七年级数学竞赛培优(含解析)专题27 以形借数
- 格式:doc
- 大小:699.79 KB
- 文档页数:10
七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。
2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。
4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。
5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。
6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。
重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。
8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。
(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。
数的整除(一)【知识精读】如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)【分类解析】例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=31234能被12整除,求X。
例2己知五位数x解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,84能被4整除时,X=0,4,8当末两位X∴X=8例3求能被11整除且各位字都不相同的最小五位数。
解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
【实战模拟】1分解质因数:(写成质因数为底的幂的連乘积)①593②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2若四位数a12X能被11整除,那么X=__________-3若五位数3435m能被25整除4当m=_________时,59610能被7整除5当n=__________时,n6能被11整除的最小五位数是________,最大五位数是_________7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________ 88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。
专题27数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题;2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题;4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形()A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题)解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F .求证:BEAE BF AE DF BD ⋅+⋅=⋅111.(湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.【例4】当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根?(四川省联赛试题)解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形.(江苏省竞赛试题)解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L c S c b S b a S a =+=+=+222.则a ,b ,c 适合方程L xS x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值.(俄罗斯中学生数学竞赛试题)能力训练1.不查表可求得tan 015的值为__________.2.如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________.(全国初中数学联赛试题)3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________.(太原市竞赛试题)6.如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是()A.(13,13)B .(-13,-13)C.(14,14)D.(-14,一14)第2题图第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m +=()A.25B.128C.153D.243E.256(美国数学统一考试题)8.设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A ,∠B 的关系是()A .∠B >2∠AB .∠B=2∠AC .∠B <2∠AD .不确定9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ()A .a 1127B .a 1128C .a 1129D .a 113010.满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有()A.1个B .2个C .3个D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO .(1)求这个二次函数的解析式;(2)以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由.(武汉市中考题)12.已知正数a,b,c,A,B,C满足a+A=b+B=c+C=k.求证:a B十b C+c A<k2.13.如图,一个圆与一个正三角形的三边交于六点,已知AG=2,GF=13,FC=1,HI=7,求DE.(美国数学邀请赛试题)14.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC//QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,3cm为半径的圆与△ABC的边相切(切点在边上).请写出t可以取的一切值:_______________(单位:秒).15.如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060.求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41.(长春市竞赛试题)17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2).在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.(江苏省竞赛试题)专题27 数形结合例 1 5 提示:作出 B 点关于 x 轴的对称点 B '(2,-3),连结 AB '交 x 轴于 C ,则 AB '=AC 十 CB ' 为所要求的最小值.例2D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b =12,a =5);若b =8时,a =6(或b =6,a =8).例3设AB =x ,则BC =2x ,AC =x 3,BE =x 21,DF =DA=.32,31x BD x =.在Rt △AEB 中求得AE=,,23x BF x =代入证明即可.例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点.