线性代数第五章 相似矩阵
- 格式:doc
- 大小:999.50 KB
- 文档页数:10
第五章 相似矩阵§1 特征值与特征向量特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。
定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足:(1)AX X λ=。
则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。
例如矩阵1000A ⎛⎫= ⎪⎝⎭,取11= 0X ⎛⎫ ⎪⎝⎭,20=1X ⎛⎫⎪⎝⎭,则有 11=1AX X ⋅,22=0AX X ⋅,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征向量。
(1)式又可以写成 ()0(2)E A X λ-=。
即特征向量是齐次线性方程组(2)的非零解,从而有||0 (3)E A λ-=。
(3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。
||E A λ-称为方阵A 的特征多项式。
对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。
例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。
证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。
两边左乘以A ,有22()()A X A A AX X λλλ===。
又 2A E =,所以2(1)0X λ-=。
由于0X ≠,从而 21λ=,即 1λ=±。
例2:求矩阵110430102A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的特征值与特征向量。
解:因 2110||430(2)(1)102E A λλλλλλ+--=-=----。
所以矩阵A 的特征值2λ= 或 1λ=。
当2λ=时,310100410010100000-⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,1001η⎛⎫ ⎪= ⎪ ⎪⎝⎭。
故属于2λ=的特征向量为11(0)k k η≠。
当 1λ=时,210101420012101000-⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,2121η-⎛⎫ ⎪=- ⎪ ⎪⎝⎭。
故属于1λ=的特征向量为 222(0)k k η≠。
§2 相似矩阵定义2:若n 阶方阵A 和B ,存在一个可逆矩阵P ,使得 1P AP B -=。
则称矩阵A 与B 相似,记为 ~A B 。
对于相似矩阵,有下列性质: 1)任一方阵A ,它与自身相似; 2)若A 与B 相似,则B 与A 相似;3)若A 与B 相似,B 与C 相似,则A 与C 相似;4)A 与B 相似,则 ||||E A E B λλ-=-。
证明:只证4),因A 与B 相似,存在可逆矩阵P ,使得 1P AP B -=。
从而111|||||()|E B P EP P AP P E A P λλλ----=-=-1||||||||P E A P E A λλ-=-=-。
如果方阵A 相似与对角形矩阵,则称A 可以对角化。
并非每个方阵均可以对角化,例如矩阵0100A ⎛⎫= ⎪⎝⎭,对任何2阶可逆矩阵P ,1P AP -均不能为对角形矩阵。
下面给出一般方阵A 相似对角形的条件。
若A 相似对角形,则有 11 (4)n P AP λλ-⎛⎫ ⎪= ⎪ ⎪⎝⎭记 1(,,)n P X X =,由(4)式可得111(,,)(,,) n n n A X X X X λλ⎛⎫ ⎪=⎪ ⎪⎝⎭即111(,,)(,,)n n n AX AX X X λλ=。
从而 1,2,,i i i AX X i n λ==()。
由定义知i λ为A 的特征值,由P 可逆知i X 为非零向量,且12,,,n X X X 线性无关。
所以它是属于i λ的特征向量。
以上过程可逆,故存在下面定理。
定理1:n 阶方阵A 可以对角化的充分必要条件是A 有n 个线性无关的特征向量。
该定理给出了矩阵相似对角形的充分必要条件,但如何找出n 个线性无关的特征向量,则需要下列一些结果。
定理2:方阵A 的属于不同特征值的特征向量线性无关。
证明:设1,,s X X 是分别属于不同特征值1,,s λλ的特征向量,当1s =时,命题成立。
设当s k =时命题成立,则当1s k =+时,设有 11110(5)k k k k l X l X l X +++++=(5)式乘以1k λ+,有11111110 (6)k k k k k k k l X l X l X λλλ++++++++=再对(5)式两边左乘以A ,有1111110 (7)k k k k k k l X l X l X λλλ++++++=(6)-(7)得11111()()0 k k k k k l X l X λλλλ++-++-=。
由归纳假设,1,,s X X 线性无关。
从而 1()0 (1,2,,)i k i l i k λλ+-==。
由于1k i λλ+≠,所以 0 (1,2,,)i l i k ==,代入(5)式,得 10k l +=。
即 11,,k X X + 线性无关,故1s k =+命题成立。
从而定理得证。
推论1:n 阶方阵A 有n 个不同的特征值,则A 一定可以对角化。
实际计算中,先求出n 阶方阵A 的全部特征值,再找出属于每个特征值的特征向量的极大线性无关组。
可以证明所有这些线性无关向量组所构成的“大”向量组仍然线性无关。
若这个“大”向量组中向量个数等于n ,则A 可以对角化,若向量个数小于n ,则A 不能对角化。
