×360=72°,扇形统计图中C所在的扇形圆心角的度数为72°;(3)2000×50%=1000(人),∴估计特别愿意去加油助威的学生共有1000人;4大于等于10(记为事件A)的结果有4个,即(5,5),(5,6),(6,5),(6,6),∴P(A)==.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中用式子表示CD、AD,再根据已知求得BD、CD的长,从而再将CD于9比较,若大于9则无危险,否则有危险.【解答】解:过点C作CD⊥AD于点D,∵∠EAC=60°,∠FBC=30°,∴∠CAB=30°,∠CBD=60°.∴在Rt△CBD中,CD=BD.在Rt△CAD中,AD=CD=3BD=24×0.5+BD,∴BD=6.∴CD=6.∵6>9,∴货船继续向正东方向行驶无触礁危险.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,根据等腰三角形的性质得OC⊥AB,然后根据切线的判定定理即可得到直线AB是⊙O的切线;(2)根据圆周角定理求得∠ECD=90°,进而求得∠BCD=∠E,根据∠CBD=∠EBC,即可证明△BCD∽△BEC.(3)设BD的长是x,因为△BCD∽△BEC,根据相似三角形的对应边成比例,可求出x的值,然后根据OB=OA=x+3求解即可.【解答】(1)证明:如图,连接OC.∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线.(2)证明:∵ED是直径,∴∠ECD=90°.∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.(3)解:∵,∴.∵△BCD∽△BEC,∴.设BD=x,则BC=2x.又∵BC2=BD•BE,(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=2+3=5.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元.七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.【考点】解直角三角形;全等三角形的判定;角平分线的性质.【分析】(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC.(2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF.(3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cos AC.【解答】(1)证明:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∵∠ABC=∠ADC=90°,∴∠ACB=∠ACD=30°,∴AB=AD=AC,∴AB+AD=AC.(2)解:成立.证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F,∵AC平分∠MAN,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,∴AB+AD=AF+BF+AE﹣ED=AF+AE,由(1)知AF+AE=AC,∴AB+AD=AC,证法二:如图,在AN上截取AG=AC,连接CG,∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC,∴△CBG≌△CDA,∴BG=AD,∴AB+AD=AB+BG=AG=AC;(3)证明:由(2)知,ED=BF,AE=AF,在Rt△AFC中,cos∠CAF=,即cos,∴AF=ACcos,∴AB+AD=AF+BF+AE﹣ED=AF+AE=2AF=2cos AC.把α=60°,代入得AB+AD=AC.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A,B,C三点代入二次函数解析式即可求得二次函数解析式.(2)把点C的横坐标代入抛物线解析式,可求得纵坐标,把点C、B坐标代入一次函数解析式即可求得一次函数解析式.进而求得OG长.S△OBC=S△OGC+S△OGB(3)两三角形相似,已有两个直角相等,那么夹直角的两边对应成比例;注意对应边的不同可分两种情况进行分析.【解答】解:(1)由题意得:,解得.故抛物线的函数关系式为y=﹣x2+5x;(2)因为C在抛物线上,所以﹣22+5×2=m,所以m=6所以C点坐标为(2,6)因为B,C在直线y=kx+b′上,所以.解得k=﹣3,b′=12直线BC的解析式为y=﹣3x+12设BC与x轴交于点G,则G的坐标为(4,0)所以S△OBC==24(3)存在P,使得△OCD∽△CPE设P(m,n),∵∠ODC=∠E=90°故CE=m﹣2,EP=6﹣n若要△OCD∽△CPE,则要=或=即=或=解得m=20﹣3n或n=12﹣3m又因为(m,n)在抛物线上,.或.解得,即,或,即,故P点坐标为(,)和(6,﹣6).2016年6月2日。
word 文档2022年中考往年真题练习: 中考数学试题(四川眉山卷)(本试卷满分120分, 考试时间120分钟)A 卷(共100分) 第Ⅰ卷(挑选题 共36分)一、 挑选题: 本大题共12个小题, 每小题3分, 共36分.在每个小题给出的 四个选项中, 只有一项是 正确的 , 请把正确选项的 字母填涂在答题卡上相应的 位置. 1.若x 5=, 则x 的 值是 【 】A .5B .-5C .5±D .51 【答案解析】C 。
2.下列运算正确的 是 【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=【答案解析】D 。
3.函数y x 2=-中自变量x 的 取值范围是 【 】A .x 2>B .x 2≥C .x 2≤D .x 2< 【答案解析】B 。
4.某种微粒子, 测得它的 质量为0. 00006746克, 这个质量用科学记数法表示(保 留三个有效数字应为【 】A .56.7510⨯- 克B .56.7410-⨯ 克C .66.7410-⨯ 克D . 66.7510-⨯克 【答案解析】A 。
5.若关于x 的 一元二次方程2x 2x m 0-+=有两个不相等的 实数根, 则m 的 取值范围是 【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 【答案解析】A 。
6.下列命题中, 真命题是 【 】A .有两条对角线相等的 四边形是 等腰梯形B .两条对角线互相垂直且平分的 四边形是 正方形C .等边三角形既是 轴对称图形又是 中心对称图形word 文档D .有一个角是 60°的 等腰三角形是 等边三角形 【答案解析】D 。
7.如图, 在△ABC 中, ∠ACB =90°, ∠A =20°, 若将△ABC 沿CD 折叠, 使B 点落在AC 边上的 E 处, 则∠ADE 的 度数是 【 】A .30°B .40°C .50°D .55° 【答案解析】C 。
眉山市2017年初中学业水平暨高中阶段学校招生考试数学试卷一、选择题(36分)1.下列四个数中,比-3小的数是( )A .0B .1C .-1D .-52.不等式-2x >12的解集是( ) A .x <-14 B . x <-1 C . x >-14D . x >-13.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10-6 B . 50.35×10-5 C . 5.035×106 D . 5.035×10-54.如图所示的几何体的主视图是( )5.下列说法错误的是( )A .给定一组数据,那么这组数据的平均数一定只有一个B .给定一组数据,那么这组数据的中位数一定只有一个C .给定一组数据,那么这组数据的众数一定只有一个D .如果一组数据存在众数,那么该众数一定是这组数据中的某一个 6.下列运算结果正确的是( )A .8-18=- 2B .(-0.1)-2=0.01C .(2a b )2÷b 2a =2a bD .(-m )3·m 2=-m 6 7.已知关于x ,y 的二元一次方程组⎩⎨⎧2ax +by =3ax -by =1的解为⎩⎨⎧x =1y =-1,则a -2b 的值是( ) A .-2 B .2 C .3 D .-38.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺 B .57.5尺 C .6.25尺 D .56.5尺9.如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132°10.如图,EF 过□ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若□ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( ).A .14B .13C .12D .1011.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax ( ) A .有最大值a 4 B . 有最大值-a 4 C . 有最小值a 4 D . 有最小值-a 412.已知14m 2+14n 2=n -m -2,则1m -1n的值等于( ) A .1 B .0 C .-1 D .-14二、填空题(24分)13.分解因式:2ax 2-8a =__________.14.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是_______15.已知一元二次方程x 2-3x -2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是________.16.设点(-1,m )和点(12,n )是直线y =(k 2-1)x +b (0<k <1)上的两个点,则m 、n 的大小关系为____________.17.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC =______cm .18.已知反比例函数y =2x,当x <-1时,y 的取值范围为___________. 三.解答题:(60分)19.(6分)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.20.(6分)解方程:1x -2+2=1-x 2-x .21.(8分)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6),(-1,4).⑴请在图中的网格平面内建立平面直角坐标系;⑵请画出△ABC 关于x 轴对称的△A 1B 1C 1;⑶请在y 轴上求作一点P ,使△PB 1C 的周长最小,并写出点P 的坐标.22.(8分)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.23.(9分)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.⑴求袋中红球的个数;⑵求从袋中任取一个球是黑球的概率.24.(9分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.⑴若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;⑵由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?25.(9分)如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交BC 于G .⑴求证:BG =DE ;⑵若点G 为CD 的中点,求HG GF的值.26.(11分)如图,抛物线y =ax 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,-83)是抛物线上另一点. ⑴求a 、b 的值;⑵连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标;⑶若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式.。