例5由L c s c b s b a s a =+=+=+222①,知正数c b a ,,适合方程.2L x sx =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a ac sa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证.例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+∙+∙∙∴ xz y z y x即,6232132121321=∙+∙+⨯∙xz y z y x 化简得.32432=++zx yz xy 能力训练1.32-提示:构造含15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b ,则AE =a 3,CF =b 3,所以点A ,C的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴33233332b a b a 解得⎩⎨⎧-==.363b a ∴点D 坐标为()0,62.3.52-提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值.4.ax b ≤≤5.36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC .6.C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14.7.A8.B 提示:由条件,22b ab ac ab a +=++即()bca abc a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9.D10.C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则abk b a b a 2122∙=+++(k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解.11.(1)122--=x x y (2)过D 作DM ⊥EH 于M ,连结DG ,2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH =2FG .由4EF //x 轴,设H 为(x ,t ),又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -∙=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去).12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13.AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得•CD =CF •CG•BE =BI •BH (16-x )=1×14(16-y )=6×13.=10-22=6-22.故DE =16-(x +y )=222.14.t =2或3≤t ≤7或t =8.提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =3+12,BE =3+32,AE =AD -ED =2-x =3-32,AB 2=AE 2+BE 2=(3-32)2+(3+32)2=6,而AD •AC =6.∴AB 2=AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线.16.设AD AB =AEAC =m (0≤m ≤1).∵S △ABE S △ABC=AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB =AB -AD AB =1-m ,∴S △BDE =(1-m )•S △ABE =m (1-m )•S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―x ,2x ),则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′),则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455).又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4(12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。
七年级第1题:已知0132=+-x x , 则 =++13242x x x 。
答案:0.1第2题:若,,a b c 互异,且x y a b b c c aZ ==---,求x y Z ++的值。
答案:0第3题:a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?答案:6.2<a <331第4题:方程 200422=-b a的正整数解有 组.答案:2组第5题:用一张长方形的纸,折出一个30°的角,如何折?答案:第6题:(1)若A 和B 都是4次多项式,则A+B 一定是( ) A 、8次多项式 B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式答案: C(2)如果316x +的立方根是4,求24x +的平方根___________。
答案:立方根是4,则这个数是43=64。
3x+16=64,解得x =16。
2x +4=2×16+4=36, 36=±6。
第7题:已知21x x +=,那么 . 答案: 2016解析:x 4+2x 3-x 2-2x +2017= x 4+2x 3+ x 2-2x 2-2x +2017=(x 2+x )2-2(x 2+x )+2017=12-2×1+2017=1-2+2017=2016。
第8题:若2a +5b +4c =0,3a +b -7c =0,则a +b -c 的值是___________________答案:2a +5b +4c =0 ① a +b -7c =0 ②将①×3得6a +15b +12c =0 ③将②×2得6a +2b -14c =0 ④由③-④得13b +26c =0 , b= -2c ⑤将⑤带入① 2a -10c +4c =0 , 2a =6c ,a =3c ⑥将⑤和⑥带入a +b -c =3c -2c-c =0。
第 9 题:如图所示,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且AB AE 21=,BC CF 31=,AF 与CE 相交于G ,如果矩形ABCD 的面积为120,那么可知AEG ∆与CGF ∆的面积之和为____________。
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
七年级数学专题训练27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。
(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,≤≤,借助图形分析,找出满足条件的整数解即可。
++=。
不妨设x y z9x y z【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为........y(km),图中的折线表示y与x之间的函数关系。
根据图像进行一下探究:信息读取(1)甲、乙两地之间的距离为___________km。
(2)请解释图中点B的实际意义。
图像理解(3)求慢车和快车的速度。
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。
问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。
