初三数学-圆综合测试卷1 最新
- 格式:doc
- 大小:415.81 KB
- 文档页数:4
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。
A. 圆的直径是半径的2倍B. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的周长是半径的2π倍答案:D2. 圆的面积公式为()。
A. S = πrB. S = πr²C. S = πdD. S = πd²答案:B3. 圆的周长公式为()。
A. C = 2πrB. C = 2πdC. C = πrD. C = πd答案:A4. 圆心角为60°的扇形面积是()。
A. πr²/6B. πr²/3C. πr²/2D. πr²答案:A5. 一个圆的半径为3cm,其面积为()。
A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C6. 圆的直径增加1倍,其面积增加()。
A. 1倍B. 2倍C. 4倍D. 8倍答案:C7. 圆的半径增加1倍,其周长增加()。
A. 1倍B. 2倍C. 3倍D. 4倍答案:B8. 一个圆的周长为12.56cm,其直径为()。
A. 2cmB. 4cmC. 6cmD. 8cm答案:B9. 圆的半径为4cm,其直径为()。
A. 2cmB. 4cmC. 8cmD. 16cm答案:C10. 圆的半径为2cm,其周长为()。
A. 4π cmB. 8π cmC. 12π cmD. 16π cm答案:B二、填空题(每题3分,共30分)1. 圆的周长公式为______。
答案:C = 2πr2. 圆的面积公式为______。
答案:S = πr²3. 圆的直径是半径的______倍。
答案:24. 圆的周长是直径的______倍。
答案:π5. 圆的面积是半径的平方乘以______。
答案:π6. 圆心角为90°的扇形面积是圆面积的______。
答案:1/47. 圆心角为180°的扇形面积是圆面积的______。
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。
如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。
2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。
3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。
九年级圆 几何综合检测题(WORD 版含答案)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.2.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可.【详解】解:(1)如图①,连接OE,∵CE切⊙O于E,∴∠OEC=90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关3.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.4.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣433时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin603OB ON ==, 4310AO ∴=-, 43123AP ∴=-, 432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。
初三圆测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,圆的周长为()。
A. 2πrB. πrC. 2rD. πr²2. 圆的直径为d,圆的面积为()。
A. πd²/4B. πd²C. πr²D. πr²/23. 点P在圆O的内部,则点P到圆心O的距离()。
A. 大于半径B. 等于半径C. 小于半径D. 不确定4. 圆的切线与过切点的半径垂直,切线的长度等于()。
A. 半径B. 直径C. 半径的一半D. 无法确定5. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。
A. 相离B. 相切C. 相交D. 内切6. 圆的内接四边形的对角互补,即()。
A. 对角和为180°B. 对角和为90°C. 对角和为360°D. 对角差为180°7. 圆的外接圆的半径等于()。
A. 边长B. 对角线的一半C. 对角线D. 无法确定8. 圆的内切圆的半径等于()。
A. 边长的一半B. 对角线的一半C. 对边之和的一半D. 无法确定9. 圆的弧长公式为()。
A. L = 2πrθ/360B. L = πrθC. L = rθD. L = 2πr10. 圆的扇形面积公式为()。
A. S = 1/2r²θB. S = r²θC. S = 1/2LD. S = 1/2rL二、填空题(每题2分,共20分)11. 圆的周长公式为C = ____________。
12. 若圆的半径为4,则圆的面积为___________。
13. 圆的切线与半径的关系是___________。
14. 圆的内接正六边形的边长等于___________。
15. 圆的外接正三角形的边长等于___________。
16. 圆的内切圆的半径等于圆的内接正六边形的边长的___________。
17. 圆的弧长公式中θ表示的是___________。
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²2. 圆的周长公式为()A. 2πrB. πrC. 2πr²D. πr²3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的切线垂直于()A. 半径B. 直径C. 弦D. 切点5. 圆的内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行6. 圆的外切四边形的对角线()A. 相等B. 互补C. 垂直D. 平行7. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合8. 圆的弦中,最长的弦是()A. 直径B. 半径C. 切线D. 弦9. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍10. 圆的半径减少1倍,面积减少()A. 1倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)1. 圆的周长公式为C=2πr,其中C表示______,r表示______。
2. 圆的面积公式为A=πr²,其中A表示______,r表示______。
3. 直径是圆的两个点之间的最长距离,它的计算公式为d=______。
4. 圆的切线与半径的关系是______。
5. 圆的内接四边形的对角线具有______的性质。
6. 圆的外切四边形的对角线具有______的性质。
7. 圆的切线与半径垂直,即切线与半径的夹角为______度。
8. 圆的弦中,直径是______的弦。
9. 圆的半径增加1倍,面积增加到原来的______倍。
10. 圆的半径减少1倍,面积减少到原来的______倍。
三、解答题(每题20分,共40分)1. 已知圆的半径为5cm,求该圆的周长和面积。
2. 已知圆的周长为31.4cm,求该圆的半径,并计算其面积。
答案:一、选择题1-5:A A B A B6-10:A B A A D二、填空题1. 周长,半径2. 面积,半径3. 2r4. 垂直5. 互补6. 垂直7. 908. 最长9. 410. 1/4三、解答题1. 周长:C=2πr=2×3.14×5=31.4cm;面积:A=πr²=3.14×5²=78.5cm²。
初三数学圆试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为5,则圆的面积是()A. 25πB. 50πC. 25D. 50答案:B2. 圆的直径是10,那么它的半径是()A. 5B. 10C. 15D. 20答案:A3. 圆周率π的近似值是()A. 3.14B. 3.14159C. 2.718D. 3.1416答案:A4. 一个圆的周长是62.8厘米,那么它的直径是()A. 20厘米B. 10厘米C. 5厘米D. 2厘米答案:A5. 圆的内接四边形的对角互补,那么这个四边形是()A. 矩形B. 菱形C. 梯形D. 任意四边形答案:A6. 一个圆的半径增加3倍,那么它的面积增加()A. 3倍B. 6倍C. 9倍D. 12倍答案:C7. 圆的周长公式是()A. C=2πrB. C=πdC. C=πrD. C=2d答案:A8. 圆的面积公式是()A. S=πr²B. S=2πrC. S=πdD. S=2πr²答案:A9. 圆的直径增加2倍,那么它的周长增加()A. 2倍B. 4倍C. 3倍D. 6倍答案:A10. 圆的半径是4,那么它的直径是()A. 8B. 2C. 4D. 16答案:A二、填空题(每题4分,共20分)1. 圆的半径为7,则它的周长是______。