一、选择题(每题3分,共36分)1.﹣5的绝对值是()A.5 B.﹣5 C.﹣D.【答案】A【解析】试题分析:﹣5的绝对值就是数轴上表示﹣5的点与原点的距离.﹣5的绝对值是5考点:绝对值2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨【答案】C【解析】考点:科学记数法表示较大的数的方法3.下列等式一定成立的是()A.a2×a5=a10 B. C.(﹣a3)4=a12 D.【答案】C【解析】试题分析:依次根据幂的乘法,算术平方根的运算,幂的乘方,二次根式的化简判断即可.a 不能化简,所以B错误;C、(﹣a3)4=a12,所A、a2×a5=a7≠a10,所以A错误;B、b以C正确;D、2a=|a|,所以D错误,考点:(1)、幂的乘法;(2)、算术平方根的运算;(3)、幂的乘方;(4)、二次根式的化简4.下列既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A【解析】试题分析:结合选项根据轴对称图形与中心对称图形的概念求解即可.A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形考点:(1)、中心对称图形;(2)、轴对称图形5.已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.【答案】B【解析】考点:(1)、数轴上表示不等式的解集;(2)、点的坐标6.下列命题为真命题的是()A.有两边及一角对应相等的两个三角形全等B.方程x2﹣x+2=0有两个不相等的实数根C.面积之比为1:4的两个相似三角形的周长之比是1:4D.顺次连接任意四边形各边中点得到的四边形是平行四边形【答案】D【解析】试题分析:根据各个选项中的命题,假命题举出反例或者说明错在哪,真命题说明理由即可解答本题.有两边及其夹角对应相等的两个三角形全等,选项A中的一角不一定是对应相等两边的夹角,故选项A错误;∵x2﹣x+2=0,∴△=(﹣1)2﹣4×1×2=1﹣8=﹣7<0,∴方程x2﹣x+2=0没有实数根,故选项B错误;面积之比为1:4的两个相似三角形的周长之比是1:2,故选项C错误;顺次连接任意四边形各边中点得到的四边形,这个四边形的对边都等于原来四边形与这组对边相对的对角线的一半,并且和这条对角线平行,故得到的中点四边形是平行四边形,故选项D正确考点:命题和定理7.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20、20B .30、20C .30、30D .20、30【答案】C【解析】考点:(1)、条形统计图;(2)、众数;(3)、中位数8.如图,A 、D 是⊙O 上的两个点,BC 是直径.若∠D=32°,则∠OAC=( )A .64°B .58°C .72°D .55°【答案】B【解析】试题分析:先根据圆周角定理求出∠B 及∠BAC 的度数,再由等腰三角形的性质求出∠OAB 的度数,进而可得出结论. ∵BC 是直径,∠D=32°, ∴∠B=∠D=32°,∠BAC=90°. ∵OA=OB ,∴∠BAO=∠B=32°, ∴∠OAC=∠BAC ﹣∠BAO=90°﹣32°=58°考点:圆周角定理9.已知x 2﹣3x ﹣4=0,则代数式42--x x x 的值是( ) A .3 B .2 C . D .【答案】D【解析】试题分析:已知等式变形求出x ﹣x4=3,原式变形后代入计算即可求出值. 已知等式整理得:x ﹣x 4=3, 则原式=2113111=-=--xx 考点:分式的值10.把边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形AB ′C ′D ′,边BC 与D ′C ′交于点O ,则四边形ABOD ′的周长是( )A .62B .6C .32D .3+32【答案】A【解析】∴四边形ABOD ′的周长是:2AD ′+OB+OD ′=6+32﹣3+32﹣3=62考点:(1)、旋转的性质;(2)、正方形的性质;(3)、等腰直角三角形的性质11.若抛物线y=x 2﹣2x+3不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .y=(x ﹣2)2+3B .y=(x ﹣2)2+5C .y=x 2﹣1D .y=x 2+4【答案】C【解析】试题分析:思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1考点:二次函数图象的平移12..如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【答案】B【解析】②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC ≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个考点:(1)、矩形的性质;(2)、等腰三角形的性质;(3)、全等三角形的性质和判定;(4)、线段垂直平分线的性质二、填空题(每题3分,共24分)13.分解因式:m2﹣9= .【答案】(m+3)(m﹣3)【解析】试题分析:通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).m2﹣9=m2﹣32=(m+3)(m﹣3)考点:平方差公式分解因式14.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.【答案】100(1+x)2=169考点:实际问题抽象出一元二次方程15.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.【答案】二、四【解析】试题分析:形如y=kx(k是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx(k是常数,k≠0),当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.根据正比例函数定义可得:|m|=1,且m﹣1≠0,计算出m的值,然后可得解析式,再根据正比例函数的性质可得答案.由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,函数解析式为y=﹣2x,∵k=﹣2<0,∴该函数的图象经过第二、四象限考点:正比例函数的定义和性质16.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n= .【答案】5【解析】试题分析:根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5考点:根与系数的关系17.一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为.【答案】 cm考点:圆锥侧面展开扇形与底面圆之间的关系18.如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C 的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.【答案】﹣3【解析】过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF,∴△OFC∽△AEO,相似比,∴面积比,∵点A在第一象限,设点A坐标为(a,b),∵点A在双曲线上,∴S△AEO=ab=,∴S△OFC=FC•OF=,∴设点C坐标为(x,y),∵点C在双曲线上,∴k=xy,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=﹣考点:(1)、反比例函数图象上点的坐标特征;(2)、等边三角形的性质;(3)、解直角三角形;(4)、相似三角形的性质和判定的应用三、解答题(每题6分,共12分)19.计算:.【答案】-3【解析】试题分析:分别利用零指数幂的性质、特殊角的三角函数值和负整数指数幂的性质分别化简求出答案.试题解析:原式=1﹣3×+1﹣2=1﹣+1﹣2=﹣.考点:(1)、零指数幂的性质;(2)、特殊角的三角函数值;(3)、负整数指数幂的性质20.先化简,再求值:,其中a=3.【答案】-24 a ;-4.考点:分式的化简求值四、解答题21.已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并直接写出点A 2的坐标.【答案】(1)、答案见解析;(2)、图形见解析;A 2坐标(﹣2,﹣2)【解析】试题分析:(1)、直接利用平移的性质得出对应点位置进而得出答案;(2)、利用位似图形的性质得出对应点位置进而得出.试题解析:(1)、如图所示:△A 1B 1C 1,即为所求;(2)、如图所示:△A 2B 2C 2,即为所求,A 2坐标(﹣2,﹣2).考点:(1)、位似变换;(2)、平移变换22.如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).【答案】3500+1000米答:黑匣子C点距离海面的深度为3500+1000米.考点:解直角三角形的应用﹣仰角俯角问题23.九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a ,再从剩下的两张中随机取出一张,将卡片上的数字记为b ,然后叫万宇在平面直角坐标系中找出点M (a ,b )的位置.(1)请你用树状图帮万宇同学进行分析,并写出点M 所有可能的坐标;(2)求点M 在第二象限的概率;(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O ,过点M 能作多少条⊙O 的切线?请直接写出答案.