高等数学-函数的极限.pdf
- 格式:pdf
- 大小:1.21 MB
- 文档页数:8
第三章函数极限
§1函数极限的概念
引言
在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”.二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例.
通过数列极限的学习.应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”.例如,
数列这种变量即是研究当时,的变化趋势.
我们知道,从函数角度看,数列可视为一种特殊的函数,其定义域为,值域是,即
; 或或.
研究数列的极限,即是研究当自变量时,函数变化趋势.
此处函数的自变量n只能取正整数!因此自变量的可能变化趋势只有一种,即.但是,如果代之正整数变量n而考虑一般的变量为,那么情况又如何呢?具体地说,此时自变量x可能的变化趋势是否了仅限于一种呢?
为此,考虑下列函数:
类似于数列,可考虑自变量时,的变化趋势;除此而外,也可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势;还可考虑自变量时,的变化趋势,
由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化.但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同.而在各类极限的性质、运算、证明方法上都类似于数列的极限.
下面,我们就依次讨论这些极限.
一、时函数的极限
1.引言
设函数定义在上,类似于数列情形,我们研究当自变量时,对应的函数值能否无限地接近于某个定数A.这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质.
例如无限增大时,无限地接近于0;无限增大
目录
一、函数与极限 (2)
1、集合的概念 (2)
2、常量与变量 (3)
2、函数 (4)
3、函数的简单性态 (4)
4、反函数 (5)
5、复合函数 (6)
6、初等函数 (6)
7、双曲函数及反双曲函数 (7)
8、数列的极限 (9)
9、函数的极限 (10)
10、函数极限的运算规则 (12)
一、函数与极限
1、集合的概念
一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N
⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。
⑶、全体整数组成的集合叫做整数集。记作Z。
⑷、全体有理数组成的集合叫做有理数集。记作Q。
⑸、全体实数组成的集合叫做实数集。记作R。
集合的表示方法
⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合
⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系
⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
目录
一、函数与极限 (2)
1、集合的概念 (2)
2、常量与变量 (3)
2、函数 (4)
3、函数的简单性态 (4)
4、反函数 (5)
5、复合函数 (6)
6、初等函数 (6)
7、双曲函数及反双曲函数 (7)
8、数列的极限 (8)
9、函数的极限 (10)
10、函数极限的运算规则 (11)
一、函数与极限
1、集合的概念
一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N
⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。
⑶、全体整数组成的集合叫做整数集。记作Z。
⑷、全体有理数组成的集合叫做有理数集。记作Q。
⑸、全体实数组成的集合叫做实数集。记作R。
集合的表示方法
⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合
⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系
⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
《高等数学》第一章-——函数与极限
练习题(A)
一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)
(1){}{}{}
(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式2
2
1x y −=表示y 是x 的函数
()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2
arccos ,2y u u x ==+表示y 是x 的函数
(
)
(5)若()sgn f x x =,则2
1,0,
()0,0.
x f x x ≠⎧=⎨
=⎩()
(6)若2
()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2
sin y x =是周期为π的函数.
()(8)()00000
lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.
()(9)0y =是曲线2
1
y x =
的水平渐近线.(
)(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −
+
==.()(11)收敛数列的极限不唯一.
()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)2
12lim
n n
n →+∞++⋅⋅⋅+=(
)
(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断
点,则
()
()
g x f x 必有间断点()
目录
一、函数与极限 (2)
1、集合的概念 (2)
2、常量与变量 (3)
2、函数 (4)
3、函数的简单性态 (4)
4、反函数 (5)
5、复合函数 (6)
6、初等函数 (6)
7、双曲函数及反双曲函数 (7)
8、数列的极限 (8)
9、函数的极限 (10)
10、函数极限的运算规则 (11)
一、函数与极限
1、集合的概念
一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N
⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。
⑶、全体整数组成的集合叫做整数集。记作Z。
⑷、全体有理数组成的集合叫做有理数集。记作Q。
⑸、全体实数组成的集合叫做实数集。记作R。
集合的表示方法
⑵ 、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合
⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系
⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
第一章函数极限与连续
高等数学可以说是变量数学,它的研究对象、研究方法与初等数学相比都有相当大的差异。它主要研究对象是函数,它的主要内容是微积分学,它的主要手段是以极限为工具,并在实数范围内研究函数的变化率及其规律性,从而产生微积分的基本概念及性质。本章主要介绍函数的概念及其基本性质;数列与函数的极限及其基本性质;连续函数的概念及其基本性质,为进一步学好函数的微积分打下一个良好的基础。
第一节函数的概念
一、几个基本概念
1 常量与变量
在日常生活或生产实践中,观察某一个事件的结果往往是用一个量的形式来表现的,在观察的某一个过程中始终保持不变的量称之为常量,经常变化的量称之为变量。通常用小写字母a、b、c ……等表示常量,用小写字母x、y、z、……表示变量。
例如:圆周率是永远不变的量,它是一个常量;某商品的价格在一定的时间段内是不变的,所以,在这段时间内它也是常量;又如一天中的气温,工厂在生产过程中的产量都是不断变化的量,这些量都是变量。
注意:
1 常量和变量是相对的,它们依赖于所研究的过程和所研究的对象。在不同的过程中常量和变量是可以转化的。如商品的价格,某段时间是常量,另一段时间就有可能是变量了;
2 从几何意义上来表示,常量对应数轴上的定点,变量对应数轴上的动点。
2 集合、区间
集合是表示具有同一种属性的全体。
例如:某班的全体学生组成一个集合;长虹集团05年度的所有产品组成一个集合;所有正有理数仍组成一个集合等等。
有关集合的运算、集合的表示等方面的基本知识,中学数学已有介绍,这里就不一一赘述了