数控车床加工工艺分析
- 格式:doc
- 大小:116.00 KB
- 文档页数:8
数控车床零件的工艺分析及编程典型实例更新日期:来源:数控工作室根据下图所示的待车削零件,材料为45号钢,其中Ф85圆柱面不加工。
在数控车床上需要进行的工序为:切削Ф80mm 和Ф62mm 外圆;R70mm 弧面、锥面、退刀槽、螺纹及倒角。
要求分析工艺过程与工艺路线,编写加工程序。
图1 车削零件图1.零件加工工艺分析(1)设定工件坐标系按基准重合原则,将工件坐标系的原点设定在零件右端面与回转轴线的交点上,如图中Op点,并通过G50指令设定换刀点相对工件坐标系原点Op的坐标位置(200,100)(2)选择刀具根据零件图的加工要求,需要加工零件的端面、圆柱面、圆锥面、圆弧面、倒角以及切割螺纹退刀槽和螺纹,共需用三把刀具。
1号刀,外圆左偏刀,刀具型号为:CL-MTGNR-2020/R/1608 ISO30。
安装在1号刀位上。
3号刀,螺纹车刀,刀具型号为:TL-LHTR-2020/R/60/1.5 ISO30。
安装在3号刀位上。
5号刀,割槽刀,刀具型号为:ER-SGTFR-2012/R/3.0-0 IS030。
安装在5号刀位上。
(3)加工方案使用1号外圆左偏刀,先粗加工后精加工零件的端面和零件各段的外表面,粗加工时留0.5mm的精车余量;使用5号割槽刀切割螺纹退刀槽;然后使用3号螺纹车刀加工螺纹。
(4)确定切削用量切削深度:粗加工设定切削深度为3mm,精加工为0.5mm。
主轴转速:根据45号钢的切削性能,加工端面和各段外表面时设定切削速度为90m/min;车螺纹时设定主轴转速为250r/min。
进给速度:粗加工时设定进给速度为200mm/min,精加工时设定进给速度为50mm/min。
车削螺纹时设定进给速度为1.5mm/r。
2.编程与操作(1)编制程序(2)程序输入数控系统将程序在数控车床MDI方式下直接输入数控系统,或通过计算机通信接口将程序输入数控机床的数控系统。
然后在CRT 屏幕上模拟切削加工,检验程序的正确性。
数控车床加工工艺设计摘要:数控车削加工设计以机械制造中的工艺基本理论为基础,结合数控机床高精度、高效率和高柔性等特点综合多方面的知识,解决数控加工中的工艺问题。
对零件进行编程加工之前,工艺分析具有非常重要的作用。
在比较数控车床加工工艺与传统加工工艺的基础上,对数控车床加工工艺中的关键问题进行了深入分析,总结了数控车床的工艺设计方法。
通过实例,证明了正确地进行数控车床加工工艺分析与设计有助于提高零件加工质量和生产效率。
本文通过对零件图样分析、工艺路线的拟订、切削用量的选择等几方面进行了介绍。
关键词:数控加工工艺分析图样分析工艺路线目录摘要 (I)引言 (II)第1章数控加工概述 (1)1.1 数控加工原理 (1)1.2 数控加工的特点 (1)第2章数控加工工艺分析 (3)2.1 机床的合理选用 (3)2.2 数控加工零件的工艺性分析 (3)2.3 加工方法的选择与加工方案的确定 (3)2.4 工艺与工步的划分 (3)2.5 零件的安装与夹具的选择 (4)2.6 刀具的选择与切削用量的确定 (5)2.7 对刀点和换刀点的确定 (5)2.8 工艺加工路线的确定 (6)第3章数控车床加工实例 (7)3.1 零件图样分析 (7)3.2 工艺措施 (7)3.3 确认定位基准和装夹方式 (7)3.4 加工路线及进给路线 (8)3.5 刀具选择 (9)3.6 工艺卡片 (10)3.7 切削用量选择 (10)3.8 数控加工程序单 (11)第4章数控车加工操作流程 (13)4.1 开机 (13)4.2 参考工艺分析 (13)4.3 编程 (13)4.4 模拟 (13)4.5 用试刀法对刀 (14)4.6 自动循环加工 (15)结论 (16)致谢 (17)参考文献 (18)引言制造业是我国国民经济的支柱产业,其增加值约占我国国内生产总值的40%以上,而先进的制造技术是振兴制造业系统工程的重要组成部分。