【答案】(1)、(﹣3,0)、(﹣3,2)、(0,﹣3)、(0,2)、(2,﹣3)、(2,0);(2)、61;(3)、4条试题解析:(1)、画树状图为共有6种等可能的结果数,它们是(﹣3,0)、(﹣3,2)、(0,﹣3)、(0,2)、(2,﹣3)、(2,0);(2)、只有(﹣3,2)在第二象限, ∴点M 在第二象限的概率=;(3)、如图,过点M 能作4条⊙O 的切线.考点:(1)、列表法与树状图法;(2)、概率公式;(3)、切线的定义24.“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【答案】(1)、2000;(2)、A型车17辆,B型车33辆试题解析:(1)、设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)、设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)、一次函数的应用;(2)、分式方程25.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.【答案】(1)、证明过程见解析;(2)、AC∥BD;理由见解析;(3)、S=x2+2x试题解析:(1)、∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴=;(2)、AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)、如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴=,即=,∴BD=x,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,∴PM=,∴△PBD的面积S=BD•PM=×x×=x2+2x.考点:(1)、平行线的判定方法;(2)、相似三角形的判定与性质26.已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.【答案】(1)、y=﹣x2﹣x+3;(2)、(5,3);(3)、(1,0)或(﹣5,﹣);最大值为5.【解析】A在同一直线上时,|PM﹣AM|=PA,当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.试题解析:(1)、设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴,解得:a=﹣,b=﹣,c=3,∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3;(3)、设直线PA的解析式为y=kx+b(k≠0),∵A(1,0),P(5,3),∴,解得:k=,b=﹣,∴直线PA的解析式为y=x﹣,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,解方程组,得或,∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.考点:(1)、二次函数的性质;(2)、待定系数法确定抛物线解析式;(3)、一次函数解析式;(4)、菱形的判定;(5)、坐标与图形性质。
眉山市2009年高中阶段教育学校招生考试数学试卷(满分120分,120分钟完卷)一、选择题(每题4分,共48分)1.2009的相反数是( )A .2009B .-2009C .12009D .12009- 2.如图,直线a ∥b ,直线c 与a 、b 相交,∠1=70°,则∠2=( ) A .70°B .20°C .110°D .50°32的值() A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间4.下列运算正确的是() A .235()x x =B .224347x x x +=C .936()()x x x -÷-=D .232(1)x x x x x x --+=--- 5.下列命题中正确的是() A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等 6.下列因式分解错误的是() A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+7.一位经销商计划进一批“运动鞋”,他到眉山的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的( )A .中位数B .平均数C .方差D .众数8.一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是() A .1019a b +B .1019a b -C .1017a b -D .1021a b -9.在一仓库里堆放着若干个相同的正方体小货箱,仓库经管员将这堆货箱的三视图画了出来,如图所示,则这堆正方体小货箱共有( )A .11箱B .10箱C .9箱D .8箱10.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3 C .13D .13- 11.如图,以点O 为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB 与小圆相交,则弦长AB 的取值范围是( )A .8≤AB ≤10 B .A B ≥8C .8<A B ≤10D .8<A B <1012.如图,点A 在双曲线6y x=上,且O A =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A ..5 C .二、填空题(每题3分,共12分)13.2009年第一季度,眉山市完成全社会固定资产投资82.7亿元,用科学记数法表示这个数,结果为元。
“整体思想”的主要表现形式分类例析【专题综述】在数学解题过程中,我们若能善于从大处着眼,由整体(或全局)入手,将一些看似彼此独立实质上又紧密相关的数学对象视为一个整体去思考与分析,常常可以摆脱常规模式的羁绊,化难为易.本文按“整体思想”的主要表现形式分类例析,供参考.【方法解读】一、整体代换例1 若x2-3x+1=0,则2421xx x++的值为________.分析解出x,再代入式中求值显然是不可取的.观察题设和待求式的联系,可得如下方法:点评整体运作,可以减少运算量,法一运用“逐步降次法”,法二运用“取倒数法”,看似玄妙,其实并非无中生有,都是建立在整体感知已知条件和待求式的基础上完成的.其中,法一将已知条件变形得到一些“工具式”,再调整待求式,分离出这些“工具式”,巧妙代换,达到“降次”的目的,分离“工具式”还可以采用如下方法:分离x2-3x,以-1代换;分离x2+1,以3x代换;分离x2-3x+1,以0代换;分离x2+x+1,以4x代换;分离3x,以x2+1代换;分离1,以3x-x2代换.二、整体消元例2 如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为_______(结果保留π).分析利用S1、a、S3共同构成小半圆,S1、b、S2共同构成大半圆,S1、a、b共同构成△ABC,可得S1+S3+a=12·π·12;①S1+S2+b=12·π·22;②S1+a+b=12×2×4;③①+②-③,得S1+S2+S3=52π-4.点评本例借用整体消元,大大减少运算量,使问题巧妙获解.此外,还用到了方程这架通过“已知”称量“未知”的数学天平,并通过对图形合理分割,整体组合,变“不标准图形”成“标准图形”,化难为易.三、整体运算例3已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()(A)有最大值,最大值为9 2(B)有最大值,最大值为9(C)有最小值,最小值为9 2(D)有最小值,最小值为9分析由M(a,b),知N(-a,b).又M在双曲线上,则ab=12;N在直线上,则b=-a+3,即a+b=3.于是,二次函数y =-abx 2+(a +b)x=-12x 2+3x =-12(x -3)2+92,它有最大值,为92.点评 本例考查了轴对称的性质,利用点在函数图象上,分别代入对应解析式,整体运算,求得ab 和a +b 的值,从而构建二次函数式,开展下一步研究. 四、整体观察例4 如图2,在矩形ABCD 中,AB =10,BC =5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为() (A) 15 (B)20(C)25 (D)30分析 整体观察图形,由折叠过程可知阴影部分图形的周长为: EA 1+A 1D 1+BC +FC +EB +D 1F =EA +AD +BC +FC +EB +DF =(EA +EB)+AD +BC +(FC +DF) =AB +AD +BC +CD =2(AB +BC) =2(10+5)=30.点评 整体观察主要针对图形(或数式)的构造特征,从中发现规律,进而巧妙组合,顺利实现化归,优化思考,减化运算,本例的周长割补与组合,就源于这一点. 五、整体联想 例5 方程22221111132567129208x x x x x x x x +++=++++++++的解为_______. 分析 把原方程各分母分解因式,可得点评整体联想是在整体观察的基础上,结合问题的结构特征展开联想.“相关”、“相似”、“相近”、“因果”、“对比”等是联想的“桥梁”,善于联想可以为构造、完善图形(或数式)提供方法支撑,为转化、变更问题提供突破思路.六、整体转化例6如果三个方程x2-2kx-2k+3=0,x2+(k-1)x+k2=0,x2+kx-k=0中,至少有一个方程有实根,求k的取值范围.分析分别考虑三个方程实根的情况将难以处理,而如果整体分析,从反面考虑,则问题可以顺利实现转化,设三个方程都没有实数根,则有:即当k≤-3或k≥-1时,三个方程中至少有一个方程有实根.点评对一些问题,要通过研究问题的整体形式和结构特征,变更命题,整体转化处理,达到突破问题的目的.七、整体补形例7如图3(1),六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.分析题目所给的图形很不“标准”,难以下手!考察题、图特征,就能想到通过整体“补形”来完善原图,把条件“化分散为集中”,迅速找到解题方法.如图3(2)(3)(4)(5),易得原六边形周长为15.点评 “整体补形”,让题目呈现出“统一”、“对称”、“和谐”的特征,达到化生为熟、化繁为简、化难为易的目的. 八、整体改造例8 如果正实数a ,b ,c ,d 满足(1)a 2+b 2=c 2;(2)c 22a d -=a 2,求证:ab =cd .分析 整体考虑题目所给条件,由(1)得到启示,如图4,可构造Rt △ABC .由条件(2)可联想到作斜边AB 上的高CD .借助相似三角形的知识,容易证明 a 2=B D ·c =c 22a d -, 即a ,b ,c , d 满足条件, 再把△ABC 面积算两次,可得12AB ×CD =12AC ×BC , 即a b =cd .