在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。
2020江苏初中数学竞赛 初一年级集训练习 组合与计数专题(含答案)1. 有多少个有序整数对(x ,y )满足225x y +≤? 解析我们把这个问题分成6种情况:22x y i +=,0i =,1,2, (5)当220x y +=时,(x ,y )=(0,0);当221x y +=时,(x ,y )=(0,1-),(0,y ),(1,0),(1-,0); 当222x y +=时,(x ,y )=(1-,1-),(1-,1),(1,1-),(1,1); 当223x y +=时,不可能; 当223x y +=时,不可能;当224x y +=时,(x ,y )=(0,2-),(0,2),(2-,0),(2,0);当225x y +=时,(x ,y )=(2-,1-),(2-,1),(1-,2-),(1-,2),(1,2-),(1,2),(2,1-),(2,1). 由加法原理知,满足题设的有序数对共有14404821+++++=(个). 2. 利用数字1、2、3、4、5共可组成 (1)多少个数字不重复的三位数? (2)多少个数字不重复的三位偶数? (3)多少个数字不重复的偶数? 解析 (1)百位数有5种选择;十位数有4种选择;个位数有3种选择,所以共有54360⨯⨯=个数字不重复的三位数.(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有24324⨯⨯=个数字不重复的三位偶数. (3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54. 三位偶数由上述(2)中求得的为24个.四位偶数共有:()243248⨯⨯⨯=个.括号外面的2表示个位数有2种选择(2或4). 五位偶数共有:()2432148⨯⨯⨯⨯=个.由加法原理,偶数的个数共有28244848130++++=(个). 3. 从1到300的正整数中,完全不不含有数字3的有多少个? 解析1 将符合要求的正整数分为以下三类:(1)一位数,有1、2、4、5、6、7、8、9共8个.6、7、8、9八种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8972⨯=个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0、1、2、4、5、6、7、8、9九种情形,故三位数有299162⨯⨯=个.因此,从1到300的正整数中完全不含数字3的共有872162242++=个.解析2将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0、1或2三种情况,十位数字与个位数均有九种,因此除去0共有3991242⨯⨯-=个.4.一个班级有30名学生.(1)从中选出2人,一个担任班长,一个担任副班长,共有多少种不同的选法?(2)从中选2个人去参加数学竞赛,有多少种不同的选法?解析(1)从30个人中选1个人担任班长,有30种选法,再从剩下的29个人中选1个人担任副班长,有29种选法,则由乘法原理知,共有不同的选法为3029870⨯=(种).(2)从30个人中选两人有3029⨯种选法,但由于选出甲、乙去比赛和选出乙、甲去比赛是相同的情况,因此不同的选法共有30294352⨯=(种).5.在小于10 000的正整数中,含有数字1的数有多少个?解析不妨将1至9999的正整数均看作四位数,凡位数不到四位的正整数在前面补0,使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0、2、3、4、5、6、7、8、9这九个数字所组成的四位数的个数,由于每一位都有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为99996561⨯⨯⨯=.其中包括了一个0000,这不是正整数,所以比10000小的不含数字1的正整数有6560个,于是,小于10 000且含有数字1的正整数共有999965603439-=个.6.在1到9999中,有多少个整数与4567相加,至少在一个数位中发生进位?解析将0到9999这10 000个整数都看成四位数,即位数不中四位的,在左面添0补足四位.考虑这些四位数中,有多少个在与4567相加时不发生进位.这样的数,千位数字有0、1、2、3、4、5这6种可能;百位数字有0、1、2、3、4这5种可能;十位数字有0、1、2、3这4种可能;个位数字有0、1、2这3种可能.所以这样的数共有6543360⨯⨯⨯=(个).其中包括0.所以,在1到9999中,与4567相加产生进位的整数有100003609640-=(个).7.在1到1999这1999个自然数中,取4的倍数与7的倍数各一个相加,一共可得到多少个不同的和.解析在1到1999这1999个自然数中,有4的倍数499个,它们是4,8,12, (1992)1996;有7的倍数285个,它们是7,14,21,…,1988,1995.可得到的和最小为7411+=,最大为199619953991+=,介于11至3991之间的自然数,有一部分得不到.例如:12、13、14、16、17、20、21、24、28不能得到,下面能依次得到29218=+,301416=+,31724=+,32284=+,332112=+,341420=+,35728=+,36288=+,…反过来,不能得到的数还有3990、3989、3988、3986、3985、3982、3981、3978、3974.不能得到的数共有9918+=(个). 所以可得到的不同的和共有 ()3991111183963-+-=(个). 8. 600有多少个不同的正约数(包括1和600)?解析 将600质因数分解,有312600235=⨯⨯.一个正整数m 是600的约数的弃要条件是m 具有235a b c ⨯⨯的形式,其中a 、b 、c 是整数且03a ≤≤,01b ≤≤,02c ≤≤.由于a 有()431=+种选择:0、1、2、3;b 有()211=+种选择:0、1;c 有()321=+种选择:0、1、2,故由乘法原理知,这样的m 有42324⨯⨯=(个). 评注 一般地,若一个正整数n 的质因数分解式为1212r a a a r n p p p =L .其中1p ,2p ,…,r p 是互不相同的质数,1α,2α,…,r α是正整数,则n 的不同正约数的个数为()()()12111r ααα+++L .9. 在20000与70000之间,有多少个数字不重复的偶数? 解析 设abcde 是满足要求的偶数,那么a 只能取2、3、4、5、6,e 只能取0、2、4、6、8.(1)若a 取2、4、6之一,即a 有3种选法,此时e 有()451=-种选法,b 、c 、d 分别有8、7、6种选法,由乘法原理知,不重复的偶数有348764032⨯⨯⨯⨯=(个). (2)若a 取3、5之一,则a 有2种选法,e 有5种选法,b 、c 、d 分别有8、7、6种选法,由乘法原理知,此时不重复的偶数有258763360⨯⨯⨯⨯=(个). 最后,由加法原理知,满足题意的偶数共有403233607392+=(个). 评注 在很多计数问题中,都是加法原理和乘法原理结合在一起用的. 10. 求至少出现一个数字6,而且是3的倍数的五位数的个数. 解析设满足要求的五位数为12345a a a a a .