21世纪是科学技术突飞猛进、不断取得新突破的世纪,它是数控技术全面发展的时代。
浅谈数控车床加工工艺优化摘要:随着科学技术的发展,数控技术已经逐渐运用到更多的产业当中,数控车床工艺可以有效提升不同产业的机械加工效果。
市场竞争的日益增加,使得不同产业之间对数控车床加工精度的需求也逐步增加,因此数控车床工程设计技术人员就必须寻找和剖析制约加工精度的主要原因,并采取相应对策,在机械加工精度方面加以完善,从而提升各行业的生产加工精度。
关键词:数控车床;加工工艺;优化引言对比普通机床来说,数控机床有着高度集中、高加工效率、数字化等特征,为了进一步提升数控车床的加工精度,使其满足越来越高的精度加工标准,有必要对数控车床的整体工艺流程加以分析,实现对相关工艺的有效处理与优化,在提升加工精度的同时,推动加工工艺的不断提升。
1优化数控车床加工工艺的重要意义1.1进一步提升数控车床加工技术水平随着工业科技的飞速进步,社会各行各业对加工技术与制造业的要求也日益提高。
现代工业技术是发展实体经济的主要基础。
而数控车床等加工科学技术的提高,是加工与制造业总体技术水平提升的主要标志。
同传统车床与夹具比较,数控车床的广泛应用也极大地提高了数字控制工艺的总体技术。
但数控车床本身的加工精度仍然受许多各种因素的影响,在一定程度上也影响着数控车床的加工精确度与效果。
所以,要提高数控车床的加工技术水平,就有必要逐渐减少影响数控车床加工精确度的各种因素。
1.2拓宽数控车床在制造业领域中的应用范围数控车床因其加工精确、制造效能高等优势正在快速替代传统机械。
数控机械加工技术的蓬勃发展,导致了数控车床在机械加工制造领域的使用范围更加广阔,而影响数控车床机械加工产品质量的各种因素,也抑制了数控车床在机械加工制造领域的广泛应用,但一些精密加工领域仍对数控车床的机械加工精度有着更高的需求,对精密工件的加工技术尚有较大的上升空间。
所以,深入研究数控车床生产精度的影响因子和改善策略,对于扩大其在工业方面的使用有着重大价值。
2影响数控车床加工误差精度的因素就目前我国数控车床的研发与使用现状分析,数控车床的数控过程在多数情形下,都需要通过半闭环控制的伺服系统进给控制器完成各工艺步骤的控制。
数控车床零件加工及工艺设计数控车床摘要一、数控机床1、数控机床的概述2、数控机床的组成3、数控机床的特点二、数控加工技术1、数控加工技术简介2、数控加工的特点3、数控加工的技术进展4、数控加工工艺三、各部分零件工艺分析1、金属材料的分析2、各零部件的材料选择及工艺分析四、要紧零件的参数设置及加工路径分析1、概述在车床上,利用工件的旋转运动和刀具的直线运动或曲线运动来改变毛坯的形状和尺寸,把它加工成符合图纸的要求。
车削加工是在车床上利用工件相关于刀具旋转对工件进行切削加工的方法。
车削是最差不多、最常见的切削加工方法,在生产中占有十分重要的地位。
在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。
车床既可用车刀对工件进行车削,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。
数控车削加工是现代制造技术的典型代表,随着数控技术的进展,数控机床不仅在宇航、造船、军工等领域广泛使用,而且也进入了汽车、机床等民用机械制造行业。
目前,在机械行业中,单件、小批量的生产所占有的比例越来越大,机械产品的精度和质量也在不断地提高。