点评 本例通过整体考虑,化代数问题为几何问题,利用直观的形来分析抽象的数,降低了问题的抽象程度,可谓出奇制胜. 九、整体操作例9 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页,…;然后再排页码.如果想设计一本16页的毕业纪念册,请你按图5(1)、(2)、(3)(图中的1,16表示页码)的方法折叠,在表*中填上按这种折叠方法得到的各页在该面相应位置上的页码.分析 采用整体操作的策略,把一张纸按图示方法折叠,然后按照要求先写上页码1,16,再依序写上其它页码,展开易知填法(见下表).评注 大部分与几何体表面展开图、视图有关的抽象且不易着手的数学问题,采取整体操作的方法均较易获解,此法直观、易用.综上可见,从整体上去认识问题、思考问题,常常能化繁为简、化生为熟、化难为易. 【强化训练】1.(2017四川省内江市)若实数x 满足2210x x --=,则322742017x x x -+-= . 2.(2016山东省烟台市)已知220x y x y -+++-=,则22x y -的值为. 3.(2017贵州省安顺市)已知3x y +=,6xy =,则22x y xy +的值为 .4.(2016四川省眉山市)已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13 D .125.(2017浙江省嘉兴市)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by ax ,则a ﹣b =( )A .1B .3C . 41-D .476.(2016宁夏)已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为( )A .9B .7C .5D .37.在直角坐标系xOy 中,已知点P (m ,n ),m ,n 满足(m 2+1+n 2)(m 2+3+n 2)=8,则OP 的长为()A.18.已知m 、n 是方程x 2﹣2x ﹣1=0的两根,且(m 2﹣2m+a )(3n 2﹣6n ﹣7)=8,则a 的值为( ) A. ﹣5B. 5C. ﹣3D. 39. 若(x 2+ y 2-5)2=4,则x 2+ y 2=__________ 10. 阅读材料:善于思考的小军在解方程组253{4115x y x y +=+=①②时,采用了一种“整体代换”的解法:解:将方程②变形: 4105x y y ++=即()2255x y y ++=③ 把方程①带入③得: 2351y y ⨯+=∴=-, 把1y =-代入①得4x =∴,方程组的解为4{ 1x y ==-.请你解决以下问题:()1模仿小军的“整体代换”法解方程组325{9419x y x y -=-=①②()2已知x y ,满足方程组2222321247{ 2836x xy y x xy y -+=++=①②. ()i 求224x y +的值; ()ii 求112x y+的值.。
眉山市初中学业暨高中阶段教育学校招生考试数学试卷注意事项:1.本试卷分为 A 卷和 B 卷. A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共 12 个小题,共36分,第 1页至第 2 页;第Ⅱ卷共 11 个小题,共54 分,第 3 页至第5 页; B 卷共 3 个小题,共 30 分,第6页至第 8 页.全卷满分 120 分,考试时间120 分钟.2.答第Ⅰ卷前,考生务势必姓名、准考据号、考试科目用铅笔涂写在答题卡上相应的地点,并请将密封线内的内容填写清楚.第Ⅰ卷不可以答在试卷上,第Ⅱ和 B 卷答在试卷上.3.不一样意使用计算器进行运算,凡无精准度要求的题目,结果均保存正确值,解答题应写出演算过程、推理步骤或文字说明.题号一二三四总分A 卷全卷得分总分人总分题号一二总分B 卷得分A 卷(共 90 分)第Ⅰ卷(选择题共36分)一、选择题:本大题共12 个小题,每个小题 3 分,共 36 分.在每个小题给出的四个选项中只有一项为哪一项正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的地点.1.5的倒数是A .51C.5 D.1 B .5 52.计算( 3)2的结果是A .3B .3 C.3 D. 93.以下运算中正确的选项是A .3a 2a 5a2 B.(2a b)(2 a b) 4a2 b2C.2a2 a3 2a6 D.(2a b) 2 4a2 b24.⊙ O1的半径为3cm,⊙ O2的半径为 5cm,圆心距 O1O2=2cm,这两圆的地点关系是A .外切B.订交C.内切 D .内含5.把代数式mx2 6mx 9m 分解因式,以下结果中正确的选项是A .m( x 3)2 B.m(x 3)(x 3) C.m( x 4)2 D.m( x 3)2 6.以下命题中,真命题是A.对角线相互垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同向来线的两条直线相互垂直7.如图,每个小正方形的边长为1,A、 B、C 是小正方形的极点,则∠ABC 的度数为A .90°B. 60°C.45°D. 30° A8.以下说法不正确的选项是 BA .某种彩票中奖的概率是1,买 1000 张该种彩票必定会中奖C 1000B.认识一批电视机的使用寿命适适用抽样检查C.若甲组数据的标准差S 甲 =0.31,乙组数据的标准差S 乙 =0.25,则乙组数据比甲组数据稳固D.在一个装有白球和绿球的袋中摸球,摸出黑球是不行能事件9.以下四个图中,是三棱锥的表面睁开图的是A.B.C.D.10.已知方程x25x 2 0 的两个解分别为x1、 x2,则 x1x2x1 x2的值为A.7B.3C.7D.311.某洗衣机在清洗衣服时经历了灌水、冲洗、排水三个连续过程(工作前洗衣机内无水)程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大概为y y y y,在这三个过O x O xOA .k B .C.12.如图,已知双曲线y 0) 经过直角三角形OAB 斜( kx边 OA 的中点 D,且与直角边 AB 订交于点 C.若点 A 的坐标为( 6 ,4),则△AOC的面积为A .12B.9C. 6D.4 xOD.yADCB Oxx第Ⅱ卷(非选择题共 54分)得分评卷人二、填空题:本大题共 6 个小题,每个小题 3 分,共 18 分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐钱数额分别为 10, 30, 40, 50, 15, 20, 50(单位:元).这组数 A据的中位数是 __________(元).O14.一元二次方程2x2 6 0的解为 ___________________ .B C15.如图,∠ A 是⊙ O 的圆周角,∠ A=40 °,则∠ OBC 的度数为 _______ .16.如图,将第一个图(图①)所示的正三角形连接各边中点进行切割,获得第二个图(图②);再将第二个图中最中间的小正三角形按相同的方式进行切割,获得第三个图(图③);再将第三个图中最中间的小正三角形按相同的方式进行切割,,则获得的第五个图中,共有________个正三角形.图①图②图③17.已知圆锥的底面半径为 4cm,高为 3cm,则这个圆锥的侧面积为__________cm2.18.如图,已知梯形ABCD 中, AD∥ BC,∠ B=30 °,∠ C=60 °,A DAD =4, AB= 3 3 ,则下底BC的长为__________.30°60°B C得分评卷人三、本大题共 2 个小题,每个小题 6 分,共12 分.19.计算:( 1 )1(52)0 18 ( 2)2 23x 2x 120.解方程: 1x 1 x得分评卷人四、本大题共 3 个小题,每个小题8 分,共 24 分.21.如图, O 为矩形 ABCD 对角线的交点,DE∥ AC, CE∥ BD .(1)试判断四边形 OCED 的形状,并说明原因;(2)若 AB=6, BC=8,求四边形 OCED 的面积.A DO EB C22.有一个不透明口袋,装有分别标有数字1, 2, 3, 4 的 4 个小球(小球除数字不一样外,其他都相同)还有 3 张反面完整相同、正面分别写有数字1,2,3 的卡片.小敏从口袋中随意摸出一个小球,小颖从这 3 张反面向上的卡片中随意摸出一张,而后计算小球和卡片上的两个数的积.( 1)请你用列表或画树状图的方法,求摸出的这两个数的积为 6 的概率;,(2)小敏和小颖做游戏,她们商定:若这两个数的积为奇数,小敏赢;不然,小颖赢.你以为该游戏公正吗?为何?假如不公正,请你改正游戏规则,使游戏公正.23.如图,在一次数学课外实践活动中,要求测教课楼的高度测得教课楼顶端 A 的仰角为 30°,而后向教课楼行进AB.小刚在 D 处用高40m 抵达 E,又测得教课楼顶端1.5m 的测角仪A 的仰角为CD,60°.求这幢教课楼的高度AB.AC 30°60°GFD 40mE BB 卷(共 30 分)得分评卷人一、本大题共 2 个小题,每题9 分,共 18 分.24.某渔场计划购置甲、乙两种鱼苗共6000 尾,甲种鱼苗每尾0.5 元,乙种鱼苗每尾0.8 元.有关资料表明:甲、乙两种鱼苗的成活率分别为90%和 95%.( 1)若购置这批鱼苗共用了3600 元,求甲、乙两种鱼苗各购置了多少尾?( 2)若购置这批鱼苗的钱不超出4200 元,应怎样选购鱼苗?( 3)若要使这批鱼苗的成活率不低于93%,且购置鱼苗的总花费最低,应怎样选购鱼苗?25.如图, Rt△ AB C 是由 Rt△ABC 绕点 A 顺时针旋转获得的,连接CC 交斜边于点 E, CC 的延伸线交 BB 于点 F.( 1)证明:△ ACE ∽△ FBE ;( 2)设∠ ABC= ,∠ CAC = ,尝试究、知足什么关系时,△ACE 与△ FBE 是全等三角形,并说明原因.B FB'C'EC A得分评卷人二、本大题共 1 个小题,共12 分.26.如图, Rt△ ABO 的两直角边 OA、OB 分别在 x 轴的负半轴和y 轴的正半轴上, O 为坐标原点,A、 B 两点的坐标分别为( 3 ,0)、(0,4),抛物线 y 2 x2 bx c 经过B点,且极点在直线x 5 上.3 2( 1)求抛物线对应的函数关系式;( 2)若△ DCE 是由△ ABO 沿 x 轴向右平移获得的,当四边形ABCD 是菱形时,试判断点C和点 D是否在该抛物线上,并说明原因;( 3)若 M 点是 CD 所在直线下方该抛物线上的一个动点,过点 M 作 MN 平行于 y 轴交 CD 于点 N.设点 M 的横坐标为 t, MN 的长度为 l .求 l 与 t 之间的函数关系式,并求l 取最大值时,点M 的坐标.yB CNMA O D E x眉山市初中学业暨高中阶段教育学校招生考试数学试卷参照答案及评分建议说明:一、假如考生的解法与下边供给的参照解答不一样,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分建议进行评分.