2017-2018学年辽宁省沈阳市沈河区七年级(上)期末数学试卷
- 格式:docx
- 大小:86.91 KB
- 文档页数:6
2017—2018学年度第一学期期末教学质量检测七年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.一、选择题:(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中只有一项是符合题目要求的,请将它的代号填在题后的括号内.)1.-43的相反数是………… 【 】(A )43 (B )-34 (C ) -43(D ) 342.如图1,小明的家在A 处,书店在B 处,星期日他到书 店去买书,想尽快的赶到书店,请你帮助他选择一条最近的路线 ………………………………………………………………………………【 】 (A )A →C →D →B (B )A →C →F →B (C )A →C →E →F →B (D )A →C →M →B3.下列四种说法中,正确的是 ……………………………………………………… 【 】(A )“3x ”表示“3+x ” (B )“x 2”表示“x +x ”(C )“3x 2”表示“3x ·3x ” (D )“3x +5”表示“x +x +x +5”4.下列计算结果为负数的是 ………………………………………………………… 【 】 (A )-2-(-3) (B )()23- (C )21- (D )-5×(-7)5.迁安市某天的最低气温为零下9℃,最高气温为零上3℃,则这一天的温差为 … 【 】 (A )6℃ (B )-6℃ (C )12℃ (D )-12℃6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠β一定互补的是 …【 】(A )(B ) (C ) (D )7.解方程2(3)3(4)5x x ---=时,下列去括号正确的是 …………………………【 】 (A )23345x x --+= (B )26345x x ---= (C )233125x x ---= (D )263125x x --+=8.定义新运算:a ⊕b =ab +b ,例如:3⊕2=3×2+2=8,则(-3)⊕4= ……………… 【 】 (A )-8 (B )-10 (C )-16 (D )-24 9. 已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是 ………………【 】 (A )2(B )49 (C )3 (D )29M图1A DB E F·10.如图2,小红做了四道方程变形题,出现错误有【(A )①②③(B )①③④ (C )②③④ (D )①②④11.如图3,将三角形ABC 绕着点C 顺时针旋转50°后得到三角形A ′B ′C , 若∠A´CB´=30°,则∠BCA ′的度数 是…………………………【 】 (A )110° (B )80°(C )50° (D )30°12.若x a +2y 4与-3x 3y 2b 是同类项,则2018(a -b )2 018的值是…………………………………………【 】 (A )2 018 (B )1 (C )-1 (D )-2 018 13.如图4,四个有理数在数轴上的对应点M 、P 、N 、 Q .若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是………………【 】 (A )点M (B )点N (C ) 点P (D )点Q14.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%, 则5月份的产值是…………………………【 】(A )(a -10%)(a +15%)万元 (B )a (1-10%)(1+15%)万元 (C )(a -10%+15%)万元 (D )a (1-10%+15%)万元 15.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是…………【 】(A )4n +1 (B )3n +1 (C )4n +2 (D )3n +2 16. 已知线段AB =10cm ,P A + PB =20cm ,下列说法正确的是…………………………【 】 (A )点P 不能在直线AB 上 (B )点P 只能在直线AB 上 (C )点P 只能在线段AB 的延长线上 (D )点P 不能在线段AB 上 二、填空题(本大题共3小题,共10分;17-18题每小题3分,19题每空2分)17.数轴上的点A 表示﹣3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度. 18. 如图5,已知∠AOB =50°,∠AOD= 90°,OC 平分∠AOB . 则∠COD 的度数是 .N M P Q 图4图3 图2图5D19.根据如图6所示的程序计算,写出关于x 的代数式 为 ;若输入x 的值为1,则输出 y 的值为 .三、解答题(本大题共6个小题,共58分,解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)(1)解方程:1)3(31)1(31++-=-x x(2)计算:32)12()4161()8(2)21(432---⨯-+-÷--⨯图621. (本题满分8分)小明受到《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如图7-1、图7-2、图7-3的操作实验:发现问题:(1)投入第1个小球后,水位上升了 cm ,此时桶里的水位高度达到了 cm ; 提出问题:(2)设投入n 个小球后没有水溢出,用n 表示此时桶里水位的高度 cm ; 解决问题:(3)请你求出最多投入小球多少个水没有从量筒中溢出?(列方程方程求解)图7-1 图7-2 图7-322. (本题满分10分)已知:ab a B A 7722-=-,且7642++-=ab a B . (1)求A 等于多少?(2)若0)2(12=-++b a ,求A 的值.23.(本题满分10分)如图8-1,某学校由于经常拔河,长为40米的拔河比赛专用绳AB 左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米。
2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。
1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。
11.1.18×105 12.11 13.X= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。
17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)3……………(6分)819.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。
20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)X=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+3632x=180 ……(5分)X=120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。
题号七年级(上)期末数学试卷一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.-2的相反数是()A.2B.C.D.2.在-4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个3.一条信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A. B. C.4.下面不是同类项的是()D.A.与5C.与5.下列方程中,解为x=2的方程是()A. B.B.与D.2m与2nC. D.6.下列运用等式的性质,变形正确的是()A.若,则B.若,则C.若,则D.若,则7.下列调查中,不适宜采用全面调查(普查)的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D.了解一批灯泡的使用寿命8.如图,∠AOB的角平分线是()A.射线OBB.射线OEC.射线ODD.射线OC9.按如图所示的运算程序,能使输出的结果为12的是()A.,C.,B.,D.,10.如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司C.甲乙公司一样快B.乙公司D.不能确定二、填空题(本大题共6小题,共18.0分)11.一个棱柱共有21条棱,则这个棱柱共有______个面.12.用一个平面去截下列几何体,截面可能是圆的是______(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体13.如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=______;=______.14.从十边形的一个顶点画这个多边形的对角线,最多可画______条.15.6000″=______′=______°.16.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)057A点位置B点位置19a-117b27A、B两点相距9个单位长度时,时间t的值为______.三、计算题(本大题共4小题,共32.0分)17.计算(1)-10-(-16)+(-24)(2)-14-18.(1)化简:-a2b+(3ab2-a2b)-2(2ab2-a2b)(2)先化简,再求值:(-3xy-7y)+[4x-3(xy+y-2x)],其中xy=-2,x-y=3.19.解方程(1)3x-2=-5x+6(2)-=120.一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?四、解答题(本大题共5小题,共50.0分)21.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.22.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?23.观察下面一行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c表示(1)若这三个数分别在这三行数的第n列,请用含n的式子分别表示a、b、c的值.a=______,b=______,c=______;(2)若a记为x,求a、b、c这三个数的和(结果用含x的式子表示并化简)24.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别节目类型人数A新闻12B体育30C动画mD娱乐54E戏曲9请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有____人,这些学生数占被调查总人数的百分比为____%.(2)被调查学生的总数为____人,统计表中m的值为____,统计图中n的值为____.(3)在统计图中,E类所对应扇形圆心角的度数为____.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.25.如图,数轴上两点A,B所表示的数分别为-3,1.(1)写出线段AB的中点M所对应的数;(2)若点P从B出发以每秒2个单位长度的速度向左运动,运动时间为x秒.①用含x的代数式表示点P所对应的数;②当BP=2AP时,求x值.答案和解析1.【答案】A【解析】解:-2的相反数是2,故选:A.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】D【解析】解:-4,,0,3.14159,1.,是有理数,其它的是无理数.故选:D.有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.3.【答案】B【解析】解:2180000=2.18×106,故选:B.根据科学记数法的形式选择即可.本题考查了科学记数法,掌握科学记数法的形式a×10n是解题的关键.4.【答案】D【解析】解:A、-2与5,是同类项,不合题意;B、-2a2b与a2b,是同类项,不合题意;C、-x2y2与6x2y2,是同类项,不合题意;D、2m与2n,所含字母不同,不是同类项,故此选项正确.故选:D.直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.此题主要考查了同类项,正确把握定义是解题关键.5.【答案】B【解析】解:A、当x=2时,左边=3×2-2=4≠右边,即x=2不是该方程的解.故本选项错误;B、当x=2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解.故本选项正确;C、当x=2时,左边=4-2(2-1)=2≠右边,即x=2不是该方程的解.故本选项错误;D、x+1不是方程.故本选项错误;故选:B.把x=2代入选项中的方程进行一一验证.本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.【答案】C【解析】解:A、x=0时,两边都除以x无意义,故A错误;B、两边都除以2,得x=a-,故B错误;D、两边都除以3,得x=,故D错误;故选:C.根据等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.7.【答案】D【解析】解:旅客上飞机前的安检适宜采用全面调查;学校招聘教师,对应聘人员面试适宜采用全面调查;了解全班同学期末考试的成绩情况适宜采用全面调查;了解一批灯泡的使用寿命适宜采用抽样调查;故选:D.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.【答案】B【解析】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.9.【答案】B【解析】解:当x=2,y=4时,x2+2y=4+8=12,故选:B.把x与y的值代入计算即可做出判断.此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【答案】A【解析】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90-50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70-50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是11.【答案】9【解析】解:21÷3=7,∴一个棱柱共有21条棱,那么它是七棱柱,∴这个棱柱共有9个面.故答案为:9.根据棱柱的概念和定义,可知有21条棱的棱柱是七棱柱.本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.12.【答案】②③⑤【解析】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:②③⑤根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.【答案】1-【解析】解:=1-;=1-;故答案为:;1-.分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.14.【答案】7【解析】解:从十边形一个顶点画对角线能画10-3=7(条),故答案为:7.根据n边形从一个顶点出发可引出(n-3)条对角线.进行计算即可.此题主要考查了多边形对角线,关键是掌握计算公式.15.【答案】100【解析】解:6000″÷60=100′,100′÷60=,即6000″=100′=;36″÷60=0.6′,15.6′÷60=0.26°,即12°15′36″=12.26°.一度等于60分,一分等于60秒,先将秒转化为分,再进一步将分转化为度.度、分、秒的相互换算规律是:度是大单位,秒是小单位,从大化小就乘以进率,从小到大就除以进率.16.【答案】2或4秒【解析】解:由题意可得:A点运动的速度为[19-(-1)]÷(5-0)=4,方向向左,则b=19-4×7=-9;B点运动的速度为(27-17)÷(7-5)=5,方向向右,则a=17-5×5=-8.A、B两点相距9个单位长度时,分两种情况:①相遇前,4t+5t=27-9,解得t=2;②相遇后,4t+5t=27+9,解得t=4.即A、B两点相距9个单位长度时,时间t的值为2或4秒.故答案是:2或4秒.根据表格中的数据分别求出A、B两个动点运动的速度及方向,得到a、b的值.A、B两点相距9个单位长度时,分两种情况进行讨论:①相遇前;②相遇后.分别利用行程问题的相等关系列出方程求解即可.本题考查了一元一次方程的应用,数轴,解答本题的关键是表示出时间和位置的关系,注意分类讨论.17.【答案】解:(1)原式=-10+16-24=-34+16=-18;(2)原式=-1-×(3-9)=-1-×(-6)=-1+1=0.