因此,一般机床越来越难以满足加工周密零件的需要。
同时,由于生产水平的提高,数控机床的价格在不断下降,因此,数控机床在机械行业中的使用已专门普遍。
一、数控机床1、数控机床的概述数控机床和数控技术是微电子技术同传统机械技术相结合的产物,是一种技术密集行的产品和技术。
数控机床是一种用电子运算机和专用电子运算装置操纵的高效自动化机床。
要紧分为立式和卧式两种。
立式机床装夹零件方便,但切屑排除较慢;卧式装夹零件不是专门方便,但排屑性能好,散热快。
数控机床是依照机械加工工艺的要求,使电子运算机对整个加工过程进行信息处理与操纵,实现生产过程自动化。
较好的解决了复杂、周密、多品种、中小批量机械零件加工问题,是一种通用、灵活、高效能的自动化机床。
同时,数控技术又是柔性制造系统(FMS)、运算机集成制造系统(CLMS)的技术基础之一,是机电一体化高新科技的重要组成部分。
数控加工电子教案之车削工艺分析过程及工艺卡片和刀具卡片车削工艺分析学习任务一:工艺分析【步骤一】:数控加工内容的选择该零件所有内容选择在同一台数控车床上完成。
零件有内外圆柱面、内外圆锥面和螺纹等,适合在数控车床上完成全部加工。
【步骤二】:零件的工艺性分析该零件表面由圆柱、圆锥等构成。
件1和件2之间1:5锥面配合要求配作,孔与轴为间隙配合,要求两处径向同时配合,轴向配合均允许留有较大间隙,属于“径向过定位”问题。
经分析,本例将采取用修配法首先保证1:5锥面的配合,而孔与轴通过加工过程中的测量来控制其尺寸精度,从而保证其配合精度。
件1和件3是通过螺纹配合。
主要表面粗糙度要求均是Ra1.6。
件1和两圆柱面有同轴度公差要求,件2锥孔和之间也有同轴度公差要求,两端面之间有平行度公差要求。
尺寸标注完整,轮廓描述清楚。
零件材料为45号钢,无其他热处理和硬度要求。
该零件各台阶直径相差不大,力学性能要求不高,并为小批量生产,因此毛坯选用普通型材?50mm×155mm。
学习任务二:工艺路线的设计【步骤一】:加工方法及加工方案的选择本配合零件主要采用车端面、车外圆和车内孔的加工方法,外圆采用采用粗车→精车的加工方案。
内孔加工采用钻→粗镗→精镗的加工方案。
1:5锥面配合采用修配法保证尺寸精度,其他尺寸经粗、精车后能达到加工要求。
零件内、外圆尺寸精度达到IT9级,表面粗糙度要求达到Ra1.6,粗车后余量较均匀,不需安排半精加工。
【步骤二】:加工阶段的划分划分成粗加工和精加工二个加工阶段。
因为粗车时因加工余量大、切削力和夹紧力大等因素造成较大的加工误差,如果粗、精加工混在一起,就无法避免由上述原因引起的加工误差。
划分成粗、精加工二个加工阶段,粗加工造成的加工误差可通过精加工得到纠正,从而保证加工质量。
【步骤三】:工序的划分采用按安装次数来划分工序,共分六个工序。
第一次装夹:夹φ50毛坯,加工零件2外轮廓并切断零点在右端面中心;第二次装夹:夹零件φ50毛坯,加工零件3外轮廓并切断零点在左端面中心;第三次装夹:夹φ50毛坯,加工零件1左端外轮廓并切断;第四次装夹:夹零件1φ35外圆,加工右端外轮廓;第五次装夹:加工零件2内孔至尺寸要求零点在左端面中心;第六次装夹:加工零件3内孔及内螺纹至尺寸要求零点在右端面中心。
车床主轴加工工艺过程分析【摘要】随着经济的快速发展,工业中的机械行业也在不断发展中,车床是机械行业中重要组成部分之一,车床也从以前的人工操作演化成为数控车床,但是在生产车床主轴上还存在一定问题,本文就从车床主轴加工工艺过程这方面进行分析。
【关键词】车床主轴;加工工艺过程一、前言在机械行业的发展中,车床起到了最为关键的作用,由于车床上的技术也在不断的进步,但是关于主轴的加工工业过程的所涉及的问题,促使技术人员在不断的努力完善。
