2019年最新高三题库 2014北京海淀区高三期末数学(文)试题
- 格式:doc
- 大小:1.18 MB
- 文档页数:4
海淀区高三年级第二学期期中练习数 学 (文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -解析:55(2)22(2)(2)i i i i i +==+--+2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则A.1 B.0 C. 1 D.解析:{0}B =,所以{0}A B ⋂=3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个解析:根据抛物线的定义抛物线上的任意一点到焦点的距离等于到准线的距离,有两个点。
4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B. 3C.5D. 7解析:()a a b a a a b +=•+•=4+1=5 5. 函数()2sin f x x x =+的部分图象可能是A B C D解析:由题得函数为奇函数,关于原点对称,x=1时,函数值为正,答案为A 。
6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 解析:根据题意有22132()S a S S +=+,2111112()a a q a a q a q +=++解得q=3.OyxOyxOyxOyx7. 已知()x f x a 和()x g x b 是指数函数,则“(2)(2)f g ”是“ab ”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件解析:根据题意函数式指数函数,a ,b>0,所以22a b >,a b >,反之也成立,所以为充分必要条件。
8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4解析:A(1,0),设0,0(ln )B x x 则AB 的中点坐标001ln (,)22x x +,因为中点在1y x =上,所以00(1)ln 4x x +=,利用数形结合,满足条件的点个数1个。
海淀区2019年高三年级第一学期期末练习数学(文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 复数(1i)(1i)+-=A.2B.1C. 1-D.2- 2. 已知数列{}n a 是公比为2的等比数列,且满足4320a a a -=,则4a 的值为 A.2 B.4 C.8 D.16 3. 如图, 正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+, 则λμ+的值为 A.12 B. 12- C. 1 D.1-4 . 如图,在边长为3的正方形内有区域A (阴影部分所示),张明同学用随 机模拟的方法求区域A 的面积. 若每次在正方形内每次随机产生10000个点, 并记录落在区域A 内的点的个数. 经过多次试验,计算出落在区域A 内点的个 数平均值为6600个,则区域A 的面积约为A.5B.6C. 7D.85. 某程序框图如图所示,执行该程序,如输入的a 值为1,则输出的a 值为A.1B.2C.3D.56. 若点(2,3)-不在..不等式组0,20,10x y x y ax y -≥⎧⎪+-≤⎨⎪--≤⎩表示的平面区域内,则实数a 的取值范围是A.(,0)-∞B. (1,)-+∞C. (0,)+∞D.(,1)-∞-EA BCD输出输入开始结束7. 已知函数, 1,()πsin , 1,2x x f x x x ≤⎧⎪=⎨>⎪⎩ 则下列结论正确的是 A .000,()()x f x f x ∃∈-≠-R B .,()()x f x f x ∀∈-≠R C .函数()f x 在ππ[,]22-上单调递增 D .函数()f x 的值域是[1,1]- 8. 已知点(5,0)A ,抛物线2:4C y x =的焦点为F ,点P 在抛物线C 上,若点F 恰好在PA 的 垂直平分线上,则PA 的长度为A.2B. C. 3 D.4 二、填空题共6小题,每小题5分,共30分。
海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5 阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6{第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分 ∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分 则π=12sin(2)6a x -+, --------------------------------9分 因为π1sin(2)16x -≤+≤, ---------------------------------11分 所以π112sin(2)36x -≤-+≤, --------------------------------12分 所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A , --------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分 ∴3().11P A = -----------------------------------------10分 (Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分17.解:(I )1A A ⊥Q 底面ABC ,1A A ∴⊥AB , -------------------------2分 AB AC ⊥Q ,1A A AC A =I ,AB ∴⊥面11A ACC . --------------------------4分 (II )Q 面DEF //面1ABC ,面ABC I 面DEF DE =,面ABC I 面1ABC AB =, AB ∴//DE , ---------------------------7分Q 在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )Q 三棱柱111ABC A B C -中1A A AC =∴侧面11A ACC 是菱形, 11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, Q 1AB AC A =I ,1AC ∴⊥面1ABC , --------------------------------11分 1AC ∴⊥1BC . -------------------------------12分 又,E F Q 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分 1EF AC ∴⊥. ------------------------------14分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分 又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=. 