【解析】(1)将减法转化为加法,再根据法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【答案】解:(1)原式=-a2b+3ab2-a2b-4ab2+2a2b=-ab2;(2)原式=-3xy-7y+[4x-3xy-3y+6x]=-3xy-7y+4x-3xy-3y+6x=-6xy-10y+10x,当xy=-2,x-y=3时,原式=-6xy-10y+10x=-6×(-2)-10×(-3)=42.【解析】(1)原式去括号合并得到最简结果;(2)原式去括号合并得到最简结果,将xy与x-y的值代入计算即可求出值.此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)3x+5x=6+2,8x=8,x=1;(2)4(2x-1)-3(x-2)=12,8x-4-3x+6=12,8x-3x=12+4-6,5x=10,x=2.【解析】(1)方程移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.【答案】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据题意得:0.6x+0.8(1400-x)=1000,解得:x=600,∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1-25%)a=(1-40%)×600,(1+25%)b=(1-20%)×800,解得:a=480,b=512,∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.【解析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入1000-a-b中即可找出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【答案】解:(1)如图所示:;(2)如图所示,(3)如图所示,.【解析】分别根据直线、射线、线段的定义作出图形即可.本题考查了直线、射线、线段,是基础题,主要是对语言文字转化为图形语言的能力的考查.22.【答案】解:从图可得箱子的个数有8个,如图:.【解析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.23.【答案】(-1)n+1×2n(-1)n+1×2n+2(-1)n+1×2n-1【解析】解:(1)①中分解可知2=(-1)1+1×21;-4=(-1)2+1×22;8=(-1)3+1×23;-16=(-1)4+1×24;……由此可以推导出①中第n个数为(-1)n+1×2n(n>0);②中观察可知:每个数是①中相应位置上的数+2,由此可以推导出②中第n 个数为(-1)n+1×2n+2(n>0);③中观察可知:每个数是①中相应位置上的数÷2,由此可以推导出③中第n 个数为(-1)n+1×2n÷2=(-1)n+1×2n-1(n>0);故a=(-1)n+1×2n;b=(-1)n+1×2n+2;c=(-1)n+1×2n-1;(2)∵a=x,a+b+c=(-1)n+1×2n+(-1)n+1×2n+2+(-1)n+1×2n-1=x+x+2+=(1)中第①题的数据的数值符合2n规律,符合正负相间,可以利用(-1)n来调节符号的正负性;第②题中的数据与第①题的相同位置的数据相比,相差2;第③题中的数据与第①题的相同位置的数据相比,缩小了一半,所以可以参照第①题的规律来表示第②题和第③题的规律;(2)中用x表示a、b、c的和,a=x,通过观察,可以发现b=x+2;c=,代入整理即可.本题需要注意的是利用(-1)的n次方来调节数的正负性;在观察三行数的特征时,需要横向观察同一行的数字之间的联系,纵向观察不同行的数字之间的联系.24.【答案】(1)30,20;(2)150,45,36;(3)21.6°;(4)2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.【解析】解:(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150-12-30-54-9=45,n%=×100%=36%,即n=36,故答案为150,45,36.=21.6°.(3)E类所对应扇形的圆心角的度数=360°×故答案为21.6°=160人.(4)估计该校最喜爱新闻节目的学生数为2000×答:估计该校最喜爱新闻节目的学生数为160人.(1)观察图表体育类型即可解决问题;(2)根据“总数=B类型的人数÷B所占百分比”可得总数;用总数减去其他类型的人数,可得m的值;根据百分比=所占人数/总人数可得n的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:(1)线段AB的中点M所对应的数为=-1;(2)①点P对应的数为1-2x;②若P运动到A、B之间,则1-(1-2x)=2[1-2x-(-3)],解得x=;若P运动到BA的延长线上时,则1-(1-2x)=2[-3-(1-2x)],解得x=4.综上,当BP=2AP时,x=或x=4.【解析】(1)根据中点的公式计算可得;(2)①根据两点间的距离公式求解可得;②分P运动到A、B之间和运动到BA的延长线上两种情况,根据“BP=2AP”列出方程,解之可得.本题主要考查数轴,掌握数轴上两点的距离公式:若点A表示a,点B表示b 时,AB=|x b-x a|.。
辽宁省沈阳市七年级(上)期末数学试卷一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.12.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②5.单顶式的系数与次数分别是()A.B.C.D.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.97.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣410.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有个.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是.14.若x与3互为相反数,则|x+2|=.15.已知x=5是方程x+a=的解,则a=.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在处(填A或B或C),理由是.17.已知a2+2a=1,则3a2+6a+2的值为.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是.三、解答题(共8小题,满分70分)21.(6分)计算:22.(6分)解方程:(x﹣1)=2﹣(x+2).23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=,n=:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是度;(3)请根据以上信息直接在答题卡中补全条形统计图.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍根,连续搭建n个正方形需要火柴棍根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是,正方形的个数是.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是,点C对应的数是:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:B.【点评】本题考查了有理数大小比较,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的数反而小.2.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:该几何体的左视图是故选:B.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查某一电视节目的收视率适合抽样调查;B、调查一批冷饮的质量是否合格适合抽样调查;C、调查你们班同学是否喜欢科普类书籍适合全面调查;D、调查我国中学生的节水意识适合抽样调查;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解答】解:①立方体截去一个角,截面为三角形,符合题意;②圆柱体只能截出矩形或圆,不合题意;③圆锥沿着中轴线截开,截面就是三角形,符合题意;④正三棱柱从平行于底面的方向截取,截面即为三角形,符合题意;故选:B.【点评】此题主要考查了截一个几何体,根据已知得出圆柱三视图是解决问题的关键,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5.单顶式的系数与次数分别是()A.B.C.D.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:的系数与次数分别是:﹣π,4,故选:D.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.9【分析】根据从一个n边形一个顶点出发的对角线可将这个多边形分成(n﹣2)个三角形进行计算即可.【解答】解:设这个多边形的边数是n,由题意得,n﹣2=6,解得,n=8.故选:C.【点评】本题考查的是n边形的对角线的知识,从n边形从一个顶点出发可引出(n﹣3)条对角线,可将这个多边形分成(n﹣2)个三角形.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.【点评】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣4【分析】根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.【解答】解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选:C.【点评】本题考查了函数值求解,比较简单,注意分两种情况代入求解.10.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20【分析】设小明答对了x,就可以列出方程,求出x的值即可.【解答】解:设小明答对了x题,根据题意可得:6x﹣2(25﹣x)=94,解得:x=18,故选:B.【点评】此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为 3.25×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32500000=3.25×107.故答案为:3.25×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有2个.【分析】根据相反数和有理数的乘方的定义及正负数的定义判断可得.【解答】解:在所列实数中,正数有,﹣(﹣3)=3这2个,故答案为:2.【点评】本题主要考查有理数的乘方,解题的关键是掌握相反数和有理数的乘方的定义及正负数的定义.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是明.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“明”与面“创”相对,故答案为:明.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.14.若x与3互为相反数,则|x+2|=1.【分析】直接利用互为相反数的定义得出x的值,进而结合绝对值的性质化简得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+2|=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.15.已知x=5是方程x+a=的解,则a=.【分析】把x=5代入已知方程,列出关于a的新方程,解新方程即可求得a的值.【解答】解:依题意得:×5+a=,解得a=﹣.故答案是:﹣.【点评】考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在B处(填A 或B或C),理由是两点之间线段最短.【分析】根据两点之间线段最短可得汽车站的位置是B处.【解答】解:汽车站应该建在B处,理由是两点之间线段最短.故答案为:B;两点之间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.17.已知a2+2a=1,则3a2+6a+2的值为5.【分析】将a2+2a=1整体代入原式即可求出答案.【解答】解:当a2+2a=1时,原式=3(a2+2a)+2=3+2=5,故答案为:5【点评】本题考查代数式求值,解题的关键是将a2+2a=1作为一个整体代入原式,本题属于基础题型.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为12.【分析】由已知条件知AM=BM=0.5AB,根据MC:CB=1:2,得出MC,CB的长,故AC=AM+MC可求.【解答】解:∵长度为18的线段AB的中点为M,∴AM=BM=9,∵C点将线段MB分成MC:CB=1:2,∴MC=3,CB=6,∴AC=9+3=12.故答案为:12.【点评】考查了两点间的距离,本题的关键是根据图形弄清线段的关系,求出AC的长.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长2a+2b.【分析】根据题意可以用相应的代数式表示出剩余部分的周长,从而可以解答本题.【解答】解:由题意可得,剩余部分的周长是:2(a﹣2x)+2(b﹣2x)+8x=2a+2b,故答案为:2a+2b.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是﹣17.与A2n表示数字的绝对值相同,【分析】按照题意写出A1到A6对应数字,可发现A2n﹣1且与下一组的绝对值依次增加4.【解答】解:由题意可得,点A1表示的数为:1,点A2表示的数为:﹣1,点A3表示的数为:2×2﹣(﹣1)=5,点A4表示的数为:﹣5,点A5表示的数为:2×2﹣(﹣5)=9,点A6表示的数为:﹣9,…………∴A10=﹣[1+4(10÷2﹣1)]=﹣17,故答案为:﹣17.【点评】此题考查了数轴,熟练掌握变化规律是解本题的关键.三、解答题(共8小题,满分70分)21.(6分)计算:【分析】根据有理数的乘除法和减法可以解答本题.【解答】解:==×9+2=﹣3+2=﹣1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(6分)解方程:(x﹣1)=2﹣(x+2).【分析】先去括号再去分母然后解答.【解答】解:去分母得:5(x﹣1)=20﹣2(x+2),去括号得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,系数化为1得:x=3.【点评】本题考查解一元一次方程的知识,比较简单,但出错率较高,同学们要注意细心运算.23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.【分析】原式去括号,再合并同类项化简原式,继而将a,b的值代入计算可得.【解答】解:原式=4a2+4ab﹣4﹣6a2+3ab=﹣2a2+7ab﹣4,当a=﹣1,b=﹣2时,原式=﹣2×1+7×(﹣1)×(﹣2)﹣4=﹣2+14﹣4=8.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=160,n=15:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是108度;(3)请根据以上信息直接在答题卡中补全条形统计图.【分析】(1)根据B课程的人数和所占的百分比求出m的值,再根据A课程的人数求出n;(2)用D课程所占的百分比乘以360°求出D所对应的扇形的圆心角度数;(3)用总人数减去A、B、D的人数,求出C的人数,从而补全统计图.【解答】解:(1)m=56÷35%=160;n%=×100%=15%,则n=15;故答案为:160,15;(2)“D”所对应的扇形的圆心角度数是×360°=108°,故答案为:108;(3)最受欢迎的文史天地人数有160﹣24﹣56﹣48=32(人),补图如下:【点评】本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=,②圆心角=该项的百分比×360°,③欢迎某项人数=总人数×该项所占的百分比.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍(2n+1)根,连续搭建n个正方形需要火柴棍(3n+1)根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是405,正方形的个数是402.