答案:14π 或 442. 圆的周长为31.4,则它的半径是______。
答案:53. 圆的直径为6,则它的面积是______。
答案:9π 或 28.264. 圆的面积为50π,则它的半径是______。
答案:5√2 或 7.075. 圆的周长为44厘米,则它的直径是______。
答案:22厘米三、解答题(每题10分,共50分)1. 已知圆的半径为8,求圆的面积和周长。
答案:面积为64π,周长为16π。
2. 一个圆的直径是12厘米,求它的半径和面积。
答案:半径为6厘米,面积为36π平方厘米。
3. 一个圆的周长是100π厘米,求它的半径。
九年级数学圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。
(1)求这条抛物线的解析式; (2)求点E 的坐标;(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由【答案】(1)y=x 2+2x-8(2)(-1,-72)(3)(-8,40),(-154,-1316),(-174,-2516) 【解析】分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,从而求出点E 的坐标;(3)设点P (a , a 2+2a -8), 则228,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-(2)由(1)可得:228y x x =+-,当0y =时,124,2x x =-=;∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,则116322AG AB ==⨯= ,设,则, 在Rt AGE ∆中,,在中,()222218CE EF CF a =+=+-,∵AE CE = ,∴()22918a a +=+- ,解得:72a =, ∴712E ⎛⎫-- ⎪⎝⎭,; (3)设点()2,28a a a P +-,则228,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,PQ COBQ OB =,即228822a a a +-=-, 解得:10a =(舍去);22a =(舍去);38a =- ,∴()18,40P - ;b.当PBQ ∆∽BCO ∆时,PQ BOBQ CO =,即228228a a a +-=-, 解得:12a =(舍去),2154a =-;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.2.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E. (1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长; (3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)485. 【解析】试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解; (3)根据相似三角形的面积比等于相似比的平方可求解. 试题解析:(1)如解图,连接OB , ∵CD 为⊙O 的直径,∴∠CBD =∠CBO +∠OBD =90°, ∵AB 是⊙O 的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.4.已知:图1 图2 图3 (1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC =(2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值.(3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值.【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】 【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BNPC BP=,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案.(1)证明:∵2,1,4PB BN BC ===, ∴24,4PB BN BC =⋅=, ∴2PB BN BC =⋅,∴BN BPBP BC =, ∵B B ∠=∠,∴BPN BCP ∆∆∽, ∴12PN BN PC BP ==, ∴12PN PC =; (2)解:如图,在BC 上取一点G ,使得BG=1,∵242,212PB BC BG PB ====, ∴,PB BCPBG PBC BG PB =∠=∠, ∴PBG CBP ∆∆∽, ∴12PG BG PC PB ==, ∴12PG PC =, ∴12PD PC DP PG +=+; ∵DP PG DG +≥, ∴当D 、P 、G 共线时,12PD PC +的值最小, ∴最小值为:22435DG =+=;(3)如图,在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理,可证12PG PC=,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=23,CF=2,在Rt△GDF中,DG=22(23)537+=,∴12PD PC PD PG DG -=-≤,当点P在DG的延长线上时,12PD PC-的值最大,∴最大值为:37DG=.【点睛】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.5.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大6.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(370【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN)×FN=9,∴FN=2,∴DM =2,DH =4, ∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC ,∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC ,∴△GEH ∽△CHD ,∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE =70∴BC =70【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.7.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE ,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.8.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE∆绕边AB的中点(G G点也是DE的中点),按顺时针方向旋转180︒到△1C DE的位置.(1)求1C点的坐标;(2)求经过三点O、A、1C的抛物线的解析式;(3)如图③,G是以AB为直径的圆,过B点作G的切线与x轴相交于点F,求切线BF的解析式;(4)抛物线上是否存在一点M,使得:16:3AMF OABS S∆∆=.若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)13)C;(2)2323y x x=;(3)323y x=;(4)128383,M M⎛⎛-⎝⎭⎝⎭.【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F,B的坐标即可求出解析式.