例3:判别下列矩阵是否可以对角化1)211020413A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭ ; 2)100011001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。
解:1)2211||020(1)(2)413E A λλλλλλ+---=-=+---。
特征值为 11λ=-,22λ=(二重根)。
当 11λ=-时,111101030010414000---⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ,1101η⎛⎫⎪= ⎪ ⎪⎝⎭。
当22λ=时,11141144000000411000⎛⎫-- ⎪--⎛⎫ ⎪ ⎪→⎪ ⎪ ⎪ ⎪--⎝⎭⎪⎝⎭,21410η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,31401η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭所以A 相似于对角形。
取 123(,,)P ηηη=,则有 1122P AP --⎛⎫⎪= ⎪⎪⎝⎭。
(2)3101||011(1)001E A λλλλλ---=--=-- , 特征值为 1λ=(三重根)。
当1λ=时,000001001000000000⎛⎫⎛⎫ ⎪ ⎪-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1100η⎛⎫ ⎪= ⎪ ⎪⎝⎭,1010η⎛⎫ ⎪= ⎪ ⎪⎝⎭。
故A 不能对角化。
例4:已知 111X ⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫ ⎪= ⎪⎪--⎝⎭的一个特征向量。
1)求,a b 和X 对应的特征值λ。
2)问A 能否相似对角形解:1)因X 是A 的属于特征值λ的特征向量,则有2121153111211a b λ-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭。
从而 (2)1205()301(2)0a b λλλ---=⎧⎪+--=⎨⎪-+++=⎩ 解得 1,3,0a b λ=-=-=。
2)因 212533102A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭, 3212||533(1)102E A λλλλλ---=-+-=++, 所以特征值1λ=-(三重根)。
又312101523011101000--⎛⎫⎛⎫⎪ ⎪---→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭基础解系中仅含一个线性无关的向量,故A 不能对角化。
§3 实对称矩阵的对角化上一节提到,并非每个方阵均可以对角化,这一节介绍一类能对角化的矩阵— —实对称矩阵。
记X 表示向量X 中每个分量取其共轭复数所构成的向量,A 为矩阵A 中每个元素取其共轭复数所构成的矩阵,则 AX AX = 。
性质1:实对称矩阵A 的特征值为实数。
证明:因A 是实对称矩阵,所以, A A A A '==。
设λ是A 的特征值,则有向量0X ≠,使得 AX X λ=,且有AX X λ=。
考虑 ()X AX X X X X λλ'''==,另一方面, ()()X AX X A X AX X X X X X λλ''''''====。
∴ ()()X X X X λλ''=。
0X ≠,0X X '>,∴ λλ= 。
即 λ为实数。
性质2:设λ,μ是实对称矩阵A 的两个不同特征值,,X Y 是分别属于λ,μ的特征向量,则X 与Y 正交。
证明: AX X λ=,AY Y μ=(λμ≠), 考虑 (,)Y AX Y X Y X λλ''==。
又 ()()(,)Y AX Y A X AY X Y X Y X Y X μμμ''''''=====。
从而 ()(,)0 (,)0Y X Y X λμ-=⇒=。
即 X 与Y 正交。
定理3:任一n 阶实对称矩阵A 一定存在正交矩阵Q ,使得11n Q AQ Q AQ λλ-⎛⎫⎪'==⎪ ⎪⎝⎭。
这里1,,n λλ是A 的特征值。
证明:1n =时,命题成立。
设1n -时命题成立。
即对1n -阶实对称矩阵1A 有1n -正交矩阵2Q ,使得1212n Q AQ λλ⎛⎫⎪'=⎪ ⎪⎝⎭。
下面证明在n 时命题也成立。
由性质1,实对称矩阵A 一定存在实的特征值1λ,取1X 是属于1λ的单位特征向量,将1X 扩充成n R 的标准正交基 1,,n X X ,记 11(,,)n Q X X =,则1111*0Q AQ A λ⎛⎫'=⎪⎝⎭。
由A 对称,可得11Q AQ '对称。
从而 111100Q AQ A λ⎛⎫'= ⎪⎝⎭,1A 仍为(1)n -阶对称矩阵。
由归纳假设存在正交矩阵2Q ,使得 1212n Q AQ λλ⎛⎫⎪'= ⎪ ⎪⎝⎭。
令12100Q Q Q ⎛⎫= ⎪⎝⎭,则 Q 正交,且 1n Q AQ λλ⎛⎫ ⎪'= ⎪⎪⎝⎭。
实际计算中,对每个不同的特征值,求出它们线性无关的特征向量,再进行施密特正交化得到正交向量组。
合并这些单位化了的正交向量组可构成n R 的标准正交基,把标准正交基按列的形式构成的正交矩阵记为Q ,则有1n Q AQ λλ⎛⎫⎪'=⎪ ⎪⎝⎭。
例5:设 400031013A ⎛⎫⎪= ⎪ ⎪⎝⎭,求正交矩阵P ,使得 1P AP -为对角形。
解:2400||031(4)(2)013E A λλλλλλ--=--=----, 特征值为 12λ= ,24λ=(二重根) 当2λ=时,200100011011011000-⎛⎫⎛⎫ ⎪ ⎪--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,1011η⎛⎫⎪=- ⎪ ⎪⎝⎭。