【分析】(1)搭建三角形的火柴数是连续的奇数,搭建正方形的火柴数是在4条基础上依次增加3根;(2)根据设三角形x个,则正方形(x﹣3)个,根据“共用了2018根”列方程求解.【解答】解:(1)搭建三角形的火柴数是连续的奇数(2n+1),根搭建正方形的火柴数是在4条基础上依次增加3根即4+3(n﹣1)=(3n+1)根,故答案为:2n+1,3n+1;(2)根据设三角形x个,则正方形(x﹣3)个,根据题意得2x+1+3(x﹣3)+1=2018,解得x=405,x﹣3=402,故答案为:405,402.【点评】本题考查一元一次方程应用.确定第n个图形边数是解答关键.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.【分析】(1)根据角平分线的定义和角的和差关系即可求解;(2)根据题意可知∠BOD=∠AOC=2∠COD,再根据∠AOB=100°即可求解.【解答】解:(1)∵OC是∠AOB的角平分线,∠AOB=100°,∴∠COB=50°,∵∠BOD=35°,∴∠COD=15°;(2)∵∠BOC=∠AOD=3∠COD,∴∠BOD=∠AOC=2∠COD,∴∠COD=100°×=20°.【点评】考查了角的计算,角平分线的定义,关键是熟练掌握角平分线的定义.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.【分析】(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据“3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元”列方程求解;(2)设甲种羽毛球是按原销售价打x折销售,根据“利润率是10%”列方程求解.【解答】解:(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据题意得3x+2(x﹣15)=270解得x=60,x﹣15=45,答:甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)设甲种羽毛球是按原售价打x折销售,根据题意得80(60×﹣50)+80(45﹣40)=80×(50+40)×10%解得x=9,答:甲种羽毛球是按原售价打九折销售.【点评】本题考查列一元一次方程解应用题.确定数量关系是解答关键.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是﹣12,点C对应的数是5:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.【分析】(1)点A对应的数是0﹣12,点C对应的数是2+3;(2)①点M表示的数是4t﹣12,点N表示的数是t+5;②分点M在原点左右两侧两种可能来考虑.【解答】解:(1)点A对应的数是0﹣12=﹣12,点C对应的数是2+3=5,故答案为﹣12,5;(2)①点M表示的数是﹣12+=4t﹣12,点N表示的数是t+5;②点M在原点左边时,∵OM=2BN∴﹣(4t﹣12)=2(t+5﹣2),解得t=1;点M在原点右边时,∵OM=2BN∴4t﹣12=2(t+5﹣2),解得t=9,所以当t=1秒或t=9秒时,OM=2BN.【点评】本题借助数轴考查一元一次方程应用.表示点对应数字以及分类讨论是解答关键.。
辽宁省沈阳市七年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)若a与1互为相反数,则a+1=()A.﹣1B.0C.2D.12.(2分)下列图形中,不可以作为一个正方体的表面展开图的是()A.B.C.D.3.(2分)如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠14.(2分)某地要反映2008年至2018年降水量的上升或下降的情况,应绘制()A.折线统计图B.条形统计图C.扇形统计图D.以上都不对5.(2分)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.96.(2分)我市某楼盘进行促销活动,决定将原价为a元/平方米的商品房价降价10%销售,降价后的销售价为()A.a﹣10%B.a•10%C.(1﹣10%)a D.(1+10%)a 7.(2分)下列说法正确的是()A.棱柱的每条棱长都相等B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.经过一点可以画无数条直线8.(2分)下列各等式一定成立的是()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2|D.a3=﹣a39.(2分)小明从一批乒乓球中随机摸出了三个,经检查全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明()A.忽略了抽样调查的随机性B.忽略了抽样调查的随机性和广泛性C.忽略了抽样调查的随机性和代表性D.忽略了样本的广泛性10.(2分)下面每个表格中的四个数都是按相同规律填写的,根据此规律确定x的值为()264224864461087410x0428A.148B.158C.168D.178二、填空题(每小题3分,共18分)11.(3分)单项式﹣的系数是.12.(3分)我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次,403200000000用科学记数法来表示为.13.(3分)将弯曲的河道改直,可以缩短航程,其中道理是14.(3分)已知∠AOC=60°,OB是过点O的一条射线,∠AOB:∠AOC=2:3,则∠BOC的度数是.15.(3分)若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=.16.(3分)一列火车正在匀速行驶,它先用26秒的时间通过了一条长256米的隧道(即从车头进入入口到车尾离开出口),又用16秒的时间通过了一条96米的隧道,求这列火车的长度.设火车长度为x米,根据题意可列方程.三、解答题(17题6分,18、19题每小题6分,共22分)17.(6分)如图是由几个小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面和左面看到的形状图.18.(8分)(1)计算:(2)先化简,再求值.,其中.19.(8分)分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为3的点表示的数,求4a+3b+2c+d的倒数.四、(每小题8分,共16分)20.(8分)解方程(1)4x﹣3(20﹣x)=﹣4(2)21.(8分)如图:图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点得到图③.(1)图①中有个三角形,图②中有个三角形,图③中有个三角形;(2)按上面的方法继续下去,第n个图形中有个三角形;(3)当n=2018时,图形中有多少个三角形?五、(本题10分)22.(10分)某公司销售甲,乙两种球鞋,去年共卖出12200双.今年甲种球鞋卖出的数量比去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.去年甲,乙两种球鞋各卖出多少双?23.(10分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.24.(12分)“小组合作学习”成为我县推动课堂教学改革、打造自主学习课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)求分组前学生学习兴趣为“高”的所占的百分比为;(2)补全分组后学生学习兴趣的统计图;(3)通过“小组合作学习“前后对比,100名学生中学习兴趣获得提高的学生共有多少人?(4)请你估计全校3000名学生中学习兴趣获得提高的学生有多少人?八、(本题12分)25.(12分)已知二项式﹣m3n2﹣2中,含字母的项的系数为a,多项式的次数为b,常数项为c.且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙与甲相距多远?(3)在数轴上是否存在一点P,使P到A、B、C的距离之和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)若a与1互为相反数,则a+1=()A.﹣1B.0C.2D.1【分析】直接利用相反数的定义得出a的值,进而得出答案.【解答】解:∵a与1互为相反数,∴a=﹣1,∴a+1=﹣1+1=0.故选:B.【点评】此题主要考查了相反数,正确得出a的值是解题关键.2.(2分)下列图形中,不可以作为一个正方体的表面展开图的是()A.B.C.D.【分析】利用正方体的展开图的特征,即可得到不可以作为一个正方体的表面展开图的选项.【解答】解:A.可以作为一个正方体的展开图,B.不能围成正方体,故不可以作为一个正方体的展开图,C.可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:B.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,正方体展开图不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况.3.(2分)如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选:B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.4.(2分)某地要反映2008年至2018年降水量的上升或下降的情况,应绘制()A.折线统计图B.条形统计图C.扇形统计图D.以上都不对【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;据此解答即可.【解答】解:由统计图的特点可知,某地要反映出1999年至2002年降水量的上升和下降的情况,应绘制折线统计图.故选:A.【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.5.(2分)从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.9【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选:C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.6.(2分)我市某楼盘进行促销活动,决定将原价为a元/平方米的商品房价降价10%销售,降价后的销售价为()A.a﹣10%B.a•10%C.(1﹣10%)a D.(1+10%)a 【分析】根据题意可以求得降价后的销售价格,本题得以解决.【解答】解:由题意可得,降价后的销售价为:a(1﹣10%),故选:C.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.7.(2分)下列说法正确的是()A.棱柱的每条棱长都相等B.棱柱侧面的形状可能是一个三角形C.长方体的截面形状一定是长方形D.经过一点可以画无数条直线【分析】依据棱柱的特征以及棱柱的截面的形状,即可得到正确结论.【解答】解:A.棱柱的每条棱长不一定都相等,故本选项错误;B.棱柱侧面的形状不可能是一个三角形,故本选项错误;C.长方体的截面形状不一定是长方形,故本选项错误;D.经过一点可以画无数条直线,故本选项正确;故选:D.【点评】本题主要考查柱体的结构特征,主要涉及了侧面,底面,顶点等特征.8.(2分)下列各等式一定成立的是()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2|D.a3=﹣a3【分析】根据有理数的乘方,绝对值进行计算即可.【解答】解:A、a2=(﹣a)2,故A正确;B、a3=(﹣a)3,故B错误;C、﹣a2=|﹣a2|,故C错误;D、a3=﹣a3,故D错误;故选:A.【点评】本题考查了有理数的乘方,乘方的运算可以利用乘法的运算来进行,负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.9.(2分)小明从一批乒乓球中随机摸出了三个,经检查全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明()A.忽略了抽样调查的随机性B.忽略了抽样调查的随机性和广泛性C.忽略了抽样调查的随机性和代表性D.忽略了样本的广泛性【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:小明从一批乒乓球中随机摸出了三个,经检查全部合格,因此小明断定这批乒乓球全部合格.在这个问题中,小明忽略了样本的广泛性.故选:D.【点评】此题主要考查了抽样调查的可靠性,注意样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.10.(2分)下面每个表格中的四个数都是按相同规律填写的,根据此规律确定x的值为()264224864461087410x0428A.148B.158C.168D.178【分析】首先根据图示,可得第n个表格的左上角的数等于2n,左下角的数等于2n+2;右上角的数分别为2n+4,由此求出n;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积减去左上角的数,求出x的值是多少即可.【解答】解:观察可知:2n=10,解得:n=5,∴x=12×14﹣10=158.故选:B.【点评】此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.二、填空题(每小题3分,共18分)11.(3分)单项式﹣的系数是﹣.【分析】直接利用单项式中的数字因数叫做单项式的系数,得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确掌握单项式的系数确定方法是解题关键.12.(3分)我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次,403200000000用科学记数法来表示为 4.032×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4032 0000 0000=4.032×1011,故答案为:4.032×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)将弯曲的河道改直,可以缩短航程,其中道理是两点之间,线段最短【分析】根据线段的性质,两点之间,线段最短解答.【解答】解:将弯曲的河道改直,可以缩短航程,其中道理是:两点之间,线段最短.故答案为:两点之间,线段最短.【点评】此题为数学知识的应用,考查知识点两点之间,线段最短.14.(3分)已知∠AOC=60°,OB是过点O的一条射线,∠AOB:∠AOC=2:3,则∠BOC的度数是100°或20°.【分析】通过分析,可知有两种情况:①OB在OA左边;②OB在OA右边,画图后分别计算即可.【解答】解:①OB在OA左边,如右图,∵∠AOC=60°,∠AOB:∠AOC=2:3,∴∠AOB=40°,∴∠BOC=40°+60°=100°;②OB在OA右边,如右图,∵∠AOC=60°,∠AOB:∠AOC=2:3,∴∠AOB=40°,∴∠BOC=60°﹣40°=20.故答案是100°或20°.【点评】本题考查了角的计算.解题的关键是注意画图,并分情况讨论.15.(3分)若规定一种运算:a*b=ab+a﹣b,则1*(﹣2)=1.【分析】根据a*b=ab+a﹣b,可以求得所求式子的值,本题得以解决.【解答】解:∵a*b=ab+a﹣b,∴1*(﹣2)=1×(﹣2)+1﹣(﹣2)=(﹣2)+1+2=1,故答案为:1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(3分)一列火车正在匀速行驶,它先用26秒的时间通过了一条长256米的隧道(即从车头进入入口到车尾离开出口),又用16秒的时间通过了一条96米的隧道,求这列火车的长度.设火车长度为x米,根据题意可列方程=.【分析】设火车长度为x米,根据速度=路程÷时间结合火车匀速行驶,即可得出关于x 的一元一次方程,此题得解.【解答】解:设火车长度为x米,根据题意得:=.故答案为:=.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(17题6分,18、19题每小题6分,共22分)17.(6分)如图是由几个小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体从正面和左面看到的形状图.【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3;左视图有3列,每列小正方数形数目分别为3,3,2.