(4)当M在x轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE∆绕边AB的中点G按顺时针方向旋转180︒到△1C DE,则有,四边形'OAC B是菱形,所以1C的横坐标为3,根据等边CDE∆的边长是2,利用等边三角形的性质可得13)C;(2)抛物线过原点(0,0)O,设抛物线解析式为2y ax bx=+,把(2,0)A,3)C'代入,得420933a ba b+=⎧⎪⎨+=⎪⎩解得33a=,33b=-∴抛物线解析式为233y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=, (2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得k =b =∴直线BF 的解析式为33y x =+;(4)①当M 在x 轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y ,当12x =-时,2(2)(2)y =--=1M ∴,2(M -;②当M 在x 轴下方时,不存在,设点2()M x x ,211:[4)]:[216:322AMF OAB S S ∆∆=-⨯⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为1M ,2(M -. 【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.9.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD===则点D到⊙O1-,即直线:l y b=+上的点到⊙O的最小值为1-要使直线:3l y x b=+上存在点A与点B是⊙O的一对“倍点”18-≤解得:b≤b-≤≤;(3)由(2)知,428BQ≤≤依题意,需分20,01,1,2m m m m-≤<≤≤><-四种情况讨论:①当20m-≤<时,顶点(1,1)N m+到⊙O14<,此时顶点N不符题意②当01m≤≤时,顶点(,1)M m到⊙O14<,此时顶点M不符题意③当1m,如图2,正方形MNST处于1号正方形位置时则顶点S和T的坐标为(1,0),(,0)S m T m+此时,点T到⊙O的最小值为1m-,最大值为1m+;点N到⊙O的最小值为11则1418m+≥⎧≤,解得:31m≤≤当正方形MNST处于2号正方形位置时则顶点S和T的坐标为(1,2),(,2)S m T m+此时,点M到⊙O1-1;点S到⊙O的最小11则1418≥≤,解得:1m≤≤或1m≤≤-故当1m时,m的取值范围为31m≤≤④当2m<-时,正方形MNST处于3号正方形位置时则顶点S和T的坐标为(1,0),(,0)S m T m+此时,点S到⊙O的最小值为2m--,最大值为m-;点M到⊙O的最小值为11则224118mm-≥⎧⎪⎨+-≤⎪⎩,解得:454m-≤≤-当正方形MNST处于4号正方形位置时则顶点S和T的坐标为(1,2),(,2)S m T m+此时,点N到⊙O的最小值为22(1)11m++-,最大值为22(1)11m+++;点T到⊙O的最小值为2221m+-,最大值为2221m++则2222(1)114218mm⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m-≤≤--或22177m-≤≤(舍去)故当2m<-时,m的取值范围为774m-≤≤-综上,m的取值范围为3771m≤≤-或774m-≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.10.如图,平行四边形ABCD中,AB=5,BC=8,cosB=45,点E是BC边上的动点,以C为圆心,CE长为半径作圆C,交AC于F,连接AE,EF.(1)求AC的长;(2)当AE与圆C相切时,求弦EF的长;(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.【答案】(1)AC=5;(2)4105EF=;(3)03CE≤<或58CE<≤.【解析】【分析】(1)过A作AG⊥BC于点G,由cos45B=,得到BG=4,AG=3,然后由勾股定理即可求出AC的长度;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.【详解】解:(1)过A作AG⊥BC于点G,如图:在Rt△ABG中,AB=5,4 cos5BGBAB==,∴BG=4,∴AG=3,∴844CG=-=,∴点G是BC的中点,在Rt△ACG中,22345AC=+=;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:∴CE=CF=4,∵AB=AC=5,∴∠B=∠ACB,∴4 cos cos5CHB ACBCF=∠==,∴CH=3.2,在Rt△CFH中,由勾股定理,得FH=2.4,∴EH=0.8,在Rt△EFH中,由勾股定理,得224100.8 2.45EF=+=;(3)根据题意,圆C与线段AD没有公共点时,可分为以下两种情况:①当圆C与AD相离时,则CE<AE,∴半径CE的取值范围是:03CE≤<;②当CE>CA时,点E在线段BC上,∴半径CE的取值范围是:58CE<≤;综合上述,半径CE的取值范围是:03CE≤<或58CE<≤.【点睛】本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.。
一、选择题(每题5分,共25分)1. 下列图形中,属于圆的是()A. 正方形B. 等边三角形C. 圆形D. 矩形2. 圆的半径为5cm,那么它的直径是()A. 5cmB. 10cmC. 15cmD. 20cm3. 已知圆的周长为30πcm,那么它的半径是()A. 5cmB. 10cmC. 15cmD. 20cm4. 在圆中,弦长为8cm,半径为10cm,那么该弦所对的圆心角是()A. 30°B. 45°C. 60°D. 90°5. 圆的面积公式为S=πr²,其中r表示()A. 圆的直径B. 圆的半径C. 圆的周长D. 圆的面积6. 在圆中,若圆心角为60°,那么该圆心角所对的弧长与半径之比是()A. 1:2B. 1:3C. 1:4D. 1:57. 已知圆的直径为8cm,那么它的周长是()A. 16πcmB. 24πcmC. 32πcmD. 40πcm8. 在圆中,若圆心角为90°,那么该圆心角所对的弧长与半径之比是()A. 1:2B. 1:3C. 1:4D. 1:59. 圆的面积公式为S=πr²,其中π表示()A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积10. 在圆中,若圆心角为120°,那么该圆心角所对的弧长与半径之比是()A. 1:2B. 1:3C. 1:4D. 1:5二、填空题(每题5分,共25分)1. 圆的半径为r,那么它的直径是______。
2. 圆的周长公式为C=______。
3. 圆的面积公式为S=______。
4. 在圆中,若圆心角为90°,那么该圆心角所对的弧长与半径之比是______。
5. 圆的直径为d,那么它的周长是______。
三、解答题(每题10分,共30分)1. 已知圆的半径为6cm,求它的周长和面积。
2. 已知圆的周长为25.12cm,求它的半径和面积。
3. 已知圆的面积为113.04cm²,求它的半径和周长。
中考数学总复习《圆的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定2.如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°3.下列命题:①三点确定一个圆;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④等弧所对的圆心角相等;其中真命题的个数是()A.0B.1C.2D.34.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60B.60πC.65D.65π5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.3π2B.4π3C.4D.2+ 3π26.下列命题正确的个数有()①长度相等的弧叫做等弧;②三点确定一个圆;③平分弦的直径垂直于弦;④弧相等,则弧所对的圆心角相等.A.1B.2C.3D.47.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2 πcm2C.6πcm2D.3πcm28.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若⊙ACE=25°,则⊙D的度数是()A.50°B.55°C.60°D.65°9.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E 为弧CD上一点,且OE⊙CD,垂足为F,OF=300√3米,则这段弯路的长度为A.200π米B.100π米C.400π米D.300π米10.