0x ∴=或3x a =-, -----------------------------------5分 0a ≠Q 30a ∴-≠, ----------------------------------------6分 ()f x ∴与切线有两个不同的公共点. ----------------------------------------7分 (Ⅱ)()f x Q 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分1由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分 综上,a 的取值范围是55(,)(,)22-∞-+∞U . -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e ,可得222112a e a -==,----------------------------------------------------------------3分 解得22a =, -----------------------------------------------------------4分 所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分 (Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠ ------------------------------------------------------6分 因为(0,1),(0,1)A B -,所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分 令0y =,得001M x x y =+,所以00(,0)1x M y +. ----------------------------------------------8分 所以0000(,1),(,1),1x AM AD x y y =-=--+u u u u r u u u r -------------------------------------------9分 所以200011x AM AD y y -⋅=-++u u u u r u u u r , ---------------------------------------------10分 又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+u u u u r u u u r --------------------11分 因为011y -<<,所以0AM AD ⋅≠u u u u r u u u r . -----------------------------------------------------------12分所以90MAN ∠≠o , -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分 法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分 由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21k x x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分 所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++u u u u r u u u r ---------------------------------------------10分 所以2222421210212121k AM AD k k k ---⋅=-+=≠+++u u u u r u u u r , --------------------------------------12分 所以90MAN ∠≠o , ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解: (Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分 ②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分 (Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->L L .设12111max{,,,,,,,}j i i k k a a a a a a a -+-=L L ,则12111k i i i k k j S a a a a a a a k a -+--=+++++++L L ≤(-1),所以(1)j k k a S ->,即1k j S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S S b b b m m ====<-L ,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<L由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+- 整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d =. --------------------------------------------------13分。
海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)πcosππ2()2sinππ44sin cos44f=+=+=+------------------------3分(Ⅱ)由sin cos0x x+≠得ππ,4x k k≠-∈Z.因为cos2()2sinsin cosxf x xx x=++22cos sin2sinsin cosx xxx x-=++------------------------------------5分cos sinx x=+π)4x+,-------------------------------------7分所以()f x的最小正周期2πT=. -------------------------------------9分因为函数siny x=的对称轴为ππ+,2x k k=∈Z, ------------------------------11分又由πππ+,42x k k+=∈Z,得ππ+,4x k k=∈Z,9. 2 10.16 11. 712.{1,2,4}13.50,1015 14.1-;①②③所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分因为函数()f x 是区间[3,)-+∞上的增函数,所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下:--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有y =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数.证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*1{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。
北京市海淀区2019届高三上学期期末考试数学(文)试题1. 已知是虚数单位,若,则实数的值为A. B. C. D.【答案】A【解析】是虚数单位,,化简得到根据复数相等的概念得到实数的值为.故答案为:A。
2. 已知,若,则A. B. C. D.【答案】D【解析】已知,若,则A:,当两个数值小于0时就不一定成立;B. ,当b=0时,不成立;C. ,当两者均小于0时,根式没有意义,故不正确;D. ,是增函数,故正确。
故答案为:D。
3. 执行如图所示的程序框图,输出的值为A. 4B. 5C. 6D. 7【答案】B【解析】执行程序框图,可知:第一次循环:;第二次循环:;第三次循环:;第四次循环:,此时满足判断条件,终止循环,输出,故选B.4. 下面的茎叶图记录的是甲、乙两个班级各5各同学在一次数学测试中的选择题的成绩(单位:分,每道题5分,共8道题):已知两组数据的平均数相等,则的值分别为A. B. C. D.【答案】B【解析】根据平均数的概念得到根据选项得到:.故答案为:B。