由于3整除12345a a a a a 的充要条件是123453a a a a a ++++,所以分情况讨论如下:(1)从左向右看,若最后一个6出现在第5位,即56a =,则2a 、3a 、4a 可以从0,1,2,…,9这10个数字中任取1个,为了保证123453a a a a a ++++,1a 只有3种可能(例如,()23451mod3a a a a +++=,则1a 只能取2,5,8之一,等等),由乘法原理,五位数中最后一位是6,且是3的倍数的数有31010103000⨯⨯⨯=(个). (2)从左向右看,最后一个6出现在第4位,即46a =,于是5a 只有9种可能(因为56a ≠),2a 、3a 各有10种可能,为了保证123453a a a a a ++++,1a 只有3种可能,由乘法原理,这一类的五位数有3910102700⨯⨯⨯=(个). (3)从左向右看,最后一个6出现在第3位,即36a =,则4a 、5a 均有9种可能,2a 有10种可能,1a 有3种可能,这类五位数有 399102430⨯⨯⨯=(个). (4)从左向右看,最后一个6出现在第2位,26a =,则3a 、4a 、5a 均有9种可能,1a 有3种可能,所以这类五位数有 39992187⨯⨯⨯=(个). (5)从左向右看,最后一个6出现在第1位,即16a =,则2a 、3a 、4a 均有9种可能,为了保证123453a a a a a ++++,5a 只有3种可能,从而这类五位数有39992187⨯⨯⨯=(个). 最后,由加法原理知,五位数中至少出现一个6,且是3的倍数的数有3000270024302187218712504++++=(个). 11. 将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,问:满足要求的排法有多少种? 解析设1a ,2a ,3a ,4a ,5a 是1,2,3,4,5的一个满足要求的排列.首先,对于1a ,2a ,3a ,4a ,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果()13i a i ≤≤是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以1a ,2a ,3a ,4a ,5a 只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5;2,3,5,4,1;2,5,1,4,3;4,3,1,2,5;4,5,3,2,1. 12. 由35个单位小正方形组成的长方形中,如图所示,有两个“*”,问包含两个“*”在内的小正方形组成的长方形(含正方形)共有多少个?解析 含两个“*”的矩形,与第二、三两行有公共部分.它们可能与第一行有公共部分,也可能没有公共部分,即分为两类:每一类中的矩形,可能与四、五两行都有公共部分,或都没有公共部分,或仅与第四行有公共部分而与第五行没有公共部分,即又分为三类,这样,从行考虑共有236⨯=类.同样,考虑列,矩形可能与第一、二列都有公共部分,或都没有公共部分,或仅与第二列有公共部分,共三类.而与第五、六、七列的关系则有四列(都有公共部分,都没有公共部分,仅与第五列有公共部分,与第五、六列有公共部分而与第七列无公共部分). 所以,由乘法原理,含两个“*”的矩形共有233472⨯⨯⨯=(个).13. 设有红、黑、白三种颜色的球各10个.现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等,问共有多少种放法. 解析 设甲袋中的红、黑、白三种颜色的球数为x 、y 、z ,则有1x ≤、y 、9z ≤,且 ()()()101010xyz x y z =---,①即()()500505xyz x y z xy yz zx =-+++++,②于是有5xyz .因此x ,y ,z 中必有一个取5.不妨设5x =,代入(1)式,得到10y z +=. 此时,y 可取1,2,…,8,9(相应地z 取9,8,…,2,1),共9种放法.同理可得5y =或者5z =时,也各有9种放法,但有x y z ==时两种放法重复.因此可得共有93225⨯-=种放法.14. 设正整数p 和q 互质.问:有多少个非负整数n 不能表示成px qy +(x 和y 是非负整数)的形式? 解析 首先,由于p 、q 互质,所以下面q 个数 n ,n p -,2n p -,…,()1n q p --除以q 所得的余数不同.事实上,若()mod n ip n jp q -=-,01i j q <-≤≤,则()()0mod j i p q -=,()q j i p -,所以q j i -,矛盾.所以这q 个数中一定有一个除以q 余数为0,设这个数为n xp -,01x q -≤≤,于是可设n xp qy -=,即px py n +=恰有一组满足01x q -≤≤的整数解(x ,y ). 设n 与数组(x ,y )依上述规律对应,即n px qy =+,01x q -≤≤.与0y ≥的数组(x ,y )春风一度的整数n 称为“好的”;否则称为“坏的”. 若n 与(x ,y )对应,即n px qy =+,01x q -≤≤,则**pq p q n pq p q px qy ---=----()()11p q x q y =--+--.因为 011q x q ---≤≤,且y 与1y --中恰有一个是非负的,所以,pq p q n ---与(1q x --,1y --)对应,且n 与pq p q n ---中恰有一个是好的,一个是坏的.所以在0,1,2,…,pq p q --中好数与坏数一一对应,从而其中的坏数有()()111122pq p q p q --+=--(个). 当0n <,则n 是坏数(显然0y <),故大于pq p q --的数均为好数.由此得坏数即不能表为px qy +(x ,y 为非负整数)的非负整数n 有()()1112p q --个. 15. 把1,2,3,…,2012这2012个正整数随意放置在一个圆周上,统计所有相邻三个数的奇偶性得知:三个数全是奇数的600组,恰好两个奇数的有500组,问:恰好一个奇数的有几组?全部不是奇数的有几组? 解析 设恰好1个奇数的有x 组,则全部不是奇数的有2010600500912x x ---=-.将圆周上的数从某个数开始,依次计为1x ,2x ,…,2012x ,令 1,,1,i i i x y x -⎧⎪=⎨⎪⎩奇偶当为数时当为数时,则1220120y y y +++=L ,再令12i i i i A y y y ++=++121212123,,,1,,,21,,,3,,,i i i i i i i i i i i i x x x x x x x x x x x x ++++++++-⎧⎪-⎪=⎨⎪⎪⎩全奇恰好奇恰好一奇全偶当为数时当个数时当个数时当为数时其中20012i i x x +=,1i =,2,于是 ()12201203y y y =+++L122012A A A =+++L()36005003912x x =-⨯-++-,解得218x =.恰好一个奇数的有218组,全部不是奇数的有912218694-=组.。
专题27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。
(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,≤≤,借助图形分析,找出满足条件的整数解即可。
++=。
不妨设x y z9x y z【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为........y(km),图中的折线表示y与x之间的函数关系。
根据图像进行一下探究:信息读取(1)甲、乙两地之间的距离为___________km。
(2)请解释图中点B的实际意义。
图像理解(3)求慢车和快车的速度。
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。
问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。
在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!培优专题01 借助数轴将数与形结合【专题精讲】在数学里“数”和“形”是有密切联系的,我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种“数”与“形”之间的相互作用叫数形结合,它是一种重要的数学思想。