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=2 ,则⊙AED的度数是()A.30°B.60°C.45°D.36°11.如图,AB是⊙O的直径,C,D是⊙O上的点,⊙CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A.√32B.12C.√33D.√312.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若⊙BOD=⊙BCD,则BD̂的长为()A.πB.32πC.2πD.3π二、填空题(共6题;共7分)13.如图,△ABC中AB=2,将△ABC绕点A逆时针旋转60°得到△AB1C1,AB1恰好经过点C,则阴影部分的面积为.14.如图,Rt⊙ABC中⊙C=90°,⊙A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.15.如图所示一张圆形光盘,已知光盘内直径为2cm,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,则另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的外直径是cm,该光盘的面积是cm2.16.如图,⊙O是△ABC的外接圆OB=√13,BC=4则tanA的值为.R,则AC 17.已知半径为R的半圆O,过直径AB上一点C,作CD⊙AB交半圆于点D,且CD=√32的长为18.如图,在矩形ABCD中AB=2,BC=4点E为BC上一动点,过点B作AE的垂线交AE于点F,连接DF则DF的最小值是.三、综合题(共6题;共60分)19.如图,在△ABC中以△ABC的边AB为直径作⊙O,交AC于点D,DE是⊙O的切线,且DE⊥BC 垂足为点E.(1)求证:AB=BC;(2)若DE=3,CE=6,求直径AB长.20.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若⊙BAD=80°,求⊙DAC的度数;(2)如果AD=6,AB=8,求AC的长.21.如图,AB为⊙O的直径,点C是⊙O上的一点,AB=8cm,⊙BAC=30°,点D是弦AC上的一点.(1)若OD⊙AC,求OD长;(2)若CD=2OD,判断△ADO形状,并说明理由.22.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan⊙BAC的值.23.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是弧BC的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE(2)若BD=6,CE=8求⊙O的半径.24.如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作EF垂直于直线AC,垂足为F,交AB的延长线于点E.(1)求证: EF是⊙O的切线;(2)若AF=6,EF=8,求⊙O的半径.参考答案1.【答案】C 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】A 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】B 12.【答案】C 13.【答案】23π14.【答案】√3≤OA ≤43√3 15.【答案】10;24π 16.【答案】2317.【答案】12R 或32R 18.【答案】√17−119.【答案】(1)证明:连接OD .∵DE 是⊙O 的切线 ∴OD ⊥DE ∵DE ⊥BC ∴OD ∥BC ∴∠ODA =∠C又∵OD=OA∴∠ODA=∠OAD ∴∠OAD=∠C∴AB=BC(2)解:连接BD ∵AB为直径∴∠BDA=90°∴∠BDC=90°∴△DEB∼△CED∴DEBE=CEDE∴3BE=63∴BE=3 2∴BC=15 2∴AB=15 220.【答案】(1)解:如图,连接OC∵DC切⊙O于C∴OC⊙CF∴⊙ADC=⊙OCD=90°∴AD //OC∴⊙DAC=⊙OCA∵OA=OC∴⊙OAC=⊙OCA∴⊙DAC=⊙OAC∵⊙BAD=80°∴⊙DAC=12⊙BAD=12×80°=40°(2)解:连接BC.∵AB是直径∴⊙ACB=90°=⊙ADC ∵⊙DAC=⊙BAC∴⊙ADC⊙⊙ACB∴ACAB=ADAC∵AD=6,AB=8∴AC8=6AC∴AC=4 √3.21.【答案】(1)∵AB为⊙O的直径∴∠ACB=90°∵AB=8cm,⊙BAC=30°∴BC=4∵OD⊙AC∴OD//BC∵OA=OB∴OD=12BC=2(2)△ADO是等腰三角形.理由如下:如图,过O作OQ⊥AC于Q,连接OC,∵AB=8,∠BAC=30°∴AC=AB·cos30°=8×√32=4√3∴CQ=AQ=2√3∴OQ=12OA=2设OD=x,则CD=2OD=2x∴DQ=2x−2√3由勾股定理可得:x2=(2x−2√3)2+22∴(√3x−4)2=0∴x1=x2=4√3 3∴AD=4√3−2×4√33=4√33=OD∴△ADO是等腰三角形.22.【答案】(1)证明:连接OD∵OD=OB∴⊙ODB=⊙OBD.∵AB是直径∴⊙ADB=90°∴⊙CDB=90°.∵E为BC的中点∴DE=BE∴⊙EDB=⊙EBD∴⊙ODB+⊙EDB=⊙OBD+⊙EBD 即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线∴AB⊙BC∴⊙EBO =90°∴⊙ODE =90°∴DE 是⊙O 的切线(2)解:连接AE∵S 2=5S 1,E 为BC 的中点∴S ⊙ACE =3S 1∴S ⊙ADE =2S 1∴AD =2DC∵⊙CBO =90°,⊙CDB =90° ∴⊙BDC⊙⊙ADB∴AD BD =DB DC∴DB 2=AD •DC ,即 DB =√2DC∴DB AD =√2DC 2DC =√22∴tan⊙BAC = DB AD =√2223.【答案】(1)解: ∵AB =AC AB ⏜=AC ⏜ ∵ 点 D 是 BC ⃗⃗⃗⃗⃗ 的中点∴BD ⏜=CD ⏜∴AB ⏜+BD ⏜=AC ⏜+CD ⏜∴ABD ⏜=ACD ⏜∴∠ACD =∠ABD =90°在 △ACF △ABE 中{∠A =∠A AB =AC ∠ABE =∠ACF∴△ACF ≌△ABE(ASA)∴CF =BE又 ∵BD ⏜=CD ⏜∴BD =CD∴CF −CD =BE −BD ,即 DF =DE (2)解:连接 AD由(1)知 ∠ACD =90°∴AD 是 ⊙O 的直径∴∠DCE =90°又 ∵CD =BD =6在 Rt △DCE 中令 AB =AC =x ,在 Rt △ABE 中由 AB 2+BE 2=AE 2 ,得 x 2+(6+10)2=(x +8)2 解得 x =12 ,即 AC =12在 Rt △ACD 中∴⊙O 的半径为 12AD =3√5 24.【答案】(1)证明:连接OD .∵EF⊙AF∴⊙F =90°.∵D 是 BC⌢ 的中点,∴BD ⌢=CD ⌢ . ∴⊙EOD =⊙DOC = 12⊙BOC ∵⊙A = 12⊙BOC ,∴⊙A =⊙EOD ∴OD⊙AF .∴⊙EDO =⊙F =90°.∴OD⊙EF∴EF 是⊙O 的切线;(2)解:在Rt⊙AFE 中∵AF =6,EF =8 ∴AE =√AF 2+EF 2 = √62+82 =10 设⊙O 半径为r ,∴EO =10﹣r . ∵⊙A =⊙EOD ,⊙E =⊙E∴⊙EOD⊙⊙EAF ,∴OD AF = OE EA ∴r 6=10−r 10 .∴r = 154 ,即⊙O 的半径为 154 .。
初三圆试题及答案数学初三数学圆的试题及答案如下:1. 已知圆的半径为5,求圆的面积。
答案:圆的面积公式为A=πr²,将半径r=5代入公式,得到A=π×5²=25π。
2. 若点A(3,4)在圆x²+y²=25内,则该圆的直径是多少?答案:点A(3,4)在圆x²+y²=25内,说明该点到圆心的距离小于半径。
圆的半径为5,因此直径为2×5=10。
3. 已知圆的直径为10,求该圆的周长。
答案:圆的周长公式为C=πd,将直径d=10代入公式,得到C=π×10=10π。
4. 已知圆的周长为6π,求该圆的半径。
答案:圆的周长公式为C=2πr,将周长C=6π代入公式,得到6π=2πr,解得r=3。
5. 已知圆的半径为4,求该圆的直径。
答案:圆的直径为半径的2倍,因此直径d=2×4=8。
6. 已知圆的直径为12,求该圆的面积。
答案:圆的半径为直径的一半,即r=12÷2=6。
将半径代入面积公式A=πr²,得到A=π×6²=36π。
7. 若点B(-2,-3)在圆x²+y²=16外,则该圆的半径是多少?答案:点B(-2,-3)在圆x²+y²=16外,说明该点到圆心的距离大于半径。