二、评阅试卷,不要因解答中出现错误而中止对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步此后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后边部分的记分,这时原则上不该超事后边部分应给分数之半,显然笔误,可酌情少扣;若有严重观点性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分.三、波及计算过程,同意合理省略非重点步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A卷一、选择题: 本大题共 12 小题,每题 3 分,共 36 分.1. D 2.A 3. B 4. C 5. D 6. C7. C8. A9. B10. D11. D12. B二、填空题: 本大题共 6 个小题,每题 3 分,共 18 分.13. 3014. x3 15. 50° 16. 17 17. 2018. 10三、 本大题共 2 个小题,每题 6 分,共 12 分.19. 解:原式 = 3 1 3 2 4 2(4 分)= 2 2(6 分)20. 解: x 2 x( x1)(2 x 1)(x 1)( 2 分)1 解这个整式方程得:x ( 4 分)2经查验: x1是原方程的解.2∴原方程的解为 x1 .(6分)2四、 本大题共 3 个小题,每题8 分,共 24 分.21. 解:( 1)四边形 OCED 是菱形.( 2 分)∵ DE ∥ AC ,CE ∥BD ,∴四边形 OCED 是平行四边形,( 3 分)ADOEBCABCD OC=ODOCED 42OE OCED CD OE 5OE BCCE BDBCEOOE=BC=871 1S 四边形OCED = OE CD 862482 22211 2 3 41 2 3 412 2 4 6 83 3 6 9 1221262P(积为6)= 21 412 62 8 463 823Rt AFG tanAG AFGFGFG AG AG2tan AFG 3Rt ACGAAGtan ACGCGAGCG3AG 4tan ACGCG FG 403AG AG4 03C 30°60°GFD B40m EAG203 7 AB 20 3 1.5AB (20 3 1.5)8B卷2918241x(6000 x)0.5x 0.8(6000 x) 36001x 40006000 x 20004000 2000 2 20.5 x 0.8(6000 x) 4200 3x 20002000 4 3 y y 0.5x 0.8(6000 x) 0.3 x 4800 59 0 9 5) 9 36x ( 6 0 0 0x 60001 0 0 1 0 0 1 0 0x 2400 7 y 0.3x 48000.3 0y xx 2400y最小40802400 36009 25 1Rt AB C Rt ABCAAC=ACAB=ABCAB= C AB 1CAC = BABACC = ABB 3AEC= FEBACEFBE 42 2ACEFBE 5ACCAC=ACACC ' 180 CAC ' 180 90 62 2Rt ABCACC + BCE=90 ° 90BCE 90BCE=B FABC=ABC= BCE8 CE=BE1ACE FBEC'EB'ACE FBE9 C A1 1226y2( x 5)2 m1 13 24 2 ( 5)2 m3 2m13 6y 2 (x 5 )2 1 2 x2 10 x 4 43 2 6 3 32Rt ABO OA=3 OB=4AB OA 2 OB 2 5ABCDBC=CD=DA =AB=5 5CD5 42 06x5y 2 521054433x2y2 22 10 2 4 033CD 73CDy kx b5k b 4 2k b 0yk4 8BC,b3 3Ny4 x 89M3 3AODExMN yMtNty M2 t 2 10t 4y N4 t 8 103 333ly N y M4 t 82 t 2 10 t 4 2 t 2 14 t 20 2( t 7) 2 33 333 3 3 332 22 0t 7l 最大3322M7 11222。
探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。
第 1 页 共 6 页眉山市2016年中考第二次诊断数 学 试 卷 2016年5月本试卷分A 卷和B 卷两部分,A 卷共100分,B 卷共20分,满分120分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号;答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将答题卡交回.A 卷(共100分)第I 卷(选择题 共36分)一、单项选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请将正确答案填涂在答题卡上相应的位置.1.(-3)2=( ).A .-6B .-1C .-9D .92.计算ab a a b b a +÷-)(的结果为( ). A .b b a - B .b b a + C .a b a - D .ab a + 3.实验中学九年级一班期末数学平均成绩约为90.1分,则该班期末数学的平均成绩的范围是( ).A .大于90.05分且小于90.15分B .不小于90.05分且小于90.15分C .大于90分且小于90.05分D .大于90分且小于或等于90.1分4.如图(1)所示是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图(2)所示,对这个工件,左视图、俯视图正确的一组是( ).A .a 、bB .b 、dC .a 、cD .a 、d5.下列说法中,正确的是( ).第 2 页 共 6 页A .16等于±4B .-42的平方根是±4C .8的立方根是±2D .-5是5的平方根6.在一篇文章中,“的”、“地”、“和”三个字共出现100次,已知“的”和“地”的频率之和是0.7,那么“和”字出现的频数是( ).A .28B .30C .32D .347.如图所示,在长方形纸片ABCD 中,AB=32cm ,把长方形纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点F ,AF=25cm ,则AD 的长为( ).A .16cmB .20cmC .24cmD .28cm8.32-x 在实数范围内有意义,则x 的取值范围是( ).A .x ≥23B .x >23 C .x ≤23 D .x <23 9.方程x (x ―3)=5(x ―3) 的解的情况是( ).A .x =3B .x =5C .x 1=3,x 2=5D .无解10.如图如示,点P 在圆O 上,将圆心角∠AOC 绕点O 按逆时针方向 旋转到∠BOD ,旋转角为a (0°<a <180°),若∠AOC=β(0°<β<180°),a <β,则∠P 的度数为(用a 和β表示)( ).A .2β-aB .2β+a C .2a -β D .β+a 11.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2:3,则S △ABC :S △DEF 为( ).A .2:3B .4:9C .2:3D . 3:212.如图所示,矩形ABCD 的对角线BD经过坐标原点,第 3 页 共 6 页矩形的边分别平行于坐标轴,点C 在反比例函数xk k y 122++=的图象上,若点A 的坐标为(-2,-2),则k 的值为( ).A .1B .-3C .4D .1或-3第II 卷 (非选择题 共64分)二、填空题:本大题共6个小题,每小题3分,共18分.将正确答案直接填在答题卡相应位置上.13.不等式组⎩⎨⎧>+≤--x x x x 3427)1(3的解集为 . 14.边长为整数并且最大边长是5的三角形共有个.15.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点.图中与线段OE 相等的线段是 .16.若x 是4和16的比例中项,则x= .17.在一个不透明的袋子中,装有5个除数字外其他完全相同的小球,球面上分别写有2、3、4、5、6这5个数字,小苏从袋子中任意摸出一个小球,球面上数字的平方根是无理数的概率是 .18.如图,一个扇形铁皮OAB ,已知OA=12cm ,∠AOB=120°,小华将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝处忽略不计),则烟囱帽的高为 .三、计算或解答题:本大题共6个小题,共46分.请把解答过程写在答题卡上相应的位置.第 4 页 共 6 页19.(6分)计算:202016)21(9)5()1(|3|-+--⨯-+-π20.(6分)若代数式22)()()3(y y x y x x --⋅+--的值为0,求x 的值.21.(8分)如图,在△ABC 中,AB=AC ,∠A=36°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE .(1)求证:∠CBE=36°;(2)求证:AE 2=AC ²EC .22.(8分) 实验中学八年级(1)班50名学生参加期末考试,全班学生的数学(1)该班学生这次考试数学成绩的众数是 ;(2)该班学生这次考试数学成绩的中位数是 ;(3)该班张华同学在这次考试中的数学成绩是83分,能不能说张华同学的数学成绩处于全班中游偏上水平?试说明理由.23.(9分)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tana )第 5 页 共 6 页为1:1.2,坝高10米,为了提高坝的防洪能力,由相关部门决定加固堤坝,要求将坝顶CD 加宽2米,形成新的背水坡EF ,其坡度i 为1:1.4,已知堤坝总长度为1000米.(1)求完成该工程需要多少土方?(2)该工程由甲、乙两工程队同时合作完成,按计划需20天,准备开工前接到上级要求,汛期可能提前,要求两工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?24.(9分)商场某种商品平均每天可销售30件,每件盈利100元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价2元,商场平均每天可多售出2件,设每件商品降价x (x 为偶数) 元,据此规律,请回答:(1)降价后,商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商品日盈利可达到4200元?B 卷(满分20分)四、解答题:本大题共2个小题,第25题9分,第26题11分,共20分.请把解答过程写在答题卡上相应的位置.25.(9分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向形外作等边△ACD、第 6 页 共 6 页 等边△ABE .已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 、CF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形;(3)直接写出图中所有等腰三角形.26.(11分)已知双曲线xk y =与抛物线c bx x y ++-=231交于A (2,3)、B (m ,2)、C (-3,n )三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出A 、B 、C 三点,并求出△ABC 的面积;(3)在平面直角坐标系中作一条直线l 将△ABC 的面积平分,求出你所作l 的解析式(只需一种情况即可).。