运用数形结合思想解题的关键是建立“数”与“形”之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:(1)利用数轴能形象地表示有理数;(2)利用数轴能直观地解释相反数;(3)利用数轴比较有理数的大小;(4)利用数轴解决与绝对值相关的问题;(5)巧用数轴可以探究动点的规律;(6)应用数轴解决行程问题◎类型一:利用数轴比较有理数的大小解题方法:利用“数轴上的点表示的数,右边的总比左边的大”的性质把有理数表示在数轴上,由相对位置得出大小.1.(2022·陕西咸阳·七年级阶段练习)在数轴上表示:3.5,0,2.5,-1,-3,-12,并把这些数由小到大用“<”号连接起来.2.(2021·江苏盐城·七年级期中)已知一组数:12,0 ,-3.5,3,123-.(1)把这些数在下面的数轴上表示出来:(2)请将这些数按从小到大的顺序排列(用“<”连接)..;(2)顺序为:113.520332--<<<<.115 3.5140 2.522+---,,,,,,,并用“<”把这些数连接起来.用“<”符号连接为:114 3.510 2.5522-<-<-<<<<+.并用“<”号连接.根据上图可知:4025-<<<-.【点睛】本题考查在数轴上表示数,有理数的大小比较,理解数轴上表示数的意义是解题◎类型二:利用数轴表示相反数、绝对值解题方法:确定数轴上点所表示的数,首先要确定原点的位置,再根据此点在原点的左右得到其符号,根据此点到原点的距离得到绝对值。
七年级上册数学培优题及详解答案挑战题1、已知a :b :c=2 :3 :4,且2a+3b-2c=10,求a, b,c的值。
2、麦迪在⼀次⽐赛中22投14中得28分,除了3个三分球全中外,他还投中了两分球和个罚球.3、⼩明、⼩亮、⼩强三个⼈在⼀起玩扑克牌,,他们各取了相同数量的扑克牌(牌数⼤于3),然后⼩亮从⼩明⼿中抽取了3张,⼜从⼩强⼿中抽取了2张;最后⼩亮说⼩明,“你有⼏张牌我就给你⼏张。
”⼩亮给⼩明牌之后他⼿中还有张牌。
4、.⼀个长⽅形的周长为26,如果长减少1,宽增加2,就可成为⼀个正⽅形,设长⽅形的长为,则可列⽅程为.5、⽣产某种型号的打⽕机.每只的成本为2元,⽑利率为25%.⼯⼚通过改进⼯艺,降低了成本,在售价不变的情况下,⽑利率增加了15%.则这种打⽕机每只的成本降低了.(精确到元.⽑利率即利润率)6、元代朱世杰所著《算学启蒙》⾥有这样⼀道题:“良马⽇⾏两百四⼗⾥,驽马⽇⾏⼀百五⼗⾥,驽马先⾏⼀⼗⼆⽇,问良马⼏何追及之?”,请你回答:良马___________天可以追上驽马.7、古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每⼈离圆桌的距离均为10cm,现⼜来了两名客⼈,每⼈向后挪动了相同的距离,再左右调整位置,使8⼈都坐下,并且8⼈之间的距离与原来6⼈之间的距离(即在圆周上两⼈之间的圆弧的长)相等.设每⼈向后挪动的距离为x,根据题意,可列⽅程()8、⼀张试卷共25道题,做对⼀题得4分,做错或不做⼀题扣1分,⼩明做了全部试题,若要得70分以上,那么⼩明⾄少要做对的题数是()9、⼩亮的爸爸在⼀家合资企业⼯作,⽉⼯资5500元,按规定:其中2500元是免税的,其余部分要缴纳个⼈所得税,应纳税部分⼜要分为两部分,并按不同税率纳税,即不超过1500元的部分按3%的税率;超过1500元不超过4500元的部分则按5%的税率,你能算出⼩亮的爸爸每⽉要缴纳个⼈所得税多少元?10、民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取⼀定的费⽤,当携带物品的质量为b 千克(b>a)时,所交费⽤为Q=10b-200(单位:元).(1)⼩明携带了35千克物品,质量⼤于a千克,他应交多少费⽤?(2)⼩王交了100元费⽤,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费⽤Q不变的情况下,试⽤m表⽰Q.11、某中学组织七年级学⽣秋游,由王⽼师和甲、⼄两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租⽤,60座的客车每辆每天的租⾦⽐45座的贵100元.”王⽼师说:“我们学校⼋年级昨天在这个公司租了2辆60座和5辆45座的客车,⼀天的租⾦为1600元,你们能知道45座和60座的客车每辆每天的租⾦各是多少元吗?”甲、⼄两同学想了⼀下,都说知道了价格.你知道45座和60座的客车每辆每天的租⾦各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的⽅案是只租⽤45座的客车,可是会有⼀辆客车空出30个座位”;⼄同学说“我的⽅案只租⽤60座客车,正好坐满且⽐甲同学的⽅案少⽤两辆客车”,王⽼师在⼀旁听了他们的谈话说:“从经济⾓度考虑,还有别的⽅案吗?”如果是你,你该如何设计租车⽅案,并说明理由.12、某地⽣产⼀种绿⾊蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加⼯后销售,每吨利润可达4500元;经精加⼯后销售,每吨利润涨⾄7500元.当地⼀家农⼯商公司收获这种蔬菜140吨,该公司加⼯的⽣产能⼒是:如果对蔬菜进⾏粗加⼯,每天可加⼯16吨;如果进⾏精加⼯,每天可加⼯6吨,但两种加⼯⽅式不能同时进⾏.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加⼯完毕,为此公司研制了三种可⾏⽅案.⽅案⼀:将蔬菜全部进⾏粗加⼯;⽅案⼆:尽可能多地对蔬菜进⾏精加⼯,没有来得及进⾏加⼯的蔬菜,在市场上直接销售;⽅案三:将部分蔬菜进⾏精加⼯,其余蔬菜进⾏粗加⼯,并恰好15天完成.你认为选择哪种⽅案获利最多?为什么?13、某⼈承做⼀批零件,原计划每天做40个,可按期完成任务,由于改进⼯艺,⼯作效率提⾼了20%,结果不但提前了16天完成,⽽且超额完成了32件,求原来预定⼏天完成?原计划共做多少零件?14、⼩华家是我市第⼀批9万户统⼀换装“峰⾕分时”电表的家庭之⼀,他们家将率先享受苏州市⽣活⽤电“峰⾕分时电价”的新政策,⽤电价将按不同时段实⾏不同的价格,具体为:8点⾄21点为“峰时”,电价为每千⽡时0.55元;21点⾄次⽇8点为“⾕时”,电价为每千⽡时0.30元,⽽我市原来实⾏的电价为每千⽡时0.52元。
七年级上册数学培优题及详解答案1.已知比例关系和一个方程,求解比例中各项的值。
设比例中a的系数为2x,b的系数为3x,c的系数为4x,则根据条件2a+3b-2c=10,可列出方程2(2x)+3(3x)-2(4x)=10,解得x=1,因此a=2,b=3,c=4,即a:b:c=2:3:4.2.XXX在比赛中得28分,其中三分球全中得9分,因此他投中的两分球和罚球得分为28-9=19分。
除去三分球,他投了19次,命中率为14/19,得分率为28/19.3.三人各取n张牌,XXX抽取3张后手中剩下n-3张,再从XXX手中抽取2张,手中共有n-1张牌。
根据XXX的话,XXX手中有n-1张牌,因此n-1是n的约数,且n-1不等于3和2.最小的满足条件的n为7,因此每人取7张牌。
4.设长方形的宽为y,则根据周长为26可列出方程2x+2y=26,即x+y=13.根据条件长减少1,宽增加2可列出方程(x-1)=(y+2),即x-y=3.解这两个方程可得x=8,y=5,因此长方形的长为8.5.原来每只打火机的成本为2元,毛利率为25%,即售价为2.5元。
现在毛利率增加15%,即售价为2.875元,因此每只打火机的成本降低了(2.875-2)/2.875=28%。
6.驽马先行12天,良马追上它需要的时间与良马比驽马多走的路程成正比,因此可以设良马追上驽马需要x天,那么良马比驽马多走的路程为240(x+12)-150x=30x+2880.因为良马比驽马多走的路程是240-150=90,所以30x+2880=90,解得x=54,因此良马需要54天才能追上驽马。
7.原来每人与相邻两人之间的圆弧长度为arccos(10/60)≈1.23弧度。
现在每人向后挪动x,因此每人与相邻两人之间的圆弧长度为arccos(10/60)+2arcsin(x/60),根据题意可得出方程2arcsin(x/60)=arccos(10/60)+2π/8,解得x≈3.91,因此每人向后挪动3.91cm。