二、主轴的材料和热处理45钢是普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差,要求较高的主轴则采用合金钢材料为宜。
选择合适的材料并在整个加工过程中安排足够和合理的热处理工序,对于保证主轴的力学性能、精度要求和改善其切削加工性能非常重要。
车床主轴的热处理主要包括以下几方面。
1、毛坯热处理。
车床主轴的毛坯热处理一般用正火,其目的是消除锻造应力,细化晶粒,并使金属组织均匀,以利于切削加工。
2、预备热处理。
在粗加工之后半精加工之前,安排调质处理,目的是获得均匀细密的回火索氏体组织,提高其综合力学性能,同时,细密的索氏体金相组织有利于零件精加工后获得光洁的表面。
3、最终热处理。
主轴的某些重要表面需经高频淬火。
最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。
精度要求高的主轴,在淬火回火后还要进行定性处理。
定性处理的目的是消除加工的内应力,提高主轴的尺寸稳定性,使它能长期保持精度。
定性处理是在精加工之后进行的,如低温人工时效或水冷处理。
热处理次数的多少决定于主轴的精度要求、经济性以及热处理效果。
车床主轴一般经过正火、调质和表面局部淬火3个热处理工序,无需进行定性处理。
主轴加工过程中的各加工工序和热处理工序均会不同程度地产生加工误差和应力。
为了保证加工质量,稳定加工精度,车床主轴加工基本上划分为下列三个阶段。
(1)粗加工阶段。
数控车床车削典型零件工艺分析数控车床是一种利用数控技术进行自动化车削加工的机床,广泛应用于制造业的各个领域。
下面将以数控车床车削典型零件为例进行工艺分析。
以加工一台螺杆为例,工艺分析如下:1.零件材质选择:根据螺杆的使用要求,选择适当的材料,常见的有碳钢、不锈钢等。
2.设计图纸:根据产品需求,在CAD软件中绘制螺杆的设计图纸,包括尺寸、形状等。
3.工艺规程编制:根据零件的设计要求,编制螺杆的工艺规程,包括车削工序、工艺参数、刀具选择等。
4.刀具选择:根据工艺规程选择适合的刀具,考虑切削力、刀具寿命等因素。
5.数控编程:根据工艺规程,利用CAM软件编写数控程序,确定刀具路径、切削深度、进给速度等参数。
6.夹紧装夹:将材料切割到合适的长度后,将工件固定在数控车床的主轴上,使用合适的夹具夹紧。
7.车削加工:根据数控程序进行车削加工,包括外径车削、内径车削、螺纹加工等工序。
8.检测与修正:每一道工序完成后,需要进行质量检测,确保零件尺寸、表面粗糙度等符合要求。
若发现问题,及时进行修正。
9.表面处理:根据产品要求,对螺杆表面进行处理,如抛光、镀层等。
10.质量检验:经过表面处理后,对零件进行再次质量检验,确保各项指标符合要求。
11.包装运输:将加工好的螺杆进行包装和标识,便于运输和使用。
以上是加工一台螺杆的工艺流程,数控车床的精度高、重复性好,能够高效、精确地进行复杂零件的加工。
在实际应用中,根据不同的零部件要求,工艺流程可能会有所不同,但总的来说,工艺分析包括材料选择、工艺规程编制、刀具选择、数控编程、夹紧装夹、车削加工、检测与修正、表面处理、质量检验、包装运输等环节。
通过合理的工艺分析和流程设计,可以实现零件的高效、精确加工,提高生产效率和产品质量。
数控车床零件图(15)加工及工艺分析作者:李沂摘要:当前数控技术的发展速度很快,作为一个机加工行业的人来说做好一份设计是非常重要的。
根据零件图纸的要求,从材料的选择,刀具的选用,装夹方案的确定,加工路线的设计,数值的计算,加工参数的设定,程序的编写,仿真加工,最后加工出符合零件图纸尺寸要求和形状要求的产品。