精品基础教育教学资料,请参考使用,祝你取得好成绩!四川省眉山市中考数学试卷一、选择题(36分)1.(3分)下列四个数中,比﹣3小的数是()A.0 B.1 C.﹣1 D.﹣52.(3分)不等式﹣2x>的解集是()A.x<﹣B.x<﹣1 C.x>﹣D.x>﹣13.(3分)某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106D.5.035×10﹣54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)下列说法错误的是()A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个6.(3分)下列运算结果正确的是()A.﹣=﹣B.(﹣0.1)﹣2=0.01 C.()2÷=D.(﹣m)3•m2=﹣m67.(3分)已知关于x,y的二元一次方程组的解为,则a﹣2b 的值是()A.﹣2 B.2 C.3 D.﹣38.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺9.(3分)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114°B.122°C.123° D.132°10.(3分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.1011.(3分)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2﹣ax()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣12.(3分)已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣二、填空题(24分)13.(3分)分解因式:2ax2﹣8a=.14.(3分)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.15.(3分)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是.16.(3分)设点(﹣1,m)和点(,n)是直线y=(k2﹣1)x+b(0<k<1)上的两个点,则m、n的大小关系为.17.(3分)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC=cm.18.(3分)已知反比例函数y=,当x<﹣1时,y的取值范围为.三.解答题:(60分)19.(6分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(6分)解方程:+2=.21.(8分)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.22.(8分)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.23.(9分)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.24.(9分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?25.(9分)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.26.(11分)如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N 作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t 之间的函数关系式.四川省眉山市中考数学试卷参考答案与试题解析一、选择题(36分)1.(3分)(2017•眉山)下列四个数中,比﹣3小的数是()A.0 B.1 C.﹣1 D.﹣5【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)(2017•眉山)不等式﹣2x>的解集是()A.x<﹣B.x<﹣1 C.x>﹣D.x>﹣1【分析】根据不等式的基本性质两边都除以﹣2可得.【解答】解:两边都除以﹣2可得:x<﹣,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.(3分)(2017•眉山)某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106D.5.035×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2017•眉山)如图所示的几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层也有2个正方形.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)(2017•眉山)下列说法错误的是()A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【分析】利用平均数、中位数及众数的定义分别判断后即可确定正确的选项.【解答】解:A、给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B、给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C、给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D、如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意,故选C.【点评】本题考查了平均数、中位数及众数的定义,解题的关键是了解它们的性质,难度不大.6.(3分)(2017•眉山)下列运算结果正确的是()A.﹣=﹣B.(﹣0.1)﹣2=0.01 C.()2÷=D.(﹣m)3•m2=﹣m6【分析】直接化简二次根式判断A选项,再利用负整数指数幂的性质判断B选项,再结合整式除法运算法则以及同底数幂的乘法运算法则判断得出答案.【解答】解:A、﹣=2﹣3=﹣,正确,符合题意;B、(﹣0.1)﹣2==100,故此选项错误;C、()2÷=×=,故此选项错误;D、(﹣m)3•m2=﹣m5,故此选项错误;故选:A.【点评】此题主要考查了二次根式的加减以及负整数指数幂的性质、整式除法运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.7.(3分)(2017•眉山)已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.8.(3分)(2017•眉山)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺【分析】根据题意可知△ABF∽△ADE,根据相似三角形的性质可求AD,进一步得到井深.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.【点评】考查了相似三角形的判定与性质,解题的关键是得到△ABF∽△ADE.9.(3分)(2017•眉山)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114°B.122°C.123° D.132°【分析】根据三角形内角和定理求出∠ABC+∠ACB,根据内心的概念得到∠IBC=∠ABC,∠ICB=∠ACB,根据三角形内角和定理计算即可.【解答】解:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选:C.【点评】本题考查的是三角形的内切圆和内心,掌握三角形的内心的概念、三角形内角和定理是解题的关键.10.(3分)(2017•眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.10【分析】先利用平行四边形的性质求出AB=CD,BC=AD,AD+CD=9,可利用全等的性质得到△AEO≌△CFO,求出OE=OF=1.5,即可求出四边形的周长.【解答】解:∵四边形ABCD是平行四边形,周长为18,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=9,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1.5,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.故选C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.11.(3分)(2017•眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2﹣ax()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣【分析】一次函数y=(a+1)x+a的图象过第一、三、四象限,得到﹣1<a<0,于是得到结论.【解答】解:∵一次函数y=(a+1)x+a的图象过第一、三、四象限,∴a+1>0且a<0,∴﹣1<a<0,∴二次函数y=ax2﹣ax由有最大值﹣,故选B.【点评】本题考查了二次函数的最值,一次函数的性质,熟练掌握一次函数的性质是解题的关键.12.(3分)(2017•眉山)已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【分析】把所给等式整理为2个完全平方式的和为0的形式,得到m,n的值,代入求值即可.【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.【点评】考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.二、填空题(24分)13.(3分)(2017•眉山)分解因式:2ax2﹣8a=2a(x+2)(x﹣2).【分析】首先提公因式2a,再利用平方差进行二次分解即可.【解答】解:原式=2a(x2﹣4)=2a(x+2)(x﹣2).故答案为:2a(x+2)(x﹣2).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2017•眉山)△ABC是等边三角形,点O是三条高的交点.