5. 已知直线与圆相交于两点,且为正三角形,则实数的值为A. B. C. 或 D. 或【答案】D【解析】由题意得,圆的圆心坐标为,半径.因为为正三角形,则圆心到直线的距离为,即,解得或,故选D.6. 设,则“”是“直线与直线平行”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件,【答案】C【解析】两直线平行的充要条件为且故.故是两直线平行的充分必要条件。
故答案为:C。
7. 在中,是的中点,则的取值范围是A. B. C. D.【答案】A【解析】根据向量的运算得到设BC=x,,代入上式得到结果为.故答案为:A。
点睛:这个题目考查的是向量基本定理的应用;向量的点积运算。
解决向量的小题常用方法有:数形结合,向量的三角形法则,平行四边形法则等;建系将向量坐标化;向量基底化,选基底时一般选择已知大小和方向的向量为基底。
海淀区高三年级第二学期期中练习数学 (文科) 2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i - 2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则 A.{}1- B.{}0 C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B.3C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A BCD6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为 A.1 B.2C.12D.3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为 A .0 B .1 C .2 D .4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线221 3x y m -=的离心率为2,则m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则s i n ______,_______.s i n Ac B==12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++. 能较准确反映商场月销售额()f x 与月份x 关系的函数模型为 _________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________. 13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a = ;(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.O y x O y xO yxO y x 俯视图主视图侧视图求()f x 在[,]22-上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC=90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ;(Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =.(Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形. 20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,nA A A A 与()B n :123,,,,nB B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ;(Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(文科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
北京市海淀区2014届下学期高三年级二模考试数学试卷(文科)【试题答案】一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6{第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()cos21f x x x a ++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分 ∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分 则π=12sin(2)6a x -+, --------------------------------9分 因为π1sin(2)16x -≤+≤, ---------------------------------11分 所以π112sin(2)36x -≤-+≤, --------------------------------12分 所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A , --------------------------------------7分 在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分 其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分 ∴3().11P A = -----------------------------------------10分 (Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分17.解:(I )1A A ⊥底面ABC ,1A A ∴⊥AB , -------------------------2分A B A C ⊥,1A A AC A =,AB ∴⊥面11A ACC . --------------------------4分(II )面DEF //面1ABC ,面ABC 面DEF DE =,面ABC 面1ABC AB =,AB ∴//DE , ---------------------------7分在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分(III )三棱柱111ABC A B C -中1A A AC =∴侧面11A ACC 是菱形,11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB A C ⊥,1A B A C A =,1AC ∴⊥面1ABC , --------------------------------11分1AC ∴⊥1BC . -------------------------------12分又,E F 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分1E F A C ∴⊥. ------------------------------14分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=. 