据此可画出图形.【解答】解:如图:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.18.(8分)(1)计算:(2)先化简,再求值.,其中.【分析】(1)原式先计算乘方运算,再计算乘除运算即可即可求出值;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=××=;(2)原式=﹣x2+x﹣2﹣x+1=﹣x2﹣1,当x=时,原式=﹣1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(8分)分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为3的点表示的数,求4a+3b+2c+d的倒数.【分析】根据关于a、b、c、d的叙述,先确定a、b、c、d的具体数值,计算代数式4a+3b+2c+d 的值,最后求出其倒数.【解答】解:因为最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0,数轴上到原点距离为3的点表示的数是±3,所以a=1,b=﹣1,c=0,d=±3.当d=3时,4a+3b+2c+d=4×1+3×(﹣1)+2×0+3=4,所以4a+3b+2c+d的倒数是;当d=﹣3时,4a+3b+2c+d=4×1+3×(﹣1)+2×0﹣3=﹣2,所以4a+3b+2c+d的倒数是﹣.【点评】本题考查了有理数、绝对值、倒数的相关知识及有理数的混合运算,题目综合性较强.解决本题的关键是确定a、b、c、d的值.注意:最小的正整数是1,没有最小的正数;最大的负整数是﹣1,没有最大的负数;绝对值最小的有理数是0,绝对值是它本身的数是正数和0;倒数是它本身的数是±1.四、(每小题8分,共16分)20.(8分)解方程(1)4x﹣3(20﹣x)=﹣4(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣60+3x=﹣4,移项合并得:7x=56,解得:x=8;(2)去分母得:6(x+15)=15﹣10(x﹣7),去括号得:6x+90=15﹣10x+70,移项合并得:16x=﹣5,解得:x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)如图:图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点得到图③.(1)图①中有1个三角形,图②中有5个三角形,图③中有9个三角形;(2)按上面的方法继续下去,第n个图形中有4n﹣3个三角形;(3)当n=2018时,图形中有多少个三角形?【分析】(1)首先根据所给的图形,正确数出三角形的个数;(2)根据(1)中数的过程中,就能够发现在前一个图的基础上依次多4个.(3)代入n=2018求得答案即可.【解答】解:(1)图①中有1个三角形,图②中有5个三角形,图③中有9个三角形;故答案为:1,5,9;(2)∵发现每个图形都比起前一个图形依次多4个三角形,∴第n个图形中有1+4(n﹣1)=4n﹣3个三角形.故答案为:4n﹣3.(3)当n=2018时,4n﹣3=4×2018﹣3=8069答:当n=2018时,图形中有8069个三角形.【点评】本题考查了图形的变化类问题,在找规律的时候,主要应发现前后图形中的个数之间的联系.五、(本题10分)22.(10分)某公司销售甲,乙两种球鞋,去年共卖出12200双.今年甲种球鞋卖出的数量比去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.去年甲,乙两种球鞋各卖出多少双?【分析】设去年甲种球鞋卖了x双,则乙种球鞋卖了(12200﹣x)双,根据条件建立方程(1+6%)x+(12200﹣x)(1﹣5%)=12200+50,求出其解即可.【解答】解:设去年甲种球鞋卖了x双,则乙种球鞋卖了(12200﹣x)双,由题意,得(1+6%)x+(12200﹣x)(1﹣5%)=12200+50,解得:x=6000,∵12200﹣6000=6200,∴乙种球鞋卖了6200双.答:去年甲种球鞋卖了6000双,则乙种球鞋卖了6200双.【点评】本题考查了列一元一次方程解关于增长率问题的实际问题的运用,一元一次方程的解法的运用,解答时根据变化后的相等数量关系建立方程是关键.六、(本题10分)23.(10分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.【分析】(1)根据∠AOB=∠AOC,求出∠AOC度数,再加上15°即可;(2)先求出∠BOC度数,再利用∠COE与∠BOC互补关系可求解问题;(3)根据角平分线定义求解∠COD度数,再根据∠AOD=∠COD+∠AOC进行求解即可.【解答】解:(1)由已知可得∠AOB=15°+40°=55°,∵AOC=∠AOB,∴∠AOC=55°.∵55°+15°=70°,∴射线OC的方向角为北偏东70°.(2)∵∠BOC=2∠AOB=110°,∴∠COE=180°﹣∠BOC=180°﹣110°=70°.(3)∵OD平分∠COE,∴∠COD=∠COE=×70°=35°.∴∠AOD=∠AOC+∠COD=55°+∠35°=90°.【点评】本题主要考查了方向角概念、角平分线定义以及角之间的互化.对方向角的理解以及灵活运用角的和差是解题的关键.七、(本题12分)24.(12分)“小组合作学习”成为我县推动课堂教学改革、打造自主学习课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“小组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)求分组前学生学习兴趣为“高”的所占的百分比为30%;(2)补全分组后学生学习兴趣的统计图;(3)通过“小组合作学习“前后对比,100名学生中学习兴趣获得提高的学生共有多少人?(4)请你估计全校3000名学生中学习兴趣获得提高的学生有多少人?【分析】(1)用整体1减去极高、低、中所占的百分比,即可求出分组前学生学习兴趣为“高”的所占的百分比;(2)用抽查的总人数减去学习兴趣极高、高和低的人数,求出学习兴趣“中”的人数,从而补全统计图;(3)根据题意先分别求出小组合作学习后学习兴趣提高的人数;(4)用全校的总人数乘以学习兴趣获得提高的学生所占的百分比即可.【解答】解:(1)分组前学生学习兴趣为“高”的所占的百分比为1﹣(25%+20%+25%)=30%,故答案为:30%;(2)分组后学习兴趣为“中”的人数为100﹣(30+35+5)=30(人),补全条形图如下:(3)分组前学习兴趣“中”的有100×25%=25(人),分组后兴趣提高的有30﹣25=5(人),分组前学生学习兴趣“高”的有100×30%=30(人),分组后兴趣提高的有35﹣30=5(人),分组前学习兴趣为“极高”的有100×25%=25(人),分组后兴趣提高的有30﹣25=5(人),5+5+5=15(人),答:随机抽取100名学生中分组后学习兴趣获得提高的共有15人.(4)3000×=450(人),答:估计全校3000名学生中学习兴趣获得提高的学生有450人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.八、(本题12分)25.(12分)已知二项式﹣m3n2﹣2中,含字母的项的系数为a,多项式的次数为b,常数项为c.且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙与甲相距多远?(3)在数轴上是否存在一点P,使P到A、B、C的距离之和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.【分析】(1)根据多项式的系数、次数、常数项的对应求出a、b、c的值,在数轴上画出点A、B、C即可.(2)设t秒后当乙追上丙,列出方程即可解决问题.(3)分四种情形讨论①当点P在点C左边时,②当点P在A、C之间时,PA+PB+PC <10,不存在.③当点P在A、B之间时④当点P在点B右侧时,列出方程即可解决问题.【解答】解:(1)a=﹣1,b=5,c=﹣2,点A、B、C如图所示,(2)设t秒后当乙追上丙,由题意(2﹣)t=7,解得t=4,此时乙与甲相距(4×+6)﹣2×4=0,所以当乙追上丙时,乙与甲也相遇,甲、乙之间距离为0.(3)设点P对应的数为m,①当点P在点C左边时,由题意,(5﹣m)+(﹣1﹣m)+(﹣2﹣m)=10,解得m=﹣,②当点P在A、C之间时,PA+PB+PC<10,不存在.③当点P在A、B之间时,(5﹣m)+(m+1)+(m+2)=10,解得m=2,④当点P在点B右侧时,(m﹣5)+(m+1)+(m+2)=10,解得m=4(不合题意舍弃),综上所述,当P对应的数是﹣或2时,PA+PB+PC=10.【点评】本题考查一元一次方程的应用、数轴、行程问题等知识,解题的关键是学会利用方程解决问题,属于中考常考题型.。
2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.) 1.2-等于( ) A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2 B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( ) A .a +b>0 B .ab >0 C .110ab-< D .110ab+> 7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°ABCDAB第8题图第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( ) A.(1+50%)x×80%=x-28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x-28 D.(1+50%x)×80%=x+28 11.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B 港相距x千米.根据题意,可列出的方程是()A.32428-=xxB.32428+=xxC.3262262+-=+xxD.3262262-+=-xx12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy2的系数是_________.15.若x=2是方程8-2x=ax的解,则a=_________.16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.18.已知,a-b=2,那么2a-2b+5=_________.19.已知y1=x+3,y2=2-x,当x=_________时,y1比y2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.6222420 4884446……三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为A E DB F C元.数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分) 21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x…3分 解得:x =80……5分答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分 (2)第二次移动后这个点在数轴上表示的数是4; …………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分 (5)54. ………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x cm,CF=12CD=2x cm.……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) ....8分所以王老师肯定搞错了. (9)分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2018-2019 学年辽宁省沈阳市沈河区七年级(上)期末数学试卷一、选择题(每小题 2 分,共20 分)1.(2 分)﹣2 的相反数是()A .2B .C.﹣D.﹣22.(2 分)在﹣4,,0,,3.14159,1. ,0.1010010001 有理数的个数有()A .2 个B .3 个C.4 个D.5 个3.(2 分)一条信息在一周内被转发了 2 180 000 次,将数据 2 180 000 用科学记数法表示为()5 6 6 5A .2.18×10B .2.18×10 C.21.8×10 D.21.8×104.(2 分)下面不是同类项的是()2 2A .﹣2 与5 B.﹣2a b 与a b2 2 2 2C.﹣x y 与6x y D.2m 与2n5.(2 分)下列方程中,解为x=2 的方程是()A .3x﹣2=3B .﹣x+6 =2x C.4﹣2(x﹣1)=1 D.x+1=06.(2 分)下列运用等式的性质,变形正确的是()A .若x2=6x,则x=6 B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bc D.若3x=2,则7.(2 分)下列调查中,不适宜采用全面调查(普查)的是()A .旅客上飞机前的安检B.学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D.了解一批灯泡的使用寿命8.(2 分)如图,∠AOB 的角平分线是()A .射线OB B .射线OE C.射线OD D.射线OC9.(2 分)按如图所示的运算程序,能使输出的结果为12 的是()A .x=﹣4,y=﹣2B .x=2,y=4 C.x=3,y=3 D.x=4,y=2 10.(2 分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A .甲公司B.乙公司C.甲乙公司一样快D.不能确定二、填空题(每小题 3 分,共18 分)11.(3 分)一个棱柱共有21 条棱,则这个棱柱共有个面.12.(3 分)用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体13.(3 分)如图,把一个面积为 1 的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.14.(3 分)从十边形的一个顶点画这个多边形的对角线,最多可画条.15.(3 分)6000 ″=′=°.16.(3 分)A、B 两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)0 5 7A 点位置19 ﹣1 bB 点位置 a 17 27A、B 两点相距9 个单位长度时,时间t 的值为.三、解答题(第17 小题6 分,第18、19 小题各8 分,共22 分)17.(6 分)计算(1)﹣10﹣(﹣16)+(﹣24)(2)﹣14﹣18.(8 分)如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD 交于E 点;(2)作射线BC;(3)取一点P,使点P 既在直线AB 上又在直线CD 上.2 2 2 2 219.(8 分)(1)化简:﹣a b+(3ab ﹣a b)﹣2(2ab ﹣a b)(2)先化简,再求值:(﹣3xy﹣7y)+[4 x﹣3(xy+y﹣2x)],其中xy=﹣2,x﹣y=3.四、解答题(每小题8 分,共16 分)20.(8 分)解方程(1)3x﹣2=﹣5x+6(2)﹣= 121.(8 分)在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?五、解答题(本题10 分)22.(10 分)一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400 元,某顾客参加活动购买甲、乙各一件,共付1000 元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?六、解答题(本题10 分)23.(10 分)观察下面一行数:2,﹣4,8,﹣16,32,﹣64,;①4,﹣2,10,﹣14,34,﹣62,;②1,﹣2,4,﹣8,16,﹣32,.③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c 表示(1)若这三个数分别在这三行数的第n 列,请用含n 的式子分别表示a、b、c 的值.a=,b=,c=;(2)若a 记为x,求a、b、c 这三个数的和(结果用含x 的式子表示并化简)七、解答题(本题12 分)24.(12 分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E 节目类型新闻体育动画娱乐戏曲人数12 30 m 54 9 请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m 的值为,统计图中n 的值为.