圆的半径为4,因此该点到圆心的距离大于4。
8. 已知圆的半径为5,求该圆的直径。
答案:圆的直径为半径的2倍,因此直径d=2×5=10。
9. 已知圆的周长为8π,求该圆的半径。
答案:圆的周长公式为C=2πr,将周长C=8π代入公式,得到8π=2πr,解得r=4。
10. 已知圆的直径为8,求该圆的面积。
答案:圆的半径为直径的一半,即r=8÷2=4。
将半径代入面积公式A=πr²,得到A=π×4²=16π。
以上就是初三数学圆的试题及答案,涵盖了圆的面积、周长、半径和直径等基本概念和计算方法。
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
初三数学圆的试题及答案一、选择题(每题3分,共30分)1. 圆的周长公式是()。
A. C = 2πrB. C = πdC. C = 2πdD. C = πr2. 圆的面积公式是()。
A. S = πr^2B. S = 2πrC. S = πd^2D. S = 2πd3. 圆的直径是半径的()倍。
A. 2B. πC. 1/2D. 1/π4. 圆的半径为5cm,那么它的直径是()cm。
A. 10B. 5C. 15D. 255. 一个圆的周长是62.8cm,那么它的直径是()cm。
A. 10C. 30D. 406. 圆的半径增加一倍,面积增加()倍。
A. 2B. 4C. 8D. 167. 圆的周长和直径的比值是()。
A. πB. 2πC. 1/πD. 28. 圆的面积和半径的比值是()。
A. πB. 2πC. πrD. 2πr9. 圆的周长和面积的比值是()。
A. 1/rB. 2/rC. 1/πrD. 2/πr10. 圆的直径和面积的比值是()。
A. 1/πrB. 2/πrD. 2/r二、填空题(每题4分,共20分)1. 圆的周长公式是 C = ________。
2. 圆的面积公式是 S = ________。
3. 圆的直径是半径的 ________ 倍。
4. 圆的半径为4cm,那么它的周长是 ________ cm。
5. 圆的直径为12cm,那么它的面积是 ________ cm²。
三、解答题(每题10分,共50分)1. 已知一个圆的半径为7cm,求该圆的周长和面积。
2. 一个圆的直径是14cm,求它的周长和面积。
3. 一个圆的周长是44cm,求它的半径和面积。
4. 一个圆的面积是78.5cm²,求它的半径和直径。
5. 一个圆的周长比它的直径多20cm,求这个圆的半径。
答案:一、选择题1. A2. A3. A4. A5. B6. B7. A8. A9. C10. A二、填空题2. πr²3. 24. 25.125. 113.04三、解答题1. 周长:C = 2πr = 2 × 3.14 × 7 = 43.96cm;面积:S = πr²= 3.14 × 7² = 153.86cm²。
数学九年级上册圆几何综合综合测试卷(word含答案)一、初三数学圆易错题压轴题(难)1.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.2.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒5AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
1. 下列关于圆的说法中,正确的是()A. 圆的半径和直径的比值是一个固定的常数,记为πB. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的面积是直径的平方乘以π2. 已知圆的半径为3cm,求其周长()A. 9πcmB. 15πcmC. 6πcmD. 18πcm3. 已知圆的直径为10cm,求其面积()A. 50πcm²B. 100πcm²C. 25πcm²D. 125πcm²4. 下列图形中,是圆的是()A. 矩形B. 正方形C. 梯形D. 半圆5. 已知圆的周长为20πcm,求其半径()A. 2cmB. 4cmC. 6cmD. 8cm二、填空题(每题5分,共25分)6. 圆的半径是5cm,那么其周长是 ______ cm,面积是______ cm²。
7. 圆的直径是8cm,那么其半径是 ______ cm,周长是 ______ cm。
8. 圆的面积是36πcm²,那么其半径是 ______ cm,周长是 ______ cm。
9. 圆的周长是15πcm,那么其半径是 ______ cm,面积是______ cm²。
10. 圆的直径是10cm,那么其面积是______ cm²,周长是 ______ cm。
三、解答题(每题10分,共30分)11. 已知一个圆的半径是6cm,求其直径、周长和面积。
12. 已知一个圆的周长是18πcm,求其半径、直径和面积。
13. 已知一个圆的面积是36πcm²,求其半径、直径和周长。
四、附加题(10分)14. 已知一个圆的直径是8cm,求其内接正方形的边长。
答案:一、选择题:1.C 2.C 3.B 4.D 5.B二、填空题:6. 30π cm,π×5²=25π cm²;7. 4cm,π×8cm=8π cm;8. 3cm,π×3²=9π cm²;9. 3cm,π×3²=9π cm²;10. 50π cm²,π×10cm=10π cm。
九年级圆几何综合单元测试卷(含答案解析)一、初三数学圆易错题压轴题(难)1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,(1)求证:直线AB是⊙O的切线;(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.【答案】(1)见解析;(2)5【解析】【分析】(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出DC=35x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.【详解】(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC=5x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=535xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.2.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.3.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.(1)如图2,四边形ABCD 内接于圆,点C 是弧BD 的中点,求证:△ABC 和△ACD 是同族三角形;(2)如图3,△ABC 内接于⊙O ,⊙O 的半径为32AB=6,∠BAC=30°,求AC 的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=62+或6.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴22AB BE-3,∵CE=BE=3,∴3(3)解:∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB时,∠DAC=∠BAC=30°,∴∠ACD=75°, ∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×323 ∴2DF=36∴AD 36CD ==62综上所述:AD CD =622或62 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.4.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==1262OC BC OB =-=-61262182()cm +--,运动时间为18629322x -==-). 【详解】解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()2ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴=,1262OC BC OB =-=-,移动的距离为612621862()cm +-=-, 运动时间为1862932x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.【点睛】本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.5.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答.