关键字:数控 , 加工 ,工艺分析 , 刀具一、课程设计的目的课程设计是在学完本专业所设的相关课程,并进行生产实习的基础上检查学生所学的基础理论知识与实际生产经验相结合的能力。
它要求学生较全面地综合运用本专业及其有关课程的理论和实践知识,进行相应科目的课程设计。
本课程设计是数控加工工艺与编程课程设计,具体设计内容为:根据给定工件图纸,编写加工工艺规程,并说明工艺装备仪器和各项参数的计算和选取方法。
其设计目的在于:1、培养学生运用机械制造工艺学与所涉及的有关课程(机械制造基础与实践、机械设计基础、互换性与检测技术、机械制图、AutoCAD、数控机床等)的知识,结合生产实习中掌握的实践技能,独立地分析和解决工艺问题,编写工艺规程的能力。
2、培养学生熟悉并运用有关手册、规范、图表等技术资料的能力。
3、进一步巩固和加深学生识图、计算机绘图、参数计算、数控编程和编写技术文件等基本技能。
二、数控机床故障诊断与维修随着电子技术和自动化技术的发展,数控技术的应用越来越广泛。
以微处理器为基础,以大规模集成电路为标志的数控设备,已在我国批量生产、大量引进和推广应用,它们给机械制造业的发展创造了条件,并带来很大的效益。
但同时,由于它们的先进性、复杂性和智能化高的特点,在维修理论、技术和手段上都发生了飞跃的变化。
数控维修技术不仅是保障正常运行的前提,对数控技术的发展和完善也起到了巨大的推动作用,因此,目前它已经成为一门专门的学科。
另外任何一台数控设备都是一种过程控制设备,这就要求它在实时控制的每一时刻都准确无误地工作。
数控车床加工工艺分析
摘要:随着数控加工的日益成熟越来越多的零件产品都用数控机床来加工,因此如何改进数控加工的工艺问题就越来越重要。
在数控机床上由于机床空间及机床的其他局限了数控加工的灵活性,这样就要求我们要懂得如何改进加工工艺,提高数控机床的应用范围和加工性能。
从而达到提高生产效率和产品质量。
关键词:数控加工加工工艺薄壁套管、护轴
前言:数控加工作为一种高效率高精度的生产方式,尤其是形状复杂精度要求很高的模具制造行业,以及成批大量生产的零件。
因此数控加工在航空业、电子行业还有其他各行业都广泛应用。
然而在数控加工从零件图纸到做出合格的零件需要有一个比较严谨的工艺过程,必须合理安排加工工艺才能快速准确的加工出合格的零件来,否则不但浪费大量的时间,而且还增加劳动者的劳动强度,甚至还会加工出废品来。
下面我将结合某一生产实例对数控加工的工艺进行分析。
以便帮助大家进一步了解数控加工,对实际加工起到帮助作用。
一般数控机床的加工工艺和普通机床的加工工艺是大同小异的,只是数控机床能够通过程序自动完成普通机床的加工动作,减轻了劳动者的劳动强度,同时能比较精准的加工出合格的零件。
由于数控加工整个加工过程都是自动完成的,因此要求我们在加工零件之前就必须把整个加工过程有一个比较合理的安排,其中不能出任何的差错,
否则就会产生严重的后果。
1、1 零件图样分析
因为薄壁加工比较困难,尤其是内孔的加工,由于在切削过程中,薄壁受切削力的作用,容易产生变形。
从而导致出现椭圆或中间小,两头大的“腰形”现象。
另外薄壁套管由于加工时散热性差,极易产生热变形,使尺寸和形位误差。
达不到图纸要求,需解决的重要问题,是如何减小切削力对工件变形的影响。
薄壁零件的加工是车削中比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。
可利用数控车床高加工精度及高生产效率的特点,并充分地考虑工艺问题对零件加工质量的影响,为此对工件的装夹、刀具几何参数、程序的编制等方面进行试验,有效地克服薄壁零件加工过程中出现的变形,保证了加工精度,为今后更好的加工薄壁零件提供了好的依据及借鉴。