(3)在统计图中, E 类所对应扇形圆心角的度数为.(4)该校共有2000 名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.八、解答题(本题12 分)25.(12 分)如图,数轴上两点A,B 所表示的数分别为﹣3,1.(1)写出线段AB 的中点M 所对应的数;(2)若点P 从B 出发以每秒 2 个单位长度的速度向左运动,运动时间为x 秒.①用含x 的代数式表示点P 所对应的数;②当BP=2AP 时,求x 值.2018-2019 学年辽宁省沈阳市沈河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题 2 分,共20 分)1.(2 分)﹣2 的相反数是()A .2B .C.﹣D.﹣2【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2 的相反数是2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2 分)在﹣4,,0,,3.14159,1.,0.1010010001 有理数的个数有()A .2 个B .3 个C.4 个D.5 个【分析】有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.【解答】解:﹣4,,0,3.14159,1. ,是有理数,其它的是无理数.故选:D .【点评】本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.3.(2 分)一条信息在一周内被转发了 2 180 000 次,将数据 2 180 000 用科学记数法表示为()5 6 6 5A .2.18×10B .2.18×10 C.21.8×10 D.21.8×10【分析】根据科学记数法的形式选择即可.【解答】解:2 180 000=2.18×106,故选:B.【点评】本题考查了科学记数法,掌握科学记数法的形式a×10n 是解题的关键.4.(2 分)下面不是同类项的是()第6 页(共20 页)2 2A .﹣2 与5 B.﹣2a b 与a b2 2 2 2C.﹣x y 与6x y D.2m 与2n【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.【解答】解:A、﹣2 与5,是同类项,不合题意;2 2B、﹣2a b 与a b,是同类项,不合题意;2 2 2 2C、﹣x y 与6x y ,是同类项,不合题意;D 、2m 与2n,所含字母不同,不是同类项,故此选项正确.故选:D .【点评】此题主要考查了同类项,正确把握定义是解题关键.5.(2 分)下列方程中,解为x=2 的方程是()A .3x﹣2=3B .﹣x+6 =2x C.4﹣2(x﹣1)=1 D.x+1=0【分析】把x=2 代入选项中的方程进行一一验证.【解答】解:A、当x=2 时,左边=3×2﹣2=4≠右边,即x=2 不是该方程的解.故本选项错误;B、当x=2 时,左边=﹣2+6=4,右边=2×2=4,左边=右边,即x=2 是该方程的解.故本选项正确;C、当x=2 时,左边=4﹣2(2﹣1)=2≠右边,即x=2 不是该方程的解.故本选项错误;D 、x+1 不是方程.故本选项错误;故选:B.【点评】本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.(2 分)下列运用等式的性质,变形正确的是()A .若x2=6x,则x=6 B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bc D.若3x=2,则【分析】根据等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0 数(或字母),等式仍成立,可得答案.【解答】解:A、x=0 时,两边都除以x 无意义,故 A 错误;B、两边都除以2,得x=a﹣,故B 错误;C、两边都乘以c,得ac=bc,故C 正确;D 、两边都除以3,得x=,故D 错误;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0 数(或字母),等式仍成立.7.(2 分)下列调查中,不适宜采用全面调查(普查)的是()A .旅客上飞机前的安检B .学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D .了解一批灯泡的使用寿命【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:旅客上飞机前的安检适宜采用全面调查;学校招聘教师,对应聘人员面试适宜采用全面调查;了解全班同学期末考试的成绩情况适宜采用全面调查;了解一批灯泡的使用寿命适宜采用抽样调查;故选:D .【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(2 分)如图,∠AOB 的角平分线是()A .射线OB B .射线OE C.射线OD D.射线OC【分析】由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB 的角平分线是射线OE,此题得解.【解答】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB 的角平分线是射线OE.故选:B.【点评】本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.9.(2 分)按如图所示的运算程序,能使输出的结果为12 的是()A .x=﹣4,y=﹣2B .x=2,y=4 C.x=3,y=3 D.x=4,y=2【分析】把x 与y 的值代入计算即可做出判断.2【解答】解:当x=2,y=4 时,x +2y=4+8 =12,故选:B.【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.10.(2 分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A .甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013 年的销售收入约为50 万元,2017 年约为90 万元,则从2013~2017 年甲公司增长了90﹣50=40 万元;乙公司2013 年的销售收入约为50 万元,2017 年约为70 万元,则从2013~2017 年乙公司增长了70﹣50=20 万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题(每小题 3 分,共18 分)11.(3 分)一个棱柱共有21 条棱,则这个棱柱共有9 个面.【分析】根据棱柱的概念和定义,可知有21 条棱的棱柱是七棱柱.【解答】解:21÷3=7,∴一个棱柱共有21 条棱,那么它是七棱柱,∴这个棱柱共有9 个面.故答案为:9.【点评】本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.12.(3 分)用一个平面去截下列几何体,截面可能是圆的是②③⑤(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:②③⑤【点评】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.(3 分)如图,把一个面积为 1 的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.【解答】解:=1﹣;=1﹣;故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.14.(3 分)从十边形的一个顶点画这个多边形的对角线,最多可画7 条.【分析】根据n 边形从一个顶点出发可引出(n﹣3)条对角线.进行计算即可.【解答】解:从十边形一个顶点画对角线能画10﹣3=7(条),故答案为:7.【点评】此题主要考查了多边形对角线,关键是掌握计算公式.15.(3 分)6000 ″=100 ′=°.【分析】一度等于60 分,一分等于60 秒,先将秒转化为分,再进一步将分转化为度.【解答】解:6000″÷60=100′,100′÷60=,即6000″=100′=;36″÷60=0.6′,15.6′÷60=0.26°,即12°15′36″=12.26°.【点评】度、分、秒的相互换算规律是:度是大单位,秒是小单位,从大化小就乘以进率,从小到大就除以进率.16.(3 分)A、B 两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)0 5 7A 点位置19 ﹣1 bB 点位置 a 17 27A、B 两点相距9 个单位长度时,时间t 的值为 2 或4 秒.【分析】根据表格中的数据分别求出A、B 两个动点运动的速度及方向,得到a、b 的值.A、B 两点相距9 个单位长度时,分两种情况进行讨论:①相遇前;②相遇后.分别利用行程问题的相等关系列出方程求解即可.【解答】解:由题意可得: A 点运动的速度为[19﹣(﹣1)] ÷(5﹣0)=4,方向向左,则b=19﹣4×7=﹣9;B 点运动的速度为(27﹣17)÷(7﹣5)=5,方向向右,则a=17﹣5×5=﹣8.A、B 两点相距9 个单位长度时,分两种情况:①相遇前,4t+5t=27﹣9,解得t=2;②相遇后,4t+5t=27+9 ,解得t=4.即A、B 两点相距9 个单位长度时,时间t 的值为 2 或4 秒.故答案是: 2 或4 秒.【点评】本题考查了一元一次方程的应用,数轴,解答本题的关键是表示出时间和位置的关系,注意分类讨论.三、解答题(第17 小题6 分,第18、19 小题各8 分,共22 分)17.(6 分)计算(1)﹣10﹣(﹣16)+(﹣24)(2)﹣14﹣【分析】(1)将减法转化为加法,再根据法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣10+16 ﹣24=﹣34+16=﹣18;(2)原式=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.(8 分)如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD 交于E 点;(2)作射线BC;(3)取一点P,使点P 既在直线AB 上又在直线CD 上.【分析】分别根据直线、射线、线段的定义作出图形即可.【解答】解:(1)如图所示:;(2)如图所示,(3)如图所示,.【点评】本题考查了直线、射线、线段,是基础题,主要是对语言文字转化为图形语言的能力的考查.2 2 2 2 219.(8 分)(1)化简:﹣a b+(3ab ﹣a b)﹣2(2ab ﹣a b)(2)先化简,再求值:(﹣3xy﹣7y)+[4 x﹣3(xy+y﹣2x)],其中xy=﹣2,x﹣y=3.【分析】(1)原式去括号合并得到最简结果;(2)原式去括号合并得到最简结果,将xy 与x﹣y 的值代入计算即可求出值.2 2 2 2 2 2【解答】解:(1)原式=﹣ a b+3ab ﹣a b﹣4ab +2a b=﹣ab;(2)原式=﹣3xy﹣7y+[4 x﹣3xy﹣3y+6x]=﹣3xy﹣7y+4x﹣3xy﹣3y+6x=﹣6xy﹣10y+10x,当xy=﹣2,x﹣y=3时,原式=﹣6xy﹣10y+10x=﹣6×(﹣2)﹣10×(﹣3)=42.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同第14 页(共20 页)Earlybird类项法则,熟练掌握运算法则是解本题的关键.四、解答题(每小题8 分,共16 分)20.(8 分)解方程(1)3x﹣2=﹣5x+6(2)﹣= 1【分析】(1)方程移项,合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x 系数化为1,即可求出解.【解答】解:(1)3x+5x=6+2 ,8x=8,x=1;(2)4(2x﹣1)﹣3(x﹣2)=12,8x﹣4﹣3x+6=12,8x﹣3x=12+4 ﹣6,5x=10,x=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(8 分)在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从图可得箱子的个数有8 个,如图:.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.五、解答题(本题10 分)22.(10 分)一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400 元,某顾客参加活动购买甲、乙各一件,共付1000 元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x)元,根据优惠后购买甲、乙各一件共需1000 元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为 a 元/件,乙商品的进价为 b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b 的一元一次方程,解之即可求出a、b 的值,再代入1000﹣a﹣b 中即可找出结论.【解答】解:(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400 ﹣x)元,根据题意得:0.6x+0.8(1400﹣x)=1000,解得:x=600,∴1400﹣x=800.答:甲商品原销售单价为600 元,乙商品的原销售单价为800 元.(2)设甲商品的进价为 a 元/件,乙商品的进价为 b 元/件,根据题意得:(1﹣25%)a=(1﹣40%)×600,(1+25%)b=(1﹣20%)×800,解得:a=480,b=512,∴1000﹣a﹣b=1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8 元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.六、解答题(本题10 分)23.(10 分)观察下面一行数:2,﹣4,8,﹣16,32,﹣64,;①4,﹣2,10,﹣14,34,﹣62,;②1,﹣2,4,﹣8,16,﹣32,.③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c 表示(1)若这三个数分别在这三行数的第n 列,请用含n 的式子分别表示a、b、c 的值.a=(﹣1)n+1×2n ,b=(﹣1)n+1×2n +2 ,c=(﹣1)n+1×2n﹣1 ;(2)若a 记为x,求a、b、c 这三个数的和(结果用含x 的式子表示并化简)【分析】(1)中第①题的数据的数值符合2n 规律,符合正负相间,可以利用(﹣1)n 来调节符号的正负性;第②题中的数据与第①题的相同位置的数据相比,相差2;第③题中的数据与第①题的相同位置的数据相比,缩小了一半,所以可以参照第①题的规律来表示第②题和第③题的规律;(2)中用x 表示a、b、c 的和,a=x,通过观察,可以发现b=x+2;c=,代入整理即可.【解答】解:(1)①中分解可知2=(﹣1)1+1×21;﹣4=(﹣1)2+1×22;8=(﹣1)3+1×23;﹣16=(﹣1)4+1×24;由此可以推导出①中第n 个数为(﹣1)n+1× 2n(n >0);②中观察可知:每个数是①中相应位置上的数+2,由此可以推导出②中第n 个数为(﹣n+1 n1)×2 +2(n>0);③中观察可知:每个数是①中相应位置上的数÷2,由此可以推导出③中第n 个数为(﹣1)n+1×2n÷2=(﹣1)n+1×2n﹣1(n>0);故a=(﹣1)n+1×2n;b=(﹣1)n+1×2n+2;c=(﹣1)n+1×2n﹣1;﹣1n+1 n n+1 n n+1n (2)∵a=x,a+b+c=(﹣1)×2 +(﹣1)×2 +2+(﹣1)×2 =x+x+2+ =【点评】本题需要注意的是利用(﹣1)的n 次方来调节数的正负性;在观察三行数的特征时,需要横向观察同一行的数字之间的联系,纵向观察不同行的数字之间的联系.七、解答题(本题12 分)24.(12 分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E 节目类型新闻体育动画娱乐戏曲人数12 30 m 54 9 请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m 的值为45 ,统计图中n 的值为36 .(3)在统计图中, E 类所对应扇形圆心角的度数为21.6°.(4)该校共有2000 名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【分析】(1)观察图表体育类型即可解决问题;(2)根据“总数= B 类型的人数÷ B 所占百分比”可得总数;用总数减去其他类型的人数,可得m 的值;根据百分比=所占人数/总人数可得n 的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.【解答】解:(1)最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150 人,m=150﹣12﹣30﹣54﹣9=45,n%=× 100% =36%,即n=36,故答案为150,45,36.(3)E 类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000 ×=160 人.答:估计该校最喜爱新闻节目的学生数为160 人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.八、解答题(本题12 分)25.(12 分)如图,数轴上两点A,B 所表示的数分别为﹣3,1.(1)写出线段AB 的中点M 所对应的数;(2)若点P 从B 出发以每秒 2 个单位长度的速度向左运动,运动时间为x 秒.①用含x 的代数式表示点P 所对应的数;②当BP=2AP 时,求x 值.【分析】(1)根据中点的公式计算可得;(2)①根据两点间的距离公式求解可得;②分P 运动到A、B 之间和运动到BA 的延长线上两种情况,根据“BP=2AP”列出方程,解之可得.【解答】解:(1)线段AB 的中点M 所对应的数为=﹣1;(2)①点P 对应的数为1﹣2x;②若P 运动到A、B 之间,则1﹣(1﹣2x)=2[1 ﹣2x﹣(﹣3)] ,解得x=;若P 运动到BA 的延长线上时,则1﹣(1﹣2x)=2[﹣3﹣(1﹣2x)],解得x=4.综上,当BP=2AP 时,x=或x=4.【点评】本题主要考查数轴,掌握数轴上两点的距离公式:若点 A 表示a,点B 表示 b 时,AB=|x b﹣x a|.。