若△ABC 以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是120°.【分析】根据旋转的性质及等边三角形的性质求解.【解答】解:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为:120°.【点评】本题考查旋转的性质:变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.15.(3分)(2017•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是﹣4.【分析】由根与系数的关系可得x1+x2=3、x1•x2=﹣2,将其代入(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1中,即可求出结论.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=﹣2﹣3+1=﹣4.故答案为:﹣4.【点评】本题考查了根与系数的关系,根据根与系数的关系,找出x1+x2=3、x1•x2=﹣2是解题的关键.16.(3分)(2017•眉山)设点(﹣1,m)和点(,n)是直线y=(k2﹣1)x+b (0<k<1)上的两个点,则m、n的大小关系为m>n.【分析】先根据一次函数的解析式判断出该函数的增减性,再根据﹣1<及可判断出m、n的大小.【解答】解:∵0<k<1,∴直线y=(k2﹣1)x+b中,k2﹣1<0,∴y随x的增大而减小,∵﹣1<,∴m>n.故答案是:m>n.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.17.(3分)(2017•眉山)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC=5cm.【分析】连接OA,根据垂径定理求出AD,根据勾股定理R2=42+(R﹣2)2,计算求出R即可.【解答】解:连接OA,∵OC⊥AB,∴AD=AB=4cm,设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,∴R2=42+(R﹣2)2,解得R=5∴OC=5cm.故答案为5.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.18.(3分)(2017•眉山)已知反比例函数y=,当x<﹣1时,y的取值范围为﹣2<y<0.【分析】先根据反比例函数的性质判断出函数的增减性,再求出x=﹣1时y的值即可得出结论.【解答】解:∵反比例函数y=中,k=2>0,∴此函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,∵当x=﹣1时,y=﹣2,∴当x<﹣1时,﹣2<y<0.故答案为:﹣2<y<0.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.三.解答题:(60分)19.(6分)(2017•眉山)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【分析】原式利用完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(6分)(2017•眉山)解方程:+2=.【分析】方程两边都乘以x﹣2得出1+2(x﹣2)=x﹣1,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣2得:1+2(x﹣2)=x﹣1,解得:x=2,检验:当x=2时,x﹣2=0,所以x=2不是原方程的解,即原方程无解.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,注意:解分式方程一定要进行检验.21.(8分)(2017•眉山)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【分析】(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接A、B2交y轴于点P,则P点即为所求.【解答】解:(1)如图所示;(2)如图,即为所求;(3)作点B关于y轴的对称点B2,连接A、B2交y轴于点P,则点P即为所求.设直线AB2的解析式为y=kx+b(k≠0),∵A(﹣4,6),B2(2,2),∴,解得,∴直线AB2的解析式为:y=﹣x+,∴当x=0时,y=,∴P(0,).【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.(8分)(2017•眉山)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.【分析】设AG=x,分别在Rt△AFG和Rt△ACG中,表示出CG和GF的长度,然后根据DE=10m,列出方程即可解决问题.【解答】解:设AG=x.在Rt△AFG中,∵tan∠AFG=,∴FG=,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x﹣=10,解得:x=15+5∴AB=15+5+1=16+5(米).答:这棵树的高度AB为(16+5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(9分)(2017•眉山)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.【分析】(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.【解答】解:(1)290×=10(个),290﹣10=280(个),(280﹣40)÷(2+1)=80(个),280﹣80=200(个).故袋中红球的个数是200个;(2)80÷290=.答:从袋中任取一个球是黑球的概率是.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.(9分)(2017•眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是五档次的产品.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.25.(9分)(2017•眉山)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.【分析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG=DE;(2)设CG=1,从而知CG=CE=1,由勾股定理可知:DE=BG=,由易证△ABH ∽△CGH,所以,从而可求出HG的长度,进而求出的值.【解答】解:(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG与△DCE中,∴△BCG≌△DCE(ASA),∴BG=DE,(2)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=,∵sin∠CDE==,∴GF=,∵AB∥CG,∴△ABH∽△CGH,∴=,∴BH=,GH=,∴=【点评】本题考查相似三角形的综合问题,涉及相似三角形的判定与性质,全等三角形的判定与性质,勾股定理等知识,综合程度较高,属于中等题型.26.(11分)(2017•眉山)如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N 作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t 之间的函数关系式.【分析】(1)根据题意列方程组即可得到结论;(2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,得到OC=2,如图,设P(0,m),则PC=m+2,OA=3,根据勾股定理得到AC==,①当PA=CA时,则OP1=OC=2,②当PC=CA=时,③当PC=PA时,点P在AC的垂直平分线上,根据相似三角形的性质得到P3(0,),④当PC=CA=时,于是得到结论;(3)过H作HG⊥OA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=,求得抛物线的对称轴为直线x==,得到OG=,求得GN=t ﹣,根据相似三角形的性质得到HG=t﹣,于是得到结论.【解答】解:(1)把A(3,0),且M(1,﹣)代入y=ax2+bx﹣2得,解得:;(2)在y=ax2+bx﹣2中,当x=0时.y=﹣2,∴C(0,﹣2),∴OC=2,如图,设P(0,m),则PC=m+2,OA=3,AC==,①当PA=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=时,即m+2=,∴m=﹣2,∴P2(0,﹣2);③当PC=PA时,点P在AC的垂直平分线上,则△AOC∽△P3EC,∴=,∴P3C=,∴m=,∴P3(0,),④当PC=CA=时,m=﹣2﹣,∴P4(0,﹣2﹣),综上所述,P点的坐标1(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣);(3)过H作HG⊥OA于G,设HN交Y轴于M,∵NH∥AC,∴,∴,∴OM=,∵抛物线的对称轴为直线x=﹣=1,∴OG=1,①当0<t≤1时,∴GN=1﹣t,∵GH∥OC,∴△NGH∽△NOM,∴,即=,∴HG=﹣t+,∴S=O N•GH=t(﹣t+)=﹣t2+t(0<t≤1).当1<t<3时,∴GN=t﹣1,∵GH∥OC,∴△NGH∽△NOM,∴,即=,∴HG=t﹣,∴S=ON•GH=t(t﹣)=t2﹣t(1<t<3).【点评】本题考查了待定系数法求得函数的系数,相似三角形的,等腰三角形的判定和性质,三角形的面积公式,掌握的作出辅助线是解题的关键.。
XXXX四川省眉山市中考数学试卷及答案解析(word版)XXXX四川省眉山市中考数学试卷1,选择题(共12题,每题3分,满分36分)1题。
(3.00分)(2018?眉山)共有()a.0 b.1 c.2 d.42。
(3.00分)(2018?眉山)据有关报道,自开展精确的扶贫工作以来,我国已有约6500万人脱贫。
这6500万人已表示为()a65×106 b .0.65×108c . 6.5×106d . 6.5×1073。
(3.00分)(2018?眉山)以下计算是正确的()a .(x+y)2 = x2+y2c . X6÷x3 = x 2d .b。
(﹣xy2)3 = ﹣x3y6= 24。
(3.00分)(2018?眉山)在以下三维图形中,前视图为三角形(()a .b .c .d .5)。
(3.00分)(2018?眉山)如图所示放置一对直角三角形板,使三角形板的一个30度直角边和三角形板的一个45度直角边在同一条直线上,那么∠α的度数为()a . 45b . 60c . 75d . 856。