(3)①根据旋转的性质可得PF PE=,在RtEFG∆中根据三角函数可得cos30FG PE︒=⋅,故当E点与C点重合,PE取得最大值时,FG有最大值,解之即可.②明显以E点与C点重合前后为节点,点F的运动轨迹分两部分,第一部分为从P开始运动到E点与C点重合,即图中的12F F,根据1212F F AC AF CF=--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cosONBOB==即32282mm=-解得348m=(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒, ∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 2532CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 所经过的路径长是1153762+. 【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.6.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)33(351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO=,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HDOH OAHDB H===;(3)∵∠C=∠CBO,∴∠OEB =∠C+∠COE >∠CBO,∴OE≠OB;若OB = EB =2时,∵∠C=∠C,∠COE =∠AOD =∠CBO,∴△COE~△CBO,∴CO CE BC CO=,∴222BCBC=-,∴2BC-2BC -4=0,∴BC =5- +1 (舍去)或BC =5+1,∴BC =5+1;若OE = EB时,∵∠EOB =∠CBO,∵∠OEB =∠C+∠COE =2∠C =2∠CBO且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos∠CBO=2 EBOB=,∵OB=2,∴EB =2,∵OE过圆心,OE⊥BC,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.7.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为52,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG=52,可求得a=2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到HG=2x,然后依据S△BHG=12BH•HG=42,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB、OC.∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO.∵∠BAC=2∠CAE,∴∠BAO=∠CAE.在△ABF和△ACE中,ABF ACEAB ACBAF CAE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF≌△ACE.∴BF=CE.(3)连接HG、BM.∵AB=AC,∠BAO=∠CAO,∴AG⊥BC,BG=CG.∵BH=DH,∴HG是△BCD的中位线.∴HG∥CD.∴∠GHF=∠CDE=90°.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO.∴HO=OF.∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG.∴OH=OG.∴OF=OG.∵OM=OC,∴四边形MFCG是平行四边形.又∵MC是圆O的直径,∴∠CBM=90°.∴四边形MFGB是矩形.∴MB=FG,∠FMB=∠AFN=90°.∵MF∥BC,∴12HF MF BH CB ==. ∴HF :HD=1:2.∴HF=FD . 在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HG HG x=. ∴. ∴S △BHG =12BH•HG=12, 解得:x=2.∴HB=4,.由勾股定理可知:.∴.∴.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.8.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=512,试求AHAG的值.【答案】(1)证明见解析;(2)证明见解析;(3)1310 AHAG=.【解析】【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=512OFDF=,设OF=5x,则DF=12x,求出AE,BE,得出23AEBE=,证明△PEA∽△PBE,得出23PAPE=,过点H作HK⊥PA于点K,证明∠P=∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD22OF DF+13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE22AF EF+13,BE22EF BF+13,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴41323613PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴13 PKPE=,∵tan∠P=5 12,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴13131010 AH aAG a==.【点睛】本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.9.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=3656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12AB=22162r -; 又∵圆O 与直线MN 有交点,∴OE=22162r r -≤, ∴2262r r -≤,∴22364r r -≤,∴65r ≥, 又∵圆O 与直线AC 相离,∴r <6,即656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.10.如图,平行四边形ABCD 中,AB=5,BC=8,cosB=45,点E 是BC 边上的动点,以C 为圆心,CE 长为半径作圆C ,交AC 于F ,连接AE ,EF .(1)求AC 的长;(2)当AE 与圆C 相切时,求弦EF 的长;(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.【答案】(1)AC=5;(2)4105EF=;(3)03CE≤<或58CE<≤.【解析】【分析】(1)过A作AG⊥BC于点G,由cos45B=,得到BG=4,AG=3,然后由勾股定理即可求出AC的长度;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.【详解】解:(1)过A作AG⊥BC于点G,如图:在Rt△ABG中,AB=5,4 cos5BGBAB==,∴BG=4,∴AG=3,∴844CG=-=,∴点G是BC的中点,在Rt△ACG中,22345AC=+=;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:∴CE=CF=4,∵AB=AC=5,∴∠B=∠ACB,∴4 cos cos5CHB ACBCF=∠==,∴CH=3.2,在Rt △CFH 中,由勾股定理,得FH=2.4,∴EH=0.8,在Rt △EFH 中,由勾股定理,得224100.8 2.45EF =+=; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况:①当圆C 与AD 相离时,则CE<AE ,∴半径CE 的取值范围是:03CE ≤<;②当CE>CA 时,点E 在线段BC 上,∴半径CE 的取值范围是:58CE <≤;综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤.【点睛】本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.。