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+ =180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=.(n是正整数)(用含α和β的代数式表示).2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:11万=11 0000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y 的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+ ∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH<PC<OC.【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付 4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.【分析】(1)由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC 的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。
2018-2019 学年辽宁省沈阳市沈河区七年级(上)期末数学试卷一、选择题(每小题 2 分,共20 分)1.(2 分)﹣2 的相反数是()A .2B .C.﹣D.﹣22.(2 分)在﹣4,,0,,3.14159,1. ,0.1010010001 有理数的个数有()A .2 个B .3 个C.4 个D.5 个3.(2 分)一条信息在一周内被转发了 2 180 000 次,将数据 2 180 000 用科学记数法表示为()5 6 6 5A .2.18×10B .2.18×10 C.21.8×10 D.21.8×104.(2 分)下面不是同类项的是()2 2A .﹣2 与5 B.﹣2a b 与a b2 2 2 2C.﹣x y 与6x y D.2m 与2n5.(2 分)下列方程中,解为x=2 的方程是()A .3x﹣2=3B .﹣x+6 =2x C.4﹣2(x﹣1)=1 D.x+1=06.(2 分)下列运用等式的性质,变形正确的是()A .若x2=6x,则x=6 B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bc D.若3x=2,则7.(2 分)下列调查中,不适宜采用全面调查(普查)的是()A .旅客上飞机前的安检B.学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D.了解一批灯泡的使用寿命8.(2 分)如图,∠AOB 的角平分线是()A .射线OB B .射线OE C.射线OD D.射线OC9.(2 分)按如图所示的运算程序,能使输出的结果为12 的是()A .x=﹣4,y=﹣2B .x=2,y=4 C.x=3,y=3 D.x=4,y=2 10.(2 分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A .甲公司B.乙公司C.甲乙公司一样快D.不能确定二、填空题(每小题 3 分,共18 分)11.(3 分)一个棱柱共有21 条棱,则这个棱柱共有个面.12.(3 分)用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体13.(3 分)如图,把一个面积为 1 的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.14.(3 分)从十边形的一个顶点画这个多边形的对角线,最多可画条.15.(3 分)6000 ″=′=°.16.(3 分)A、B 两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)0 5 7A 点位置19 ﹣1 bB 点位置 a 17 27A、B 两点相距9 个单位长度时,时间t 的值为.三、解答题(第17 小题6 分,第18、19 小题各8 分,共22 分)17.(6 分)计算(1)﹣10﹣(﹣16)+(﹣24)(2)﹣14﹣18.(8 分)如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD 交于E 点;(2)作射线BC;(3)取一点P,使点P 既在直线AB 上又在直线CD 上.2 2 2 2 219.(8 分)(1)化简:﹣a b+(3ab ﹣a b)﹣2(2ab ﹣a b)(2)先化简,再求值:(﹣3xy﹣7y)+[4 x﹣3(xy+y﹣2x)],其中xy=﹣2,x﹣y=3.四、解答题(每小题8 分,共16 分)20.(8 分)解方程(1)3x﹣2=﹣5x+6(2)﹣= 121.(8 分)在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?五、解答题(本题10 分)22.(10 分)一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400 元,某顾客参加活动购买甲、乙各一件,共付1000 元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?六、解答题(本题10 分)23.(10 分)观察下面一行数:2,﹣4,8,﹣16,32,﹣64,;①4,﹣2,10,﹣14,34,﹣62,;②1,﹣2,4,﹣8,16,﹣32,.③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c 表示(1)若这三个数分别在这三行数的第n 列,请用含n 的式子分别表示a、b、c 的值.a=,b=,c=;(2)若a 记为x,求a、b、c 这三个数的和(结果用含x 的式子表示并化简)七、解答题(本题12 分)24.(12 分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E 节目类型新闻体育动画娱乐戏曲人数12 30 m 54 9 请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m 的值为,统计图中n 的值为.(3)在统计图中, E 类所对应扇形圆心角的度数为.(4)该校共有2000 名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.八、解答题(本题12 分)25.(12 分)如图,数轴上两点A,B 所表示的数分别为﹣3,1.(1)写出线段AB 的中点M 所对应的数;(2)若点P 从B 出发以每秒 2 个单位长度的速度向左运动,运动时间为x 秒.①用含x 的代数式表示点P 所对应的数;②当BP=2AP 时,求x 值.2018-2019 学年辽宁省沈阳市沈河区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题 2 分,共20 分)1.(2 分)﹣2 的相反数是()A .2B .C.﹣D.﹣2【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2 的相反数是2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2 分)在﹣4,,0,,3.14159,1.,0.1010010001 有理数的个数有()A .2 个B .3 个C.4 个D.5 个【分析】有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.【解答】解:﹣4,,0,3.14159,1. ,是有理数,其它的是无理数.故选:D .【点评】本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.3.(2 分)一条信息在一周内被转发了 2 180 000 次,将数据 2 180 000 用科学记数法表示为()5 6 6 5A .2.18×10B .2.18×10 C.21.8×10 D.21.8×10【分析】根据科学记数法的形式选择即可.【解答】解:2 180 000=2.18×106,故选:B.【点评】本题考查了科学记数法,掌握科学记数法的形式a×10n 是解题的关键.4.(2 分)下面不是同类项的是()第6 页(共20 页)2 2A .﹣2 与5 B.﹣2a b 与a b2 2 2 2C.﹣x y 与6x y D.2m 与2n【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.【解答】解:A、﹣2 与5,是同类项,不合题意;2 2B、﹣2a b 与a b,是同类项,不合题意;2 2 2 2C、﹣x y 与6x y ,是同类项,不合题意;D 、2m 与2n,所含字母不同,不是同类项,故此选项正确.故选:D .【点评】此题主要考查了同类项,正确把握定义是解题关键.5.(2 分)下列方程中,解为x=2 的方程是()A .3x﹣2=3B .﹣x+6 =2x C.4﹣2(x﹣1)=1 D.x+1=0【分析】把x=2 代入选项中的方程进行一一验证.【解答】解:A、当x=2 时,左边=3×2﹣2=4≠右边,即x=2 不是该方程的解.故本选项错误;B、当x=2 时,左边=﹣2+6=4,右边=2×2=4,左边=右边,即x=2 是该方程的解.故本选项正确;C、当x=2 时,左边=4﹣2(2﹣1)=2≠右边,即x=2 不是该方程的解.故本选项错误;D 、x+1 不是方程.故本选项错误;故选:B.【点评】本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.(2 分)下列运用等式的性质,变形正确的是()A .若x2=6x,则x=6 B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bc D.若3x=2,则【分析】根据等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0 数(或字母),等式仍成立,可得答案.【解答】解:A、x=0 时,两边都除以x 无意义,故 A 错误;B、两边都除以2,得x=a﹣,故B 错误;C、两边都乘以c,得ac=bc,故C 正确;D 、两边都除以3,得x=,故D 错误;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0 数(或字母),等式仍成立.7.(2 分)下列调查中,不适宜采用全面调查(普查)的是()A .旅客上飞机前的安检B .学校招聘教师,对应聘人员面试C.了解全班同学期末考试的成绩情况D .了解一批灯泡的使用寿命【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:旅客上飞机前的安检适宜采用全面调查;学校招聘教师,对应聘人员面试适宜采用全面调查;了解全班同学期末考试的成绩情况适宜采用全面调查;了解一批灯泡的使用寿命适宜采用抽样调查;故选:D .【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(2 分)如图,∠AOB 的角平分线是()A .射线OB B .射线OE C.射线OD D.射线OC【分析】由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB 的角平分线是射线OE,此题得解.【解答】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB 的角平分线是射线OE.故选:B.【点评】本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.9.(2 分)按如图所示的运算程序,能使输出的结果为12 的是()A .x=﹣4,y=﹣2B .x=2,y=4 C.x=3,y=3 D.x=4,y=2【分析】把x 与y 的值代入计算即可做出判断.2【解答】解:当x=2,y=4 时,x +2y=4+8 =12,故选:B.【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.10.(2 分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A .甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013 年的销售收入约为50 万元,2017 年约为90 万元,则从2013~2017 年甲公司增长了90﹣50=40 万元;乙公司2013 年的销售收入约为50 万元,2017 年约为70 万元,则从2013~2017 年乙公司增长了70﹣50=20 万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题(每小题 3 分,共18 分)11.(3 分)一个棱柱共有21 条棱,则这个棱柱共有9 个面.【分析】根据棱柱的概念和定义,可知有21 条棱的棱柱是七棱柱.【解答】解:21÷3=7,∴一个棱柱共有21 条棱,那么它是七棱柱,∴这个棱柱共有9 个面.故答案为:9.【点评】本题主要考查了认识立体图形,解决问题的关键是掌握棱柱的结构特征.12.(3 分)用一个平面去截下列几何体,截面可能是圆的是②③⑤(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:②③⑤【点评】本题考查了截一个几何体:用一个平面去截一个几何体,截出的面叫做截面.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.13.(3 分)如图,把一个面积为 1 的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.【解答】解:=1﹣;=1﹣;故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.14.(3 分)从十边形的一个顶点画这个多边形的对角线,最多可画7 条.【分析】根据n 边形从一个顶点出发可引出(n﹣3)条对角线.进行计算即可.【解答】解:从十边形一个顶点画对角线能画10﹣3=7(条),故答案为:7.【点评】此题主要考查了多边形对角线,关键是掌握计算公式.15.(3 分)6000 ″=100 ′=°.【分析】一度等于60 分,一分等于60 秒,先将秒转化为分,再进一步将分转化为度.【解答】解:6000″÷60=100′,100′÷60=,即6000″=100′=;36″÷60=0.6′,15.6′÷60=0.26°,即12°15′36″=12.26°.【点评】度、分、秒的相互换算规律是:度是大单位,秒是小单位,从大化小就乘以进率,从小到大就除以进率.16.(3 分)A、B 两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如表:时间(秒)0 5 7A 点位置19 ﹣1 bB 点位置 a 17 27A、B 两点相距9 个单位长度时,时间t 的值为 2 或4 秒.【分析】根据表格中的数据分别求出A、B 两个动点运动的速度及方向,得到a、b 的值.A、B 两点相距9 个单位长度时,分两种情况进行讨论:①相遇前;②相遇后.分别利用行程问题的相等关系列出方程求解即可.