2020—2021学年北师大版七年级数学培优卷姓名:___________班级:___________考号:___________一,单项选择题(本大题共8小题,每题5分,共40分)1.已知553a =,444b =,335c =,则a 、b 、c 的大小关系为( )A .c a b <<B .c b a <<C .a b c <<D .a c b <<2.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对3.如图是某人骑自行车出行的图象,从图象中可以得到的信息是( )A .从起点到终点共用了50minB .20~30min 时速度为0C .前20min 速度为4/km hD .40min 与50min 时速度是不相同的4.如图,,AM CM 平分BAD ∠和BCD ∠,若3442B D ∠=︒∠=︒,,则M ∠=( )A .34︒B .38︒C .40︒D .42︒5.已知,如图,在△ABC 中,D 为BC 边上的一点,延长AD 到点E ,连接BE 、CE ,∠ABD+12∠3=90°,∠1=∠2=∠3,下列结论:①△ABD 为等腰三角形;②AE=AC ;③BE=CE=CD ;④CB 平分∠ACE .其中正确的结论个数有( )A .1个B .2个C .3个D .4个6.将一长方形纸片按如图所示的方式折叠,EF ,EG 为折痕,若30BEF ∠=︒,33AB ,则EG =( )A .3B .4C .5D .67.若220x x +-=,则3222016x x x +-+等于( )A .2020B .2019C .2018D .-20208.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( ) A .12 B .10 C .9 D .6二、填空题(本大题共6小题,每题5分,共30分)9.若(3)1x x -=,则x 的值为_ _.10.若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则a =_________ __. 11.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).12.已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A B C D →→→运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y =13时,x 的值等于_____________. 13.如图,已知四边形ABCD 中,AB =12厘米,BC =8厘米,CD =14厘米,∠B =∠C ,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为___ __厘米/秒时,能够使△BPE 与以C 、P 、Q 三点所构成的三角形全等.14.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1-S 2=_____ __.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。
专题27 以形助数——借助图形思考例 1 7 提示:设圆周长为9,套成的三角形三边所对的弧长分别为x ,y ,z ,则x+y+z=9,不妨设z y x ≤≤,则(x ,y ,z )只有(1,1,7),(1,2,6),(1,3,5),(1,4,4),(2,2,5),(2,3,4)和(3,3,3)这7种情形.例2(1)900 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.(3)由图像可知,慢车12h 行驶的路程为900km ,所以慢车的速度为12900=75km/h ;当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为4900=225km/h,所以快车的速度为150km/h.(4)根据题意快车行驶900km 到达乙地,所以快车行驶150900=6h 到达乙地,此时两车之间的距离为6×75=450km ,所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y=kx+b ,把(4,0),(6,450)带入得⎩⎨⎧+=+=b k b k 645040,解得⎩⎨⎧-==900225b k 所以,线段BC 所标示的y 与x 之间的函数关系式为y=225x-900.自变量x 的取值范围是64≤≤x .(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h ,把x=4.5代入y=225x-900,得y=112.5,此时,慢车与第一列快车之间的距离等于两列快车之间的距离112.5km ,所以两列快车出发间隔的时间是112.5÷150=0.75h ,即第二列快车比第一列快车晚出发0.75h.例3 设只收看A,B,C 三个栏目的观众人数分别为x ,y ,z ,没有收看栏目A 而收看栏目B 和栏目C 的人数为m.不只收看栏目A 的人数为n ,如图所示.()⎪⎪⎩⎪⎪⎨⎧=+++++=-=+=+,28,,1,2z m y n x z y x x n m z m y 得z=29-4y. 由y-2z=m ≥0得9y-58≥0,∴958≥y 由29-4y=z ≥0得y ≤429,∵y 为整数,∴y=7 从而z=1,x=8,n=7,m=5. 故栏目A 的收视率为28n x +×100﹪=2825×100﹪≈53.6﹪例4 第一个是丙,第三个是甲,第五个是丁.例5如图,A,B,C 三个圆分别表示数学、外语、语文优秀学生的集合,而a ,b ,c ,…,f ,g 则分别表示各类优秀学生的人数,如g 表示数、外、语三科均优秀的学生人数f 表示语、外两科优秀而数学不优秀的学生人数.则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==+=+=+=+++=+++=+++10,1817,16,29,31,32g g f g d g e g f e c g f d b g e d a 解得:a=9,b=6,c=5,d=7,e=6,f=8,g=10.故a+b+c+d+e+f+g=51.说明数、外、语三科中至少有一科优秀的学生共有51人,而全班仅有50人,故统计错误.【能力训练】1.2 提示:如图,用5个点表示甲、乙、丙、丁及小强这5个人,如果两个人已经赛过一盘,就在相应的两个点之间连一条线段.2.4.4小时3.244.32﹪ 提示:依照图中数据计算:000000001002.108.155.12442.10298.15265.12⨯++⨯+⨯+⨯=32﹪ 5.5:16.C 提示:由直方图可知,乘车人数为25人,由扇形图可知,乘车人数占全班总人数的50﹪.故全班总人数为25÷50﹪=50人.步行人数为50×30﹪=15(人).骑车人数为50-25-15=10(人).7.C8.D 提示:若A,C 种同一种植物,则A,C 有4×1种栽种法,B,D 都有3种栽种法,共有4×3×3=36种栽种方案;若A,C 种不同的植物,则有4×3种载法,B,D 都有2种,共有4×3×2×2=48种栽种方案.故共有36+48=84种栽种方案.9.15人 提示:如图,用A,B 两个圆分别表示参加数学竞赛的男、女生人数,用C,D 两个圆分别表示参加英语竞赛的男、女生人数,只参加数学竞赛的男生人数是120-75=45人,只参加英语竞赛的男生人数是80-75=5人,设两科都参加的女生人数为x 人,则只参加数学竞赛的女生数为(80-x )人,只参加英语竞赛的女生人数为(120-x)人,由题意得120-x+80-x+x+45+75+5=260,解得x=65,故答案为80-x=15人.10.从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城。