0x ∴=或3x a =-, -----------------------------------5分0a ≠ 30a ∴-≠, ----------------------------------------6分()f x ∴与切线有两个不同的公共点. ----------------------------------------7分(Ⅱ)()f x 在(1,1)-上有且仅有一个极值点, ∴2'()24f x x a x =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分 综上,a 的取值范围是55(,)(,)22-∞-+∞. -------------------------------13分19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e =,可得222112a e a -==,----------------------------------------------------------------3分解得22a =, -----------------------------------------------------------4分 所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分(Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠ ------------------------------------------------------6分因为(0,1),(0,1)A B -,所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分令0y =,得001M x x y =+,所以00(,0)1x M y +. ----------------------------------------------8分所以0000(,1),(,1),1x AM AD x y y =-=--+ -------------------------------------------9分 所以200011x AM AD y y -⋅=-++, ---------------------------------------------10分 又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+ --------------------11分因为011y -<<,所以0AM AD ⋅≠. -----------------------------------------------------------12分所以90MAN ∠≠, -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分 由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21k x x k ==+, -------------------------------------8分 所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分 所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++ ---------------------------------------------10分所以2222421210212121k AM AD k k k ---⋅=-+=≠+++, --------------------------------------12分所以90MAN ∠≠, ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解:(Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分 ②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分(Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->.设12111max{,,,,,,,}j i i k k a a a a a a a -+-=,则12111k i i i k k j S a a a a a a a k a -+--=+++++++≤(-1), 所以(1)j k k a S ->,即1k j S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S S b b b m m ====<-,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+- 整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立. 综上讨论可知{}n b 的公差0d =. --------------------------------------------------13分。
2014年普通高等学校招生全国统一考试数 学(文)(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3(2)下列函数中,定义域是R 且为增函数的是( )((3 ())5,9 (4 ( (C (5)设a (A) (C) (6 (A)(7)()(,0B m 若圆 ( (C (8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率与加工时间(单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次函数模型和实验数据,可以得到最佳加工时间为( ) (A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)若()()12x i i i x R +=-+∈,则x = .(10)设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为 .(11)某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 . (12)在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . (13)若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为 .(14)顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带(15(16)(本小题13分)函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(Ⅰ)写出()f x 的最小正周期及图中0x 、0y 的值;(Ⅱ)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.(17)(本小题14分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC⊥,12AA AC==,E、F分别为11A C、BC的中点. (Ⅰ)求证:平面ABE⊥平面11B BCC;(Ⅱ)求证:1//C F平面ABE;(Ⅲ)求三棱锥E ABC-的体积.(18)(本小题14分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:12OB⊥,(20(1)若集合{}0,1,2,4A=,{}1,2,3B=,则A B=()(A){}0,1,2,3,4(B){}0,4(C){}1,2(D){}3【答案】C【解析】因为}2,1{=BA ,所以选C.【考点】本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答集合题目的关键.(2)下列函数中,定义域是R且为增函数的是()(A)xy e-=(B)y x=(C)lny x=(D)y x=【答案】B【解析】对于选项A ,在R 上是减函数;选项C 的定义域为),0(+∞;选项D ,在)0,(-∞上是减函数,故选B. 【考点】本小题主要考查函数的单调性,属基础题,难度不大. (3)已知向量()2,4a =,()1,1b =-,则2a b -=( )(A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9【答案】A【解析】因为)8,4(2=a,所以)7,5()1,1()8,4(2=--=-b a ,故选A.(4 ( (C 【答案】当k=2(5)设a (A) 件(C) 【答案】 (6) (B)【答案】【解析】因为022)4(,014)2(<-=>-=f f ,所以由根的存在性定理可知,选C. 