【解答】解:由题意可得: A 点运动的速度为[19﹣(﹣1)] ÷(5﹣0)=4,方向向左,则b=19﹣4×7=﹣9;B 点运动的速度为(27﹣17)÷(7﹣5)=5,方向向右,则a=17﹣5×5=﹣8.A、B 两点相距9 个单位长度时,分两种情况:①相遇前,4t+5t=27﹣9,解得t=2;②相遇后,4t+5t=27+9 ,解得t=4.即A、B 两点相距9 个单位长度时,时间t 的值为 2 或4 秒.故答案是: 2 或4 秒.【点评】本题考查了一元一次方程的应用,数轴,解答本题的关键是表示出时间和位置的关系,注意分类讨论.三、解答题(第17 小题6 分,第18、19 小题各8 分,共22 分)17.(6 分)计算(1)﹣10﹣(﹣16)+(﹣24)(2)﹣14﹣【分析】(1)将减法转化为加法,再根据法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣10+16 ﹣24=﹣34+16=﹣18;(2)原式=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.(8 分)如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD 交于E 点;(2)作射线BC;(3)取一点P,使点P 既在直线AB 上又在直线CD 上.【分析】分别根据直线、射线、线段的定义作出图形即可.【解答】解:(1)如图所示:;(2)如图所示,(3)如图所示,.【点评】本题考查了直线、射线、线段,是基础题,主要是对语言文字转化为图形语言的能力的考查.2 2 2 2 219.(8 分)(1)化简:﹣a b+(3ab ﹣a b)﹣2(2ab ﹣a b)(2)先化简,再求值:(﹣3xy﹣7y)+[4 x﹣3(xy+y﹣2x)],其中xy=﹣2,x﹣y=3 .【分析】(1)原式去括号合并得到最简结果;(2)原式去括号合并得到最简结果,将xy 与x﹣y 的值代入计算即可求出值.2 2 2 2 2 2【解答】解:(1)原式=﹣ a b+3ab ﹣a b﹣4ab +2a b=﹣ab;(2)原式=﹣3xy﹣7y+[4 x﹣3xy﹣3y+6x]=﹣3xy﹣7y+4x﹣3xy﹣3y+6x=﹣6xy﹣10y+10x,当xy=﹣2,x﹣y=3 时,原式=﹣6xy﹣10y+10x=﹣6×(﹣2)﹣10×(﹣3)=42.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.四、解答题(每小题8 分,共16 分)20.(8 分)解方程(1)3x﹣2=﹣5x+6(2)﹣= 1【分析】(1)方程移项,合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x 系数化为1,即可求出解.【解答】解:(1)3x+5x=6+2 ,8x=8,x=1;(2)4(2x﹣1)﹣3(x﹣2)=12,8x﹣4﹣3x+6=12,8x﹣3x=12+4 ﹣6,5x=10,x=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(8 分)在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从图可得箱子的个数有8 个,如图:.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.五、解答题(本题10 分)22.(10 分)一元一次方程的应用:某商场开展优惠促销活动,将甲种商品六折岀售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1400 元,某顾客参加活动购买甲、乙各一件,共付1000 元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,请直接写出商场销售甲、乙两种商品各一件时是赢利还是亏损了?具体金额是多少?【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x)元,根据优惠后购买甲、乙各一件共需1000 元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为 a 元/件,乙商品的进价为 b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b 的一元一次方程,解之即可求出a、b 的值,再代入1000﹣a﹣b 中即可找出结论.【解答】解:(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400 ﹣x)元,根据题意得:0.6x+0.8(1400﹣x)=1000,解得:x=600,∴1400﹣x=800.答:甲商品原销售单价为600 元,乙商品的原销售单价为800 元.(2)设甲商品的进价为 a 元/件,乙商品的进价为 b 元/件,根据题意得:(1﹣25%)a=(1﹣40%)×600,(1+25%)b=(1﹣20%)×800,解得:a=480,b=512,∴1000﹣a﹣b=1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8 元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.六、解答题(本题10 分)23.(10 分)观察下面一行数:2,﹣4,8,﹣16,32,﹣64,;①4,﹣2,10,﹣14,34,﹣62,;②1,﹣2,4,﹣8,16,﹣32,.③如图,在上面的数据中,用一个长方形圈出同一列的三个数,这列的第一个数表示为a,其余各数分别用b,c 表示(1)若这三个数分别在这三行数的第n 列,请用含n 的式子分别表示a、b、c 的值.a=(﹣1)n+1×2n ,b=(﹣1)n+1×2n +2 ,c=(﹣1)n+1×2n﹣1 ;(2)若a 记为x,求a、b、c 这三个数的和(结果用含x 的式子表示并化简)【分析】(1)中第①题的数据的数值符合2n 规律,符合正负相间,可以利用(﹣1)n 来调节符号的正负性;第②题中的数据与第①题的相同位置的数据相比,相差2;第③题中的数据与第①题的相同位置的数据相比,缩小了一半,所以可以参照第①题的规律来表示第②题和第③题的规律;(2)中用x 表示a、b、c 的和,a=x,通过观察,可以发现b=x+2;c=,代入整理即可.【解答】解:(1)①中分解可知2=(﹣1)1+1×21;﹣4=(﹣1)2+1×22;8=(﹣1)3+1×23;﹣16=(﹣1)4+1×24;由此可以推导出①中第n 个数为(﹣1)n+1× 2n(n >0);②中观察可知:每个数是①中相应位置上的数+2,由此可以推导出②中第n 个数为(﹣n+1 n1)×2 +2(n>0);③中观察可知:每个数是①中相应位置上的数÷2,由此可以推导出③中第n 个数为(﹣1)n+1×2n÷2=(﹣1)n+1×2n﹣1(n>0);故a=(﹣1)n+1×2n;b=(﹣1)n+1×2n+2;c=(﹣1)n+1×2n﹣1;﹣1n+1 n n+1 n n+1n (2)∵a=x,a+b+c=(﹣1)×2 +(﹣1)×2 +2+(﹣1)×2 =x+x+2+ =【点评】本题需要注意的是利用(﹣1)的n 次方来调节数的正负性;在观察三行数的特征时,需要横向观察同一行的数字之间的联系,纵向观察不同行的数字之间的联系.七、解答题(本题12 分)24.(12 分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E 节目类型新闻体育动画娱乐戏曲人数12 30 m 54 9 请你根据以上的信息,回答下列问题:(1)被调查的学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m 的值为45 ,统计图中n 的值为36 .(3)在统计图中, E 类所对应扇形圆心角的度数为21.6°.(4)该校共有2000 名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【分析】(1)观察图表体育类型即可解决问题;(2)根据“总数= B 类型的人数÷ B 所占百分比”可得总数;用总数减去其他类型的人数,可得m 的值;根据百分比=所占人数/总人数可得n 的值;(3)根据圆心角度数=360°×所占百分比,计算即可;(4)用学生数乘以最喜爱新闻节目所占百分比可估计最喜爱新闻节目的学生数.【解答】解:(1)最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150 人,m=150﹣12﹣30﹣54﹣9=45,n%=× 100% =36%,即n=36,故答案为150,45,36.(3)E 类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000 ×=160 人.答:估计该校最喜爱新闻节目的学生数为160 人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.八、解答题(本题12 分)25.(12 分)如图,数轴上两点A,B 所表示的数分别为﹣3,1.(1)写出线段AB 的中点M 所对应的数;(2)若点P 从B 出发以每秒 2 个单位长度的速度向左运动,运动时间为x 秒.①用含x 的代数式表示点P 所对应的数;②当BP=2AP 时,求x 值.【分析】(1)根据中点的公式计算可得;(2)①根据两点间的距离公式求解可得;②分P 运动到A、B 之间和运动到BA 的延长线上两种情况,根据“BP=2AP”列出方程,解之可得.【解答】解:(1)线段AB 的中点M 所对应的数为=﹣1;(2)①点P 对应的数为1﹣2x;②若P 运动到A、B 之间,则1﹣(1﹣2x)=2[1 ﹣2x﹣(﹣3)] ,解得x=;若P 运动到BA 的延长线上时,则1﹣(1﹣2x)=2[﹣3﹣(1﹣2x)],解得x=4.综上,当BP=2AP 时,x=或x=4.【点评】本题主要考查数轴,掌握数轴上两点的距离公式:若点 A 表示a,点B 表示 b 时,AB=|x b﹣x a|.。
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √-1B. √3C. 2/3D. π2. 如果a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a 2 < b 2D. a / 2 > b / 23. 下列各式中,表示x与y成反比例关系的是()A. xy = 6B. x + y = 10C. x / y = 2D. x - y = 44. 在直角坐标系中,点P的坐标为(2,-3),则点P关于x轴的对称点坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列函数中,自变量x的取值范围正确的是()A. y = √(x - 2)B. y = x^2 - 1C. y = 1 / (x - 3)D. y = √(x + 5)6. 一个等腰三角形的底边长为8cm,腰长为6cm,那么这个三角形的周长是()A. 16cmB. 20cmC. 24cmD. 28cm7. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -38. 一个数的平方根是4,那么这个数是()A. 16B. 4C. -16D. -49. 下列图形中,是平行四边形的是()A. 等腰梯形B. 等腰三角形C. 长方形D. 等边三角形10. 下列代数式中,正确的是()A. a^2 + b^2 = (a + b)^2B. (a + b)^2 = a^2 + b^2 + 2abC. (a - b)^2 = a^2 - b^2 - 2abD. (a - b)^2 = a^2 + b^2 - 2ab二、填空题(每题2分,共20分)11. -3的相反数是______。
12. 若a = -2,则a^2 = ______。
13. 下列各数中,正数是______。
14. 下列各数中,无理数是______。
15. 下列各数中,整数是______。
辽宁省沈阳市七年级上学期期末数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·哈尔滨) ﹣7的倒数是()A . 7B . ﹣7C .D . ﹣2. (2分)(2018·肇庆模拟) 我国南海海域面积为3 500 000 km2 ,用科学记数法表示正确的是()A .B .C .D .3. (2分)计算的结果是()A . 1B . -1C . 4D . -4. (2分) (2015七上·罗山期中) 去括号正确的是()A . ﹣(2a+b﹣c)=2a+b﹣cB . ﹣2(a+b﹣3c)=﹣2a﹣2b+6cC . ﹣(﹣a﹣b+c)=﹣ab+cD . ﹣(a﹣b﹣c)=﹣a+b﹣c5. (2分) (2017七上·东城期末) 下列计算正确的是()A . x2+x2=x4B . x2+x3=2x5C . 3x-2x=1D . x2y-2x2y=-x2y6. (2分) (2017七上·梁平期中) 若是关于x的一元一次方程,则m的值为()A . ﹣2B . 2C . ±2D . 无法确定7. (2分) (2017七上·五莲期末) 下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为()A . 84B . 108C . 135D . 1528. (2分) |﹣2013|的值是()A .B .C . 2013D . ﹣20139. (2分)如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥ 轴,BC∥ 轴,反比例函数与的图像均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A . 2B . 4C . 6D . 810. (2分) (2018八上·天台期中) 如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A,B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A . 15海里B . 20海里C . 30海里D . 求不出来11. (2分) (2020七上·海淀期末) 某长方体的展开图中, (均为格点)的位置如图所示,一只蚂蚁从点出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到四点,则蚂蚁爬行距离最短的路线是()A .B .C .D .12. (2分)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x小时,则可列方程得()A . 5x=4(x-)B . 5x=4(x+)C . 5(x-)=4×D . 5(x+)=4×二、填空题 (共6题;共6分)13. (1分) (2020七上·乐清月考) 如果收入1000元表示为+1000元,则支出800元表示为________14. (1分)将多项式﹣2x+3x3﹣6+5x2按x降幂排列:________.15. (1分) (2017七上·昆明期中) 已知多项式x+2y-1的值是3,则多项式3-x-2y的值是________。