无论用什么形式加工零件,首先都必须从查看零件图开始。
由图看见该薄壁零件加工,容易产生变形,这里不仅装夹不方便,而且所要加工的部位也那难以加工,需要设计一专用薄壁套管、护轴。
二、工艺分析
根据图纸提供的技术要求,工件采用无缝钢管进行加工,内孔和外壁的表面粗糙度为Ra1.6,用车削即可达到。
但内孔的圆柱度为0.03对于薄壁零件来讲要求比较高,在批量生产中,工艺路线大致为:
下料—热处理—车端面—车外圆—车内孔—质检
前面所述,薄壁件加工特点得知“内孔加工”工序是质量控制的关键。
我们抛开外圆,薄壁套管就内孔切削就难保证0.03mm的圆柱,经过我们多次加工和实验,采用刀具新磨法,较好地解决了这一问题材。
一、车孔的关键技术
车孔的关键技术是解决内孔车刀的刚性和排屑问题。
1、增加内孔车刀的刚性,我采取了以下措施:
(1)尽量增加刀柄的截面积,通常内孔车刀的刀尖位于刀柄的上面,这样刀柄的截面积较少,还不到孔截面积的1/4,如图1
图1
图2
若使内孔车刀的刀尖位于刀柄的中心线上,那么刀柄在孔中的截面积可大大地增加,如图2
(2)刀柄伸出长度尽能做到同加工工件长度长5-8mm,以增加车刀刀柄刚性,减小切削过程中的振动。
2、解决排屑问题:
主要控制切削流出方向,粗车刀要求切屑流向待加工表面(前排屑)为此。
采用正刃倾角的内孔车刀,如图3
图3
精车时,要求切屑流向向心倾前排屑(孔心排屑)因此磨刀时要注意切削刃的磨削方向,要向前沿倾圆弧的排屑方法,如图4精车刀合金用YA6,目前的M类型,它的抗弯强度、耐磨、冲击韧度以及与钢的抗粘和温度都较好。
图4
刃磨时前角磨以圆以圆弧状角度10-15°后角根据加工圆弧离壁
0.5-0.8mm(刀具底线顺弧度)如图4.c切削刃角k向为§0.5-1为沿
切屑刃图4B点;修光刃为R1-1.5副后角磨成7-8°为适图4E内刃的A-A点磨成圆向外排屑。
二、加工方法
1、加工前必须要做一件护轴;护轴主要目的:是把车好的薄壁套内孔
以原尺寸套住,用前后顶尖固定使它在不变形的情况下加工外圆,保持外圆加工质量、精度。
所以,护轴的加工对加工薄壁套管的工序是关键环节。
加工护轴毛胚用45﹟碳结构圆钢;车端面、开两头B型顶尖孔,粗车外圆,留余量1mm。
经热处理调质定形、再精车留0.2mm余量研磨。
重新热处理碎火表面,硬度HRC50,再经外圆磨床磨成如图5所示,精度达要求,完工后待用。
图5
2、为能使工件一次性加工完毕,毛胚留夹位和切断余量。
3、先把毛胚作热处理调质定形,硬度为HRC28-30(可加工范围的硬度)。
4、车刀采用C620,首先把前顶尖放进主轴锥位固定,为防止夹薄壁套时的工件变形,增加一个开环厚套如图6
图6
为保持批量生产,薄壁套管外圆的一头经加工为统一尺寸d,t的尺是轴向夹位,个薄壁套管压紧,提高车内孔时的质量,保持尺寸。
考虑到有切削热产生,工件膨胀尺寸难掌握。
需要浇注充分的切削液,减少工件的热变形。
5、用自动定心三爪卡盘将工件夹牢,车端面,粗车内圆。
留余量0.1-0.2mm精车,换上精车刀把要切削余量加工到护轴满过度配合和粗糙度的要求。
卸下内孔车刀,插入护轴至前顶尖,用尾座顶尖按长度要求夹紧,换外圆车刀粗车外圆,再精车达图纸要求。
经检验合格,用切断刀按长度要求尺寸切断。
为使工件断开时的切口平整,刀刃口
要斜磨,使工件端面平整;护轴磨小的一段就是为了切断留有空隙而磨小,护轴为减少工件变形,防止振动,以及切断时掉下碰伤原故。
结论
以上方法加工薄壁套管,解决了变形或造成尺寸误差和形状误差而达不到要求的问题,实践证明加工效率较高、较快。
易于操作,并且适合加工较长的薄壁零件,尺寸易掌握,次性完工,批量生产也较实际。