【考点】本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键. (7)已知圆()()22:341C x y -+-=和两点(),0Am -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( ) (A )7 (B )6 (C )5 (D )4 【答案】B【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两个圆有交点即可,所以51=-m ,故选B.【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.(8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )(A )3.50分钟 (B )3.75分钟 (C )4.00分钟 (D )4.25分钟【答案】B【解析】由图形可知,三点)5.0,5(),8.0,4(),7.0,3(都在函数c bt at p ++=2的图象上,所以⎪⎩⎪⎨⎧=++25167.039a a c b a 所以=p (9)若(【答案】(10则C 【答案】的焦点在的能力.(11【答案】【解析】2的等边三角形,棱锥的高为2,所以最长的棱长为222222=+.【考点】本小题主要考查立体几何的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力.(12)在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2,815 【解析】由余弦定理得:441225cos 2222=⨯⨯-=-+=C ab b a c,故2=c ;因为87222144cos =⨯⨯-+=A ,所以815sin =A . 【考点】本小题主要考查解三角形的知识,考查正弦定理,三角函数的基本关系式等基础止水,属中低档题目.(131y ≤⎧1=y 与+y x . (14(15)(本小题13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =, 且{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和.(15)(共13分)解:(Ⅰ) 设等差数列{}n a 的公差为d ,由题意得41123333a a d --===所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q , 由题意得344112012843b a q b a --===--,解得2q =.所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,,(Ⅱ)由⑴知()13212n n b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×.(16函数(Ⅱ)求(16解:((Ⅱ(171AA =E 、F (17)(共14分)解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥. 所以AB ⊥平面11B BCC . 所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG .(Ⅲ(1812小时的学小时的频从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距.课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. (19)(本小题14分)已知椭圆C :2224x y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值. (19)(共14分)解:(22(Ⅱ即0020y +=,解得又(20(Ⅰ)求(20)(共13分)解:(Ⅰ) 由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =. 因为()210f -=-,f ⎛= ⎝⎭()11f f ==-⎝⎭所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝⎭(Ⅱ) 设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,, 则300023y x x =-,且切线斜率为2063k x =-, 所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.g↗当()g x 至多有2当()g x 至多有2当[)10-,,()0-∞,(Ⅲ)。
海淀区高三年级第一学期期末练习 文1数 学(文科) 2014.01 本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数i(i 1)+等于A. 1i +B.1i -+C. 1i -D.1i --2.已知直线1:210l x y +-=与直线2:0l mx y -=平行,则实数m 的取值为 A. 12- B.12C. 2D.2- 3.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为 40尾,根据上述数据估计该水池中鱼的尾数为A .10000B .20000C .25000D .300004.阅读右边的程序框图,运行相应的程序,输出的S 值为A.15B.14C. 7D. 65.已知2log 3a =,4log 6b =,4log 9c =,则A .a b c =<B .a b c <<C .a c b =>D .a c b >> 6.已知函数22,2,()3,2,x f x x x x ⎧≥⎪=⎨⎪-<⎩ 若关于x 的方程()f x k =有三个不等的实根,则实数k 的取值范围是A.(3,1)-B. (0,1)C. (2,2)-D. (0,)+∞ 7.在ABC ∆中,若2a b =,面积记作S ,则下列结论中一定..成立的是 A .30B > B .2A B = C .c b < D .2S b ≤ 8.如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O = ,M 是线段1D O 上的动N O C 1D D 1B 1A 1CA B M 否是开始 a =1,S =1 a =2a S =S +a结束 S <10输出S点,过点M 做平面1ACD 的垂线交平面1111A B C D 于点N , 则点N 到点A 距离的最小值为A .2B .62C .233D .1 二、填空题:本大题共6小题,每小题5分,共30分。
O 5430.80.70.5tp否是输出Sk =k +1S =S +2kk <3k =0,S =0结束开始2014年普通高等学校招生全国统一测试数 学(文)(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}3 (2)下列函数中,定义域是R 且为增函数的是( )(A )xy e -= (B )y x = (C )ln y x = (D )y x =(3)已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )(A )()5,7 (B )()5,9 (C )()3,7 (D )()3,9 (4)执行如图所示的程序框图,输出的S 值为( )(A )1 (B )3 (C )7 (D )15(5)设a 、b 是实数,则“a b >”是“22a b >”的( )(A) 充分而不必要条件 (B) 必要而不必要条件 (C) 充分必要条件 (D) 既不充分不必要条件 (6)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )(A)()0,1 (B)()1,2 (C)()2,4 (D)()4,+∞(7)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o ,则m 的最大值为( ) (A )7 (B )6 (C )5 (D )4 (8)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p 和加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) (A )3.50分钟 (B )3.75分钟(C )4.00分钟 (D )4.25分钟第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