一、选择题(每题4分,共40分)1. 下列各数中,不是圆的半径的是()A. 3cmB. 5πcmC. 2√2cmD. πcm2. 一个圆的直径是10cm,那么这个圆的周长是()A. 10πcmB. 20cmC. 5πcmD. 100cm3. 一个圆的半径增加了2cm,那么这个圆的面积增加了()A. 4πcm²B. 8πcm²C. 12πcm²D. 16πcm²4. 下列各图形中,不是轴对称图形的是()A. 圆B. 矩形C. 正方形D. 三角形5. 一个圆的半径是r,那么它的直径是()A. rB. 2rC. r²D. πr6. 下列各图形中,不是圆的内接四边形的是()A. 正方形B. 矩形C. 菱形D. 等腰梯形7. 一个圆的周长是25.12cm,那么这个圆的半径是()A. 2cmB. 4cmC. 5cmD. 8cm8. 下列各图形中,不是圆的外切四边形的是()A. 正方形B. 矩形C. 菱形D. 等腰梯形9. 一个圆的直径是8cm,那么这个圆的面积是()A. 16πcm²B. 32πcm²C. 64πcm²D. 128πcm²10. 下列各数中,不是圆的周长的倍数的是()A. 10πcmB. 15πcmC. 20πcmD. 25πcm二、填空题(每题4分,共40分)11. 圆的半径与直径的关系是:直径=半径×______。
12. 圆的周长公式是:C=______。
13. 圆的面积公式是:S=______。
14. 一个圆的直径是12cm,那么这个圆的周长是______cm。
15. 一个圆的半径增加了1cm,那么这个圆的面积增加了______cm²。
16. 一个圆的周长是31.4cm,那么这个圆的半径是______cm。
17. 一个圆的面积是50.24cm²,那么这个圆的半径是______cm。
#### 一、选择题(每题3分,共30分)1. 下列关于圆的说法中,正确的是:A. 圆是平面内所有到定点距离相等的点的集合B. 圆是平面内所有到定线距离相等的点的集合C. 圆是平面内所有与定点距离相等的点的集合D. 圆是平面内所有与定线距离相等的点的集合2. 圆的半径是5cm,那么圆的直径是:A. 10cmB. 15cmC. 20cmD. 25cm3. 在直角坐标系中,点A(3,4)到圆(x-2)^2 +(y+1)^2 = 9的圆心的距离是:A. 1B. 2C. 3D. 44. 一个圆的周长是12πcm,那么这个圆的半径是:A. 2cmB. 3cmC. 4cmD. 6cm5. 下列图形中,是圆的是:A. 正方形B. 等边三角形C. 半圆D. 梯形6. 一个圆的面积是50πcm^2,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm7. 圆的直径是10cm,那么这个圆的周长是:A. 10πcmB. 20πcmC. 30πcmD. 40πcm8. 下列关于圆的性质中,错误的是:A. 圆心到圆上任意一点的距离都相等B. 相等的圆半径所对应的圆周长也相等C. 相等的圆面积所对应的圆半径也相等D. 相等的圆周长所对应的圆面积也相等9. 圆的半径增加了2cm,那么圆的面积增加了:A. 4πcm^2B. 8πcm^2C. 12πcm^2D. 16πcm^210. 下列关于圆的方程中,表示圆的是:A. x^2 + y^2 = 25B. (x-1)^2 + (y+2)^2 = 9C. x^2 - y^2 = 4D. x^2 + y^2 + 2x - 3y = 0#### 二、填空题(每题5分,共20分)11. 圆的周长公式是:C = _______。
12. 圆的面积公式是:S = _______。
13. 圆的直径是圆半径的 _______ 倍。
14. 圆心到圆上任意一点的距离都等于 _______。
九年级上册圆单元测试【1 】一.选择题(本大题共10小题,每小题3分,共计30分)1.下列命题:①长度相等的弧是等弧②随意率性三点肯定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,个中真命题共有( )A.0个B.1个C.2个D.3个2.统一平面内两圆的半径是R和r,圆心距是d,若以R.r.d为边长,能围成一个三角形,则这两个圆的地位关系是( )A.外离B.相切C.订交D.内含3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值规模( )A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<55.如图,⊙O的直径AB与弦CD的延伸线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20°6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一路,OA=3,OC=1,分离贯穿连接AC.BD,则图中阴影部分的面积为( )A. B. C. D.8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1.⊙O2都相切,则知足前提的⊙C有( )A.2个B.4个C.5个D.6个9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,则直线与⊙O的地位关系为( )A.相离或相切B.相切或订交C.相离或订交D.无法肯定10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的偏向在直线上迁移转变两次,使它转到△A2B2C2的地位,设AB=,BC=1,则极点A活动到点A2的地位时,点A所经由的路线为( )A. B. C. D.二.填空题(本大题共5小题,每小4分,共计20分)11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个如许的网球筒如图所示放置并包装正面,则需________________的包装膜(不计接缝,取3).12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方法:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度斟酌,应选择________种射门方法.6cm,则其外接圆的半径为___________.14.(北京)如图,直角坐标系中一条圆弧经由网格点A.B.C,个中,B点坐标为(4,4),则该圆弧地点圆的圆心坐标为_____________.15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分离记为S1.S2,若圆心到两弦的距离分离为2和3,则|S1-S2|=__________.三.解答题(16~21题,每题7分,22题8分,共计50分)16.(丽水)为了探讨三角形的内切圆半径r与周长.面积S之间的关系,在数学试验活动中,拔取等边三角形(图甲)和直角三角形(图乙)进行研讨.⊙O是△ABC的内切圆,切点分离为点D.E.F.(1)用刻度尺分离量出表中未器量的△ABC的长,填入空格处,并盘算出周长和面积S.(成果准确到)AC BC AB r S图甲图乙.S之间关系,并证实这种关系对随意率性三角形(图丙)是否也成立?17.(成都)如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,贯穿连接,并过点作,垂足为.依据以上前提写出三个准确结论(除外)是:(1)________________;(2)________________;(3)________________.18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小雷同的圆形凳面.问如何才干截出直径最大的凳面,最大直径是若干厘米?19.(山西)如图是一纸杯,它的母线AC和EF延伸后形成的立体图形是圆锥,该圆锥的正面睁开图形是扇形OAB.经测量,纸杯上启齿圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的概况积(面积盘算成果用暗示) .20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.断定直线PQ与⊙O的地位关系,并解释来由.21.(武汉)有如许一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O.A重合),BP的延伸线交⊙O于Q,过Q点作⊙O的切线交OA的延伸线于R.解释:RP=RQ.请探讨下列变更:变更一:交流题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O.A重合),BP的延伸线交⊙O于Q,R是OA的延伸线上一点,且RP=RQ.解释:RQ为⊙O的切线.变更二:活动寻找.(1)如图2,若OA向上平移,变更一中的结论还成立吗?