七年级上册沈阳数学期末试卷测试题(Word 版 含解析)一、选择题1.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1- 2.下列运算正确的是 A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-3.如图,给出下列说法:①∠B 和∠1是同位角;②∠1和∠3是对顶角;③ ∠2和∠4是内错角;④ ∠A 和∠BCD 是同旁内角. 其中说法正确的有( )A .0个B .1个C .2个D .3个4.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .5.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A.13B.15C.17D.196.12-的倒数是()A.B.C.12-D.127.下列各组代数式中,不是同类项的是()A.2与-5 B.-0.5xy2与3x2y C.-3t与200t D.ab2与-8b2a 8.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A.B.C.D.9.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定10.由n个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n的最小值为()A.10 B.11 C.12 D.1311.一个小菱形组成的装饰链断了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.3个B.4个C.5个D.6个12.一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.13.-3的相反数为()A.-3 B.3 C.0 D.不能确定14.下列计算正确的是( )A.2334a a a+=B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1 D.2222a b a b a b-=-15.下列说法中,正确的是()A.单项式232ab-的次数是2,系数为92-B.2341x y x-+-是三次三项式,常数项是1C.单项式a的系数是1,次数是0 D.单项式223x y-的系数是2-,次数是3二、填空题16.如图,将一张长方形的纸片沿折痕EF翻折,使点C、D分别落在点M、N的位置,且∠BFM=12∠EFM,则∠BFM的度数为_______17.已知:如图,直线AB、CD相交于点O,∠COE=90°,∠BOD∶∠BOC=1∶5,过点O 作OF⊥AB,则∠EOF的度数为__.18.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号)19.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.20.21°17′×5=_____.21.有理数a 、b 、c 在数轴上的位置如图:化简:|b ﹣c |+2|a +b |﹣|c ﹣a |=_____.22.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.23.点A 、B 、C 在直线l 上,若3BC AC =,则AC AB=__________. 24.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程; ③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).25.甲数x 的23与乙数y 的14差可以表示为_________ 三、解答题26.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 27.在一条直路上的A 、B 、C 、D 四个车站的位置如图所示(单位千米),如果小明家在A 站旁,他的同学小亮家在B 站旁,新华书店在D 站旁,一天小明乘车从A 站出发到D 站下车去新华书店购买一些课外阅读书籍,途径B 、C 两站,当小明到达C 站时发现自己所带钱不够购买自己所要的书籍.于是他乘车返回到B 站处下车向小亮借足了钱,然后乘车继续赶往D 站旁的新华书店.(1)求C 、D 两站的距离;(用含有a 、b 的代数式表示)(2)求这一天小明从A 站到D 站乘车路程.(用含有a 、b 的代数式表示)28.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形;(2)若30AOB ∠=︒,求出COD ∠的度数.29.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭30.如图1,已知数轴上A ,B 两点表示的数分别为-9和7.(1)AB =(2)点P 、点Q 分别从点A 、点B 出发同时向右运动,点P 的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P 与点Q 相遇?(3)如图2,线段AC 的长度为3个单位,线段BD 的长度为6个单位,线段AC 以每秒4个单位的速度向右运动,同时线段BD 以每秒2个单位的速度向左运动,设运动时间为t 秒①t 为何值时,点B 恰好在线段AC 的中点M 处.②t 为何值时,AC 的中点M 与BD 的中点N 距离2个单位.31.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P 和图形M ,点B 是图形M 上任意一点,我们把线段PB 长度的最小值叫做点P 与图形M 之间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点N 到该圆的距离等于0cm ;连接MN ,若点Q 为线段MN 中点,那么点Q 到该圆的距离等于0.5cm ,反过来,若点P 到已知点M 的距离等于1cm ,那么满足条件的所有点P 就构成了以点M 为圆心,1cm 为半径的圆.(初步运用)(1)如图2,若点P 到已知直线m 的距离等于1cm ,请画出满足条件的所有点P . (深入探究)(2)如图3,若点P 到已知线段的距离等于1cm ,请画出满足条件的所有点P . (3)如图4,若点P 到已知正方形的距离等于1cm ,请画出满足条件的所有点P .32.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
2017-2018学年辽宁省沈阳市沈河区七年级(上)期末数学试卷(考试时间:90分满分:120分)一、选择题(每小题2分,共20分)1.﹣2017的绝对值是()A.﹣2017B.2017C.1D.﹣12.下列四个几何体中,从正面看与左面看得到的形状图相同的几何体有()A.1个B.2个C.3个D.4个3.下列结论中,正确的是()A.0是最小的正数B.0是最大的负数C.0既是正数,又是负数D.0既不是正数,也不是负数4.下列方程中,解为x=2的方程是()A.x+2=0B.2+3x=82C.3x﹣1=2D.4﹣2x=15.地球的表面积约为510000000km,将510000000用科学记数法表示为()A.0.51×106.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)9B.5.1×108C.5.1×109D.51×1077.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩8.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 C.若x=y,则=B.若a=b,则ac=bcD.若=(c≠0),则a=b9.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3B.0C.6D.910.如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形二、填空题(每小题3分,共18分)11.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.12.下表列出了国外几个市与北京的时差(带正号的数表示问一时刻比北京时间早的点时数)城市时差/时纽约﹣13伦敦﹣8东京+1巴黎﹣7如果现在的东京时间是8:00,那么北京的时间是,伦敦的时间是,纽约的时间是.13.某种商品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为元.14.世界上大部分国家都使用摄氏(℃)温度,但美、英等国的天气预报仍然使用华氏(F)温度.两种计量之间有如下对应:a=1.8b+32(a表示华氏温度,b表示摄氏温度),那么摄氏2.5度相当于华氏度.15.如图,∠AOB是直角,∠AOC=40°,OD平分∠BOC,则∠AOD的度数为.16.按如图所示的程序计算,我们发现第二次输出的结果为24,那么x的值为.三.解答题(共82分)17.(6分)计算:(1)(﹣+)×(﹣24)(2)﹣3+2×(﹣3)﹣(﹣6)÷(﹣).18.(8分)如图,在平面内有A,B,C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B,C),连接线段AD;(3)数数看,此时图中线段的条数.2219.(8分)先化筒,再求值:(1)求2m﹣4m+1﹣22,其中m=﹣1;(2)已知(x﹣2)+|y+1|=0,求5xy﹣[2x y﹣(2x y﹣3xy)].20.(8分)解方程:(1)2(2x﹣3)﹣3x=3﹣3(x﹣1)(2)21.(8分)如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出4种与此不同的展开图.2222222.(10分)已知如图:在数轴上有A、B两点,点A表示的数为1,点B在A点的左边,且AB=2.(1)利用刻度尺补全数轴;(2)用补全的数轴上的点表示下列各数,并用”<”将这些数连接起来.,﹣3.5,0.5,﹣423.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解“,“C.了解一些”三个等级,并根据调查结果绘制了如下两幅不完整的统计图:(1)这次调查的市民人数为人,m=,n=.(2)请根据以上信息直接在答题卡中补全条形统计图;(3)求出达到“B.了解”的人数对应扇形圆心角的度数.24.(12分)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6==;(2)用含n的代数式表示第n个等式:an==;(3)a1+a2+a3+a4+a5+a6=(得出最简结果);(4)计算:a1+a2+…+an.25.(12分)已知数轴上点A、点B对应的数分别为﹣4、6.(1)A、B两点的距离是;(2)当AB=2BC时,求出数轴上点C表示的有理数;(3)一元一次方解应用题:点D以每秒4个单位长度的速度从点B出发沿数轴向左运动,点E以每秒3个单位长度的速度从点A出发沿数轴向右运动,点F从原点出发沿数轴运动,点D、点E、点F同时出发,t 秒后点D、点E相距1个单位长度,此时点D、点F重合,求出点F的速度及方向.。
辽宁省沈阳市七年级上学期数学期末考试试卷一、单选题(共6题;共12分)1. (2分)(2017七下•汇川期中)下列各组数中互为相反数的是( )A . - 2与"寸B . -2 与C . - 2 与- 2D . 2 与| -22. (2分)(2019七上•遵义月考)下列各组单项式中,为同类项的是( )1A . 3 a2 与 2a2B . a3 与 a2C . 3x 与 3xyD . -3 与 b3. (2分)(2019八上•湘桥期末)如图,△ABC 中,NA=50° ,点E 、F 在AB 、AC 上,沿EF 向内折叠AAEF , B . 90°C . 100cD . 120°4. (2分)如图,点A 位于点0的( )方向上C .南偏东65°姓名: 班级: 成绩:B .北偏西65°D.南偏西65°5.(2分)(2016七上•汉滨期中)某项工程由甲队单独做需18天完成,由乙队单独做只需甲队的一半时间完成.设两队合作需x天完成,则可得方程()1 1A . T8+ 9 =x1 1B . ( IS + 9 )X=11 1C . T8+ 36 =x1 1D . ( Ts + 36 ) X=16.(2分)王海的爸爸想用一笔钱买年利率为2. 4酰的5年期国库券,如果他想5年后本息和为2万元,现在应买这种国库券多少元?如果设应买这种国库券x元,那么可以列出方程()A . xX (1+2. 48%X5) =20 000B . 5xX (1+2.48%) =20 000C . xX (1+2. 48%) 5=20 000D . xX2. 48%X5=20 000二、填空题(共10题;共18分)7.(1分)(2018七上•开平月考)若|x=5,则x=,若产=9,则y=.8.(1分)(2017 •路北模拟)据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为.9.(5分)(2017八下•大庆期末)若曲%"+卜+)'-4 = ° ,则y-x=10.(5分)(2019七上•双城期末)若关于x的方程3x-7=2x+a的解与方程4x+3=7的解相同,则a的值为11.(1分)(2019七下•华荽期中)如图,直线AB, CD相交于点0, EO_LAB,垂足为点0,若NA0D=132° , 则/E0C 二° .12.(1分)(2020七上•建邺期末)用边长为10 cm的正方形,做了一套七巧板,拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为 cm.(2017 •徐州模拟)若N 。
2017-2018学年辽宁省沈阳市沈河区七年级(上)期末数学试卷
(考试时间:90分满分:120分)
一、选择题(每小题2分,共20分)
1.﹣2017的绝对值是()
A.﹣2017 B.2017 C.1 D.﹣1
2.下列四个几何体中,从正面看与左面看得到的形状图相同的几何体有()
A.1个B.2个C.3个D.4个
3.下列结论中,正确的是()
A.0是最小的正数
B.0是最大的负数
C.0既是正数,又是负数
D.0既不是正数,也不是负数
4.下列方程中,解为x=2的方程是()
A.x+2=0 B.2+3x=8 C.3x﹣1=2 D.4﹣2x=1
5.地球的表面积约为510000000km2,将510000000用科学记数法表示为()
A.0.51×109B.5.1×108C.5.1×109D.51×107
6.下列现象:
(1)用两个钉子就可以把木条固定在墙上.
(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.
(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.
(4)把弯曲的公路改直,就能缩短路程.
其中能用“两点确定一条直线”来解释的现象有()
A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)
7.下列调查最适合于抽样调查的是()
A.某校要对七年级学生的身高进行调查
B.卖早餐的师傅想了解一锅茶鸡蛋的咸度
C.班主任了解每位学生的家庭情况
D.了解九年级一班全体学生立定跳远的成绩
8.下列运用等式的性质,变形不正确的是()
A.若x=y,则x+5=y+5 B.若a=b,则ac=bc
C.若x=y,则=D.若=(c≠0),则a=b
9.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()
A.﹣3 B.0 C.6 D.9
10.如果过一个多边形的一个顶点的对角线有6条,则该多边形是()
A.九边形B.八边形C.七边形D.六边形
二、填空题(每小题3分,共18分)
11.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.
12.下表列出了国外几个市与北京的时差(带正号的数表示问一时刻比北京时间早的点时数)
如果现在的东京时间是8:00,那么北京的时间是,伦敦的时间是,纽约的时间是.13.某种商品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为元.
14.世界上大部分国家都使用摄氏(℃)温度,但美、英等国的天气预报仍然使用华氏(F)温度.两种计量之间有如下对应:a=1.8b+32(a表示华氏温度,b表示摄氏温度),那么摄氏2.5度相当于华氏度.
15.如图,∠AOB是直角,∠AOC=40°,OD平分∠BOC,则∠AOD的度数为.
16.按如图所示的程序计算,我们发现第二次输出的结果为24,那么x的值为.
三.解答题(共82分)
17.(6分)计算:
(1)(﹣+)×(﹣24)(2)﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).
18.(8分)如图,在平面内有A,B,C三点.
(1)画直线AC,线段BC,射线AB;
(2)在线段BC上任取一点D(不同于B,C),连接线段AD;
(3)数数看,此时图中线段的条数.
19.(8分)先化筒,再求值:
(1)求2m2﹣4m+1﹣2,其中m=﹣1;
(2)已知(x﹣2)2+|y+1|=0,求5xy2﹣[2x2y﹣(2x2y﹣3xy2)].
20.(8分)解方程:
(1)2(2x﹣3)﹣3x=3﹣3(x﹣1)(2)
21.(8分)如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出4种与此不同的展开图.
22.(10分)已知如图:在数轴上有A、B两点,点A表示的数为1,点B在A点的左边,且AB=2.(1)利用刻度尺补全数轴;
(2)用补全的数轴上的点表示下列各数,并用”<”将这些数连接起来.
,﹣3.5,0.5,﹣4
23.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解“,“C.了解一些”三个等级,并根据调查结果绘制了如下两幅不完整的统计图:
(1)这次调查的市民人数为人,m=,n=.
(2)请根据以上信息直接在答题卡中补全条形统计图;
(3)求出达到“B.了解”的人数对应扇形圆心角的度数.
24.(12分)观察下列等式:
第一个等式:
第二个等式:
第三个等式:
第四个等式:
按上述规律,回答下列问题:
(1)请写出第六个等式:a6==;
(2)用含n的代数式表示第n个等式:a n==;
(3)a1+a2+a3+a4+a5+a6=(得出最简结果);
(4)计算:a1+a2+…+a n.
25.(12分)已知数轴上点A、点B对应的数分别为﹣4、6.
(1)A、B两点的距离是;
(2)当AB=2BC时,求出数轴上点C表示的有理数;
(3)一元一次方解应用题:点D以每秒4个单位长度的速度从点B出发沿数轴向左运动,点E以每秒3个单位长度的速度从点A出发沿数轴向右运动,点F从原点出发沿数轴运动,点D、点E、点F同时出发,t 秒后点D、点E相距1个单位长度,此时点D、点F重合,求出点F的速度及方向.。