专题27 以形助数——借助图形思考例1 7 提示:设圆周长为9,套成的三角形三边所对的弧长分别为x ,y ,z ,则x+y+z=9,不妨设z y x ≤≤,则(x ,y ,z )只有(1,1,7),(1,2,6),(1,3,5),(1,4,4),(2,2,5),(2,3,4)和(3,3,3)这7种情形.例2(1)900 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.(3)由图像可知,慢车12h 行驶的路程为900km ,所以慢车的速度为12900=75km/h ;当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为4900=225km/h,所以快车的速度为150km/h.(4)根据题意快车行驶900km 到达乙地,所以快车行驶150900=6h 到达乙地,此时两车之间的距离为6×75=450km ,所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y=kx+b ,把(4,0),(6,450)带入得⎩⎨⎧+=+=b k b k 645040,解得⎩⎨⎧-==900225b k所以,线段BC 所标示的y 与x 之间的函数关系式为y=225x-900.自变量x 的取值范围是64≤≤x .(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h ,把x=4.5代入y=225x-900,得y=112.5,此时,慢车与第一列快车之间的距离等于两列快车之间的距离112.5km ,所以两列快车出发间隔的时间是112.5÷150=0.75h ,即第二列快车比第一列快车晚出发0.75h.例3 设只收看A,B,C 三个栏目的观众人数分别为x ,y ,z ,没有收看栏目A 而收看栏目B 和栏目C 的人数为m.不只收看栏目A 的人数为n ,如图所示.()⎪⎪⎩⎪⎪⎨⎧=+++++=-=+=+,28,,1,2z m y n x z y x x n m z m y 得z=29-4y.由y-2z=m ≥0得9y-58≥0,∴958≥y 由29-4y=z ≥0得y ≤429,∵y 为整数,∴y=7 从而z=1,x=8,n=7,m=5. 故栏目A 的收视率为28n x +×100﹪=2825×100﹪≈53.6﹪ 例4 第一个是丙,第三个是甲,第五个是丁.例5如图,A,B,C 三个圆分别表示数学、外语、语文优秀学生的集合,而a ,b ,c ,…,f ,g 则分别表示各类优秀学生的人数,如g 表示数、外、语三科均优秀的学生人数f 表示语、外两科优秀而数学不优秀的学生人数.则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==+=+=+=+++=+++=+++10,1817,16,29,31,32g g f g d g e g f e c g f d b g e d a 解得:a=9,b=6,c=5,d=7,e=6,f=8,g=10.故a+b+c+d+e+f+g=51.说明数、外、语三科中至少有一科优秀的学生共有51人,而全班仅有50人,故统计错误.【能力训练】1.2 提示:如图,用5个点表示甲、乙、丙、丁及小强这5个人,如果两个人已经赛过一盘,就在相应的两个点之间连一条线段.2.4.4小时3.244.32﹪ 提示:依照图中数据计算:000000001002.108.155.12442.10298.15265.12⨯++⨯+⨯+⨯=32﹪ 5.5:16.C 提示:由直方图可知,乘车人数为25人,由扇形图可知,乘车人数占全班总人数的50﹪.故全班总人数为25÷50﹪=50人.步行人数为50×30﹪=15(人).骑车人数为50-25-15=10(人).7.C8.D 提示:若A,C种同一种植物,则A,C有4×1种栽种法,B,D都有3种栽种法,共有4×3×3=36种栽种方案;若A,C种不同的植物,则有4×3种载法,B,D都有2种,共有4×3×2×2=48种栽种方案.故共有36+48=84种栽种方案.9.15人提示:如图,用A,B两个圆分别表示参加数学竞赛的男、女生人数,用C,D两个圆分别表示参加英语竞赛的男、女生人数,只参加数学竞赛的男生人数是120-75=45人,只参加英语竞赛的男生人数是80-75=5人,设两科都参加的女生人数为x人,则只参加数学竞赛的女生数为(80-x)人,只参加英语竞赛的女生人数为(120-x)人,由题意得120-x+80-x+x+45+75+5=260,解得x=65,故答案为80-x=15人.10.从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城。
27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。
(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,≤≤,借助图形分析,找出满足条件的整数解即可。
++=。
不妨设x y z9x y z【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为........y(km),图中的折线表示y与x之间的函数关系。
根据图像进行一下探究:信息读取(1)甲、乙两地之间的距离为___________km。
(2)请解释图中点B的实际意义。
图像理解(3)求慢车和快车的速度。
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。
问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。
在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。
求第二列快车比第一列快车晚车发多少小时?(江苏省南京市中考试题)解题思路:函数图像包含了两种不同层次的信息:有慢车行驶900km用了12h等可直接感知的浅层结构信息,也有在0~4小时之间以及稍后的一段时间内,快车和慢车的速度之和为定值和C点表示快车在某一时刻已到达终点等需要经过分析或运算才能获得的深层结构的信息。
A B C三个特色栏目的收视情况,向28位观众进行调查,调查后得【例3】某电视台为了解,,知:每位观众至少收看了其中的一个栏目;没有收看栏目A的观众中,收看栏目B人数为收看栏目C的两倍;在收看栏目A的观众中,只收看栏目A的观众人数比除了收看栏目A之外同时还收看其他栏目的人数多1;只收看一个栏目的观众中,有一半没有收看B或栏目C,求栏目A的收视率。
(“《数学周报》”杯全国数学竞赛试题)解题思路:设未知数,借助于图表表示题中各数量之间的关系。
【例4】甲、乙、丙、丁、戌五名同学参加推铅球比赛,通知抽签决定出赛顺序,在未公布顺序前每人都对出赛顺序进行了猜测。
甲猜:乙第三,丙第五;乙猜:戌第四,丁第五;丙猜:甲第一,戌第四;丁猜:丙第一,乙第二;戌猜:甲第三,丁第四。
老师说每人的出赛顺序都至少被一人所猜中,问:出赛顺序中,第一、第三、第五分别是哪位同学?(“希望杯”邀请赛试题)解题思路:文字罗列出来的条件,其相互关系错综复杂,不便分析和推断,不妨借助于图表直观地表示研究对象及其关系。
【例5】某班有50名同学,期末考试优秀的学生人数及科目如表:数这里,一科优秀者包括两、三科优秀者,两科优秀者包括三科优秀者,试说明上述统计表有错误。
(“创新杯”竞赛试题)解题思路:借助于图形直观地表示出数学、外语、语文优秀学生的集合,有利于分析与推断。
能力训练1.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘,到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。
则小强已经赛了________盘。
(“华罗庚金杯”竞赛试题)2.某市储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调s吨与时间(t小时)之间的函数关系如图,进物资与调出物资的速度保持不变)。