海淀区高三年级第一学期期末练习数 学(文)答案及评分参考 2019.1一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA , ...............................7分 π<<A 0 , 3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分 ,23b a =且B b A a sin sin = , ....................................10分s i n b B =, ∴1sin =B , ....................................11分 π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且ACBD O =,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分 ⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分又⊥BD 1AA ,1,AA AC A =且1,AA AC ⊂平面11ACC A ,.................................10分⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x-'=-=,0x ≠. .........................................2分 (I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分 所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+; 当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+;....................................10分当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠=,所以120DOC ∠=. ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩ , 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2t y x =-得到2222288(2)244t t ty t t --=-=++ . .....................11分若11x =,则212t =,此时2222814t x t -==+显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠,所以有212212240836722112136MQt y t t k t x t t -+===----+, 22222280842811214NQt y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =,{}{}910,11,12,,19,20B x A x =∈>=不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+,使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分对上述取定的不大于n 的正整数m ,从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分说明:其它正确解法按相应步骤给分.。
海淀区高三年级第一学期期末练习数学(文科)一、选择题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.双曲线的左焦点的坐标为( )A. (-2,0)B.C.D.【答案】A【解析】【分析】先根据方程求出,再求出焦点坐标.【详解】由题意可知焦点在x轴上,,即,所以选A.【点睛】本题主要考查双曲线的方程及焦点坐标.确定焦点坐标的要素有两个:一是确定焦点的位置;二是求出的值.2.已知等比数列满足,且成等差数列,则( )A. B. C. D.【答案】C【解析】【分析】设公比为q,等比数列的通项公式和等差数列中项性质,解方程可得q,即可得到所求值.【详解】成等差数列,得,即:,所以,=16故选:C.【点睛】本题考查等比数列的通项公式和等差数列中项性质,考查方程思想和运算能力,属于基础题.3.若,则( )A. B. C. D.【答案】D【解析】【分析】利用对数的运算得出,从而得出,解出a即可.【详解】化为,即,所以,,40,故选:D【点睛】本题考查对数的运算性质,属于基础题.4.已知向量,且,则( )A. B. C. D.【答案】B【解析】【分析】利用已知条件求出t,然后可得结果.【详解】因为,所以,2t=2,t=1,(2,0)-(1,1)=(1,-1),故选B【点睛】本题考查了平面向量的线性运算以及数量积的运算问题,是基础题目.5.直线被圆截得的弦长为,则的值为( )A. B. C. D.【答案】A【解析】【分析】利用圆的弦的性质,通过勾股定理求出.【详解】圆心为,半径为;圆心到直线的距离为,因为弦长为2,所以,解得,故选A.【点睛】本题主要考查直线和圆的位置关系,利用弦长求解参数.直线和圆相交弦长问题,一般通过勾股定理来建立等式.6.已知函数,则“”是“函数在区间上存在零点”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】先将函数的零点问题转化成两个函数图象交点的问题,再判断充分必要性.【详解】=0,得:,设函数,当时,如下图,函数有交点,所以,在区间上存在零点,充分性成立。
海淀区高三年级第一学期期末练习
数学(文科)
本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数i(i 1)+等于
A. 1i +
B.1i -+
C. 1i -
D.1i --
2.已知直线1:210l x y +-=与直线2:0l mx y -=平行,则实数m 的取值为 A. 12- B.
1
2
C. 2
D.2- 3.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为 A .10000B .20000 C .25000D .30000
4.阅读右边的程序框图,运行相应的程序,输出的S 值为 A.15B.14 C. 7D.6
5.已知2log 3a =,4log 6b =,4log 9c =,则 A .a b c =<B .a b c << C .a c b =>D .a c b >>
6.已知函数22
,2,()3,2,
x f x x x x ⎧≥⎪
=⎨⎪-<⎩若关于x 的方程()f x k =有
三个不等的实根,则实
数k 的取值范围是
A.(3,1)-
B. (0,1)
C. (2,2)-
D. (0,)+∞
7.在ABC ∆中,若2a b =,面积记作S ,则下列结论中一定..成立的是 A .30B > B .2A B =C .c b <D .2S b ≤
8.如图所示,正方体1111ABCD A B C D -的棱长为1,BD AC O = ,
M 是线段1D O 上的动点,过点M 做平面1ACD 的垂线交平面 1111A B C D 于点N ,则点N 到点A 距离的最小值为
1。