(3.00分)(2018?眉山)如图所示,AB是直径≦O,PA在点a处切割≦O,线段po在点c处与≦O相交,连接BC。
如果∠p = 36,则∠B等于()第1页,共31a . 27 B . 32 c . 36d . 547。
(3.00分)(2018?眉山)一所学校有35名学生参加了在眉山市举行的苏三文化知识竞赛。
初步分数不同。
前18名学生被选中参加决赛。
在其中一个学生知道他的分数后,他只需要知道35个学生的分数。
中位数c .平均d .方差+8。
(3.00) (2018)。
眉山)如果α和β是二次方程3x2+2x-9 = 0中的两个,则该值为()a.b。
﹣c。
﹣d.9。
(3.00分)(2018?眉山)下面的命题是正确的()两条直线被一组平行线切割。
相应的线段是成比例的。
相似三角形面积的比率等于相似比率。
眉山市2016年初中学业水平暨高中阶段教育招生考试数学试卷 一、选择题(每题3分,共36分)1.-5的绝对值是( )A .5 B .-5 C .-15 D .152.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数是() A .6.75×103吨 B .67.5×103吨 C .6.75×104吨 D .6.75×105吨3.下列等式一定成立的是( )A .2510a a a ⨯=B .a b a b +=+C .3412()a a -=D .2a a =4.下列既是轴对称图形又是中心对称图形的是( ) A .B .C .D .5.已知点M(1-2m ,m -1)在第四象限,则m 的取值范围在数轴上表示正确的是 ()6.下列命题为真命题的是( )A .有两边及一角对应相等的两个三角形全等B .方程220x x -+=有两个不相等的实数根C .面积之比为1︰4的两个相似三角形的周长之比是1︰4D .顺次连接任意四边形各边中点得到的四边形是平行四边形7.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一。
某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图,根据右图提供的信息,红包金额的众数和中位数分别是()A .20、20B .30、20C .30、30D .20、308.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =32°,则∠OAC =( )A .64°B .58°C .72°D .55°9.已知2340x x --=,则代数式24x x x --的值是( )A .3B .2C .13D .12 10.把边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形AB′ C′D′ ,边BC 与D′ C′ 交于点O ,则四边形ABOD′ 的周长是( )A .62B .6C .32D .332+11.若抛物线不动,将平面直角坐标系xoy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为 ( )A .2(2)3y x =-+B .2(2)5y x =-+C .21y x =-D .24y x =+12.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO ,若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△E O B ≌△C M B ;③DE =EF ;④S △AOE ︰S △BCM =2︰3。
其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共24分)13.分解因式:29m -= 。
14.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高。
据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套,假设该公司这两个月住房销售量的增长率为x ,根据题意所列方程为 。
15.若函数||(1)m y m x =-是正比例函数,则该函数的图象经过第 象限。
16.设m 、n 是一元二次方程2270x x +-=的两个根,则23m m n ++= .17.一个圆锥的侧面展开图是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 .18.如图,已知点A 是双曲线6y x= 在第三象限分支上的一个动点,连结AO 并延长交另一 分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C的位置也在不断变化,但点C 始终在双曲线k y x =上运动,则k 的值是 。
三、解答题(每题6分,共12分)19.计算:0201611(21)3tan 30(1)()2-+-︒+-- 20.先化简,再求值:111()222a a a -÷+-- 其中3a =四、解答题(每题8分,共24分)小正方形的边长是1个单位长度。
⑴画出△ABC 向上平移6个单位得到的△A 1B 1C 1;⑵以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2︰1,并直接写出点A 2的坐标;22.如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号)23.九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了-3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a ,再从剩下的两张中随机取出一张,将卡片上的数字记为b ,然后叫万宇在平面直角坐标系中找出点M(a ,b )的位置。
⑴请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;⑵求点M在第二象限的概率;⑶张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案。
24.“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%。
⑴求今年6月份A型车每辆销售价多少元(用列方程的方法解答)⑵该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:25.如图, △ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P为线段BE 延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F⑴求证:PC CE CD CB;⑵连接BD,请你判断AC与BD有什么位置关系?并说明理由;A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆) 今年的销售价格2400⑶设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式;26.已知如图,在平面直角坐标系xoy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4,⑴求经过A 、B 、C 三点的抛物线的解析式;⑵在平面直角坐标系xoy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;⑶若点M 为该抛物线上一动点,在⑵的条件下,请求出当||PM AM -的最大值时点M 的坐标,并直接写出||PM AM -的最大值眉山市2016年初中学业水平暨高中阶段教育招生考试数学试卷参考答案一、ACCABD ,CBDACB二、13.(3)(3)m m +-;14.2100(1)169x +=;15.二、四;16.5;17.83;18.36- 18.解:∵双曲线6y x=的图象关于原点对称,∴点A 与点B 关于原点对称.∴OA =OB .连接OC ,如图所示.∵△ABC 是等边三角形,OA =OB ,∴OC ⊥AB .∠BAC =60°.∴3OC tan OAC OA ∠==.∴,3OC OA =,过点A 作AE ⊥y 轴,垂足为E ,过点C 作CF ⊥y 轴,垂足为F ,∵AE ⊥OE ,CF ⊥OF ,OC ⊥OA ,∴∠AEO =∠OFC ,∠AOE =90°-∠FOC =∠OCF .∴△OFC ∽△AEO .相似比3OC OA =,∴面积比3OFC AEO S S =V V .∵点A 在第一象限,设点A 坐标为(a ,b ),∵点A 在双曲线6y x =上,∴S △AEO =12ab =62,∴S △OFC =12FC OF ⋅= 362.∴设点C 坐标为(x ,y ),∵点C 在双曲线k y x=上,∴k =xy ∵点C 在第四象限,∴FC =x ,OF =-y .∴FC •OF =x •(-y )=-xy =-36 6.∴xy =-36..故答案为:-36.三、19.解:原式313123=-⨯+-……4分1312=-+-3=-……6分 20.解:原式221[](2)(2)(2)(2)2a a a a a a a -+=-÷+--+-…2分222(2)(2)1a a a a a ----=⨯+-…3分42a =--…4分当3a =时,原式45=- …6分 21.解:如右图⑴……3分;⑵画出△A 2B 2C 2……3分,A 2坐标(-2,-2)…2分22.解:过C 作CD ⊥AB 于D ,交海面于点E ,……1分设BD =x , ∵∠CBD =60°,3CD tan CBD =BD∠=,∴(0)y kx b k =+≠ 3CD x =…3分 ∵AB =2000,∴AD =x +2000 ∵ ∠CAD =45°∴1CD tan CAD =AD∠= ∴3x =x +2000, 解之得100031000x =+…5分,∴3(100031000)300010003CD =+=+,…7分 ∴300010003500350010003CE CD DE =+=++=+答:黑匣子C 点距离海面的深度为 350010003+米……8分23.⑴树状图…3分,点M 的坐标有6种(-3,0)、(-3,2)、(0,-3)、(0,2)、(2,-3)、(2,0)…5分;⑵只有(-3,2)在第二象限,∴点M 在第二象限的概率16P =……7分 ⑶过点M 能作4条⊙O 的切线……9分24.⑴设去年A 型车每辆x 元,那么今年每辆(x +400)元,根据题意得……1分3200032000(125%)400x x +=+……3分 解之得1600x =,经检验,1600x =是方程的解 答:今年A 型车每辆2000元……5分⑵设今年7月份进A 型车m 辆,则B 型车(50-m )辆,获得的总利润为y 元,根据题意得502m m -≤解之得m ≥2163……6分∵(20001100)(24001400)(50)10050000y m m m =-+--=-+…7分∴ y 随m 的增大而减小,∴当17m =时,可以获得最大利润…8分。