(只需交待断定) 答:_________.(2)如图3,假如P在OA的延伸线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延伸线于R,原题中的结论还成立吗?为什么?22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA.OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发明△AOE是等腰三角形.由此,他断定:“直线BC上必定消失除点E以外的点P,使△AOP也是等腰三角形,且点P必定在⊙O′外”.你赞成他的意见吗?请充分辩明来由.答案与解析:一.选择题 1.B 2.C 3.D 4.A 5.B 6.C 7.C 提醒:易证得△AOC≌△BOD,8.D 9.B 10.B二.填空题11.1200012.第二种14.(2,0) 15.24(提醒:如图,由圆的对称性可知,等于e的面积,即为4×6=24)三.解答题16.(1)略;(2)由图表信息猜测,得,并且对一般三角形都成立.衔接OA.OB.OC,应用面积法证实:17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).18.设计计划如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25, 所以圆形凳面的最大直径为25(-1)厘米.19.扇形OAB的圆心角为45°,纸杯的概况积为44.解:设扇形OAB的圆心角为n°弧长AB等于纸杯上启齿圆周长:弧长CD等于纸杯下底面圆周长:可列方程组,解得所以扇形OAB的圆心角为45°,OF等于16cm纸杯概况积=纸杯正面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯概况积==20.衔接OP.CP,则∠OPC=∠OCP.由题意知△ACP是直角三角形,又Q是AC的中点,是以QP=QC,∠QPC=∠QCP.而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.21.解:衔接OQ,∵OQ=OB,∴∠OBP=∠OQP又∵QR为⊙O的切线,∴OQ⊥QR 即∠OQP+∠PQR=90°而∠OBP+∠OPB=90°故∠PQR=∠OPB又∵∠OPB与∠QPR为对顶角∴∠OPB=∠QPR,∴∠PQR=∠QPR∴RP=RQ变更一.衔接OQ,证实OQ⊥QR;变更二.(1)结论成立(2)结论成立,衔接OQ,证实∠B=∠OQB,则∠P=∠PQR,所以RQ=PR.22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5(2)贯穿连接O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2在⊙O′中, ∵ O′O= O′D ∴∠1=∠3∴∠3=∠2 ∴O′D∥AE, ∵DF⊥AE ∴ DF⊥O′D又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.(3)不合意. 来由如下:①当AO=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH =1求得点P1(1,3) 同理可得:P4(9,3)②当OA=OP时,同上可求得:P2(4,3),P3(4,3)是以,在直线BC上,除了E点外,既消失⊙O′内的点P1,又消失⊙O′外的点P2.P3.P4,它们分离使△AOP为等腰三角形.。
圆—综合测试卷1
班级______姓名__________座号 评分:_______
一、选择题:
1、如图1,经过⊙O 上的点A 的切线和弦BC 的延长线相交于点P ,若∠CAP=40°, ∠ACP=100°,则∠BAC 所对的弧的度数为( ) A.40° B. 100° C. 120° D. 30°
2、如图2,四边形ABCD 为⊙O 的内接四边形,E 为AB 延长线上一点,∠CBE=40°,则 ∠AOC 等于( )
A.20°
B. 40°
C. 80°
D. 100°
(图1)
P
A
(图2)
E
3、△ABC 内接于⊙O ,∠A=30°,若BC=4cm ,则⊙O 的直径为 ( ) A.6cm B. 8cm C. 10cm D. 12cm
4、AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P , ∠PCB=29°,则∠ADC= ( )
A.118°
B. 119°
C. 120°
D. 129°
5、直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,则r 的取值范围是( ) A 、r>5
B 、r=5
C 、r<5
D 、r ≤5
6、已知圆的半径为6.5cm ,圆心到直线l 的距离为4.5cm ,那么这条直线和这个圆的公共点的个数是( ) A 、0
B 、1
C 、2
D 、不能确定
7、等腰△ABC 的腰AB =AC =4cm ,若以A 为圆心,2cm 为半径的圆与BC 相切,∠BAC 的度数为( ) A 、300
B 、600
C 、900
D 、1200
8、已知AB 是⊙O 的直径,CB 与⊙O 相切于点B ,AC =2AB ,则( ) A 、∠ACB =60° B 、∠ACB =30° C 、ACB =45°
D 、BAC =30°
9、已知圆的半径为6.5cm ,如果一条直线和圆心距离为6.5cm ,那么这条直线和这个圆和位置是( ) A 、相交
B 、相切
C 、相离
D 、相交或相离
10、如下左图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C ,又⊙O 与BC 的另一交点为D ,则线段BD 的长为( )
A 、1
B 、
21 C 、
3
1 D 、 4
1
二、填空题:
1、 Rt △ABC 的斜边AB =4,直角边AC =2,若AB 与⊙C 相切,则⊙C 的半径是 。
2、如图,⊙O 切BT 于B ,∠CBT=430
,则圆周角∠BAC 的度数为_____,圆心角∠BOC 的度数为______。
3、如图(3),AB 是半圆的直径,直线MN 切半圆于C ,同AM ⊥MN ,BN ⊥MN ,如果AM =a ,
BN =b ,那么半圆的直径是 。
4、如图(4),CD 是⊙O 的直径,AE 切⊙O 于B ,DC 的延长线交AB 于A ,∠A =20°,则
∠DBE = 。
5、平面上一点P 到⊙O 上一点的距离最长6cm ,最短为2cm ,则⊙O 的半径为 cm. 6 已知等边三角形的边长为a ,则三角形的外接圆半径长 ,内切圆的半径长 。
7、直角三角形两条直角边长为a 、b ,斜边长为c ,则直角三角形的内切圆半径是_________。
8、⊙O 中,弧AC 的度数是120°,直线.AF.切⊙O 于A ,则∠FAC 的度数为 。
9、在△ABC 中,∠ABC =60°,∠ACB =80°,点O 是△ABC 的内心,则∠BOC 的度数为 ________。
10、已知圆的直径为13cm ,若直线和圆心的距离为4.5cm ,那么直线和圆的有 个公共点。
11、Rt △ABC 的斜边AB =4,直角边AC =2,若AB 与⊙C 相切,则⊙C 的半径是 。
12、PA 切⊙O 于A ,PA =3cm ,∠APO =300
,则PO 的长为________。
B
三、解答题:
1、 如图5,△ABC 内接于⊙O ,AB=AC ,直线XY 切⊙O 于点C ,弦BD ∥XY ,AC 、BD 相交于 点E 。
⑴求证:△ABE ≌△ACD ;⑵若AB=6cm ,BC=4cm ,ED=2cm, 求AE 的长。
2、如图6,AB 是⊙O 的直径,弦CD ⊥AB 于P 。
⑴已知:CD=8cm ,∠B=30°,求⊙O 的半径; ⑵如果弦AE 交CD 于F ,求证:AC 2
=AF ·AE.
3、如图,AB 切⊙O 于B ,OA 交⊙O 于C ,若AO=5,AB=2, 求⊙O 半径,并求tanA 的值。
4、如图,AB 切⊙O 于B ,OA 交⊙O 于C ,∠A=300
,若⊙O 半径为3cm ,求AO 的长。
O
B
C
A
(图6)
B
(图5
)
5、已知四边形ABCD外切于⊙O,四边形ABCD的面积为24,周长24,求⊙O的半径。
6、如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。
7、已知:如图,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆
与AB交于点E,与AC切于点D,连结DB、DE、OC。
⑴从图中找出一对
..相似三角形(不添加任何字母和辅助线),并证明你的结论;
⑵若AD=2,AE=1,求CD的长。