储运部库存物资()这批物资从开始调进到全部调出所需要的时间是___________________。
(山东省济南市中考试题)3.甲、乙两人同时从A地出发,以各自的速度匀速汽车到B地后原地休息,甲、乙两人的距离x时之间的函数关系的图像如图,则,A B两地的距离为(y千米)与乙骑车的时间()______________________千米。
4.一台计算机的硬盘分为3个区,每个区的使用情况如图所示,则这个硬盘的使用率为______________________。
(“希望杯”邀请赛试题)A B C三支足球队举行单循环比赛(每支队与另一支队只比赛一场,共三场),下表给出的5.,,是比赛的部分结果:请根据上表,填上A队与C队比赛时的比分为_______________。
(重庆市竞赛试题)6.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是()A.该班总人数为50人 B.骑车人数占总人数的20%C.步行人数30人 D.乘车人数是骑车人数的2.5倍),7.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b a再前进c千米,则此人离起点的距离s与时间t的关系示意图为()。
A. B. C. D.、、、四个区域栽种观赏植物,要在同一区域种同一种植物,8.一圆形地块,打算分A B C D相邻(有公共边)的两块里中不同的植物。
现有4种不同的植物可供选择,那么所有的栽种方案的Array个数为 ( )。
A.66 B.68C.60 D.84(重庆市竞赛试题)9.某校参加数学竞赛有120名男生,80名女生;参加英语竞赛有120名女生,80名男生。
已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,问参加数学竞赛而没有参加英语竞赛的女生人数有多少人?(“祖冲之杯”邀赛试题)10.某人租用一辆汽车由A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:h )如图所示。
若汽车行驶的平均速度为80km/h 。
而汽车每行驶1 km 需要的平均费用为1.2元。
试指出此人从A 城出发到B 城的最短线路,并求出所需费用最少多少元?(全国初中数学竞赛试题)11.刚回到营地的两个抢险队又接到救灾命令:一分队立即出发赶往30千米外的A 镇;二分队因疲劳可在营地休息a 03a (≤≤)小时再赶往A 镇参加救灾。
一分队出发后得知,唯一通往A 镇的道路在里营地10千米处发生塌方,塌方处地形复杂,必须有一分队用1小时打通.已知一分队的行进速度为5千米/时,二分队的行进速度是4a +()千米/时. (1)若二分队在营地不休息,问二分队几个小时能赶到A 镇?(2)若需要二分队和一分队同时赶到A 镇,二分队应在营地休息几个小时?(3)下列图中,①②分别描述一分队和二分队离A 镇的距离y (千米)和时间x (小时)的函数关系,请写出你认为所有可能合理图像的代号,并说明它们的实际意义.A B C D(安徽省中考题)12.已知函数|1|2|1||2|y x x x =+--++错误!未找到引用源。
.(1)在直角坐标系中作出函数图象.(2)已知关于x 的方程3|1|2|1||2|0kx x x x k +=+--++≠()错误!未找到引用源。
有三解.求k 的取值范围.(“创新杯”竞赛试题)27 以形助数 ——借助图形思考例1 7 提示:设圆周长为9,套成的三角形三边所对的弧长分别为x ,y ,z ,则x+y+z=9,不妨设z y x ≤≤,则(x ,y ,z )只有(1,1,7),(1,2,6),(1,3,5),(1,4,4),(2,2,5),(2,3,4)和(3,3,3)这7种情形.例2(1)900 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.(3)由图像可知,慢车12h 行驶的路程为900km ,所以慢车的速度为12900=75km/h ;当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为4900=225km/h,所以快车的速度为150km/h.(4)根据题意快车行驶900km 到达乙地,所以快车行驶150900=6h 到达乙地,此时两车之间的距离为6×75=450km ,所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y=kx+b ,把(4,0),(6,450)带入得⎩⎨⎧+=+=b k b k 645040,解得⎩⎨⎧-==900225b k所以,线段BC 所标示的y 与x 之间的函数关系式为y=225x-900.自变量x 的取值范围是64≤≤x . (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h ,把x=4.5代入y =225x-900,得y=112.5,此时,慢车与第一列快车之间的距离等于两列快车之间的距离112.5km ,所以两列快车出发间隔的时间是112.5÷150=0.75h ,即第二列快车比第一列快车晚出发0.75h.例3 设只收看A,B,C 三个栏目的观众人数分别为x ,y ,z ,没有收看栏目A 而收看栏目B 和栏目C 的人数为m.不只收看栏目A 的人数为n ,如图所示.()⎪⎪⎩⎪⎪⎨⎧=+++++=-=+=+,28,,1,2z m y n x z y x x n m z m y 得z=29-4y. 由y-2z=m ≥0得9y-58≥0,∴958≥y由29-4y=z ≥0得y ≤429,∵y 为整数,∴y=7从而z=1,x=8,n=7,m=5. 故栏目A 的收视率为28n x +×100﹪=2825×100﹪≈53.6﹪ 例4 第一个是丙,第三个是甲,第五个是丁.例5如图,A,B,C 三个圆分别表示数学、外语、语文优秀学生的集合,而a ,b ,c ,…,f ,g 则分别表示各类优秀学生的人数,如g 表示数、外、语三科均优秀的学生人数f 表示语、外两科优秀而数学不优秀的学生人数.则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==+=+=+=+++=+++=+++10,1817,16,29,31,32g g f g d g e g f e c g f d b g e d a 解得:a=9,b=6,c=5,d=7,e=6,f=8,g=10. 故a+b+c+d+e+f+g=51.说明数、外、语三科中至少有一科优秀的学生共有51人,而全班仅有50人,故统计错误. 【能力训练】1.2 提示:如图,用5个点表示甲、乙、丙、丁及小强这5个人,如果两个人已经赛过一盘,就在相应的两个点之间连一条线段.2.4.4小时3.244.32﹪ 提示:依照图中数据计算:00000001002.108.155.12442.10298.15265.12⨯++⨯+⨯+⨯=32﹪5.5:16.C 提示:由直方图可知,乘车人数为25人,由扇形图可知,乘车人数占全班总人数的50﹪.故全班总人数为25÷50﹪=50人.步行人数为50×30﹪=15(人).骑车人数为50-25-15=10(人).7.C8.D 提示:若A,C种同一种植物,则A,C有4×1种栽种法,B,D都有3种栽种法,共有4×3×3=36种栽种方案;若A,C种不同的植物,则有4×3种载法,B,D都有2种,共有4×3×2×2=48种栽种方案.故共有36+48=84种栽种方案.9.15人提示:如图,用A,B两个圆分别表示参加数学竞赛的男、女生人数,用C,D两个圆分别表示参加英语竞赛的男、女生人数,只参加数学竞赛的男生人数是120-75=45人,只参加英语竞赛的男生人数是80-75=5人,设两科都参加的女生人数为x人,则只参加数学竞赛的女生数为(80-x)人,只参加英语竞赛的女生人数为(120-x)人,由题意得120-x+80-x+x+45+75+5=260,解得x=65,故答案为80-x=15人.10.从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城。