控制系统仿真课程设计
- 格式:doc
- 大小:2.80 MB
- 文档页数:17
控制系统仿真课程设计(2010级)题目控制系统仿真课程设计学院自动化专业自动化班级学号学生姓名指导教师王永忠/刘伟峰完成日期2013年7月控制系统仿真课程设计(一)——锅炉汽包水位三冲量控制系统仿真1.1 设计目的本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。
1.2 设计原理锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。
汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。
汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。
常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。
影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。
图1-1 锅炉汽水系统图在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示:(1)汽包水位在给水流量作用下的动态特性汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。
因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。
控制系统设计课程设计一、设计背景本次控制系统设计课程设计的背景是为了让学生通过实践操作,深入了解控制系统的基本概念和设计方法,提高学生的实际应用能力和创新思维能力。
二、课程目标本次课程设计的目标是让学生掌握控制系统的基本原理和设计方法,具备独立完成控制系统设计的能力,并且能够在实际应用中灵活运用所学知识。
三、教学内容1. 控制系统基础知识:包括控制系统定义、分类、组成部分等方面;2. 控制系统建模与仿真:包括传递函数法、状态空间法等建模方法,以及Simulink软件进行仿真;3. 控制器设计:包括PID控制器、根轨迹法等常用控制器的设计方法;4. 系统优化与鲁棒性分析:包括最优化问题求解方法、鲁棒性分析等方面。
四、教学方法1. 理论讲解:通过PPT等方式进行理论知识讲解;2. 实验操作:引导学生进行实验操作,加深对理论知识的理解;3. 课程作业:布置相关作业,让学生在实践中巩固所学知识。
五、实验设计1. 实验一:控制系统建模与仿真通过Simulink软件进行控制系统建模和仿真,让学生了解传递函数法和状态空间法的基本原理和应用方法。
2. 实验二:PID控制器设计通过实际电路进行PID控制器的设计和调节,让学生了解PID控制器的基本原理和应用方法。
3. 实验三:根轨迹法控制器设计通过实际电路进行根轨迹法控制器的设计和调节,让学生了解根轨迹法的基本原理和应用方法。
4. 实验四:最优化问题求解通过Matlab软件进行最优化问题求解,让学生了解最优化问题的基本原理和应用方法。
5. 实验五:鲁棒性分析通过实际电路进行鲁棒性分析,让学生了解鲁棒性分析的基本原理和应用方法。
六、课程评估1. 课堂表现(30%):包括听课专注度、积极参与度等方面;2. 课程作业(30%):包括实验报告、作业完成情况等方面;3. 课程设计(40%):包括课程设计方案、实验操作情况等方面。
七、教学成果通过本次控制系统设计课程设计,学生可以深入了解控制系统的基本概念和设计方法,提高实际应用能力和创新思维能力。
这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
控制系统的数字仿真及计算机辅助设计第二版课程设计一、课程设计实验目的本次课程设计旨在通过数字仿真的方法和计算机辅助设计的手段,探究控制系统的特性和解决实际问题的能力。
实验目的包括:1.学习掌握MATLAB/Simulink数字仿真软件的基本操作,以及理解控制系统的基本概念和原理;2.熟悉计算机辅助设计软件的使用方法,能够利用计算机和网络资源进行控制系统设计和优化;3.通过实验操作,加深对控制系统的认识和理解,提高分析和解决问题的能力。
二、课程设计实验内容本次课程设计共分为两个实验项目,主要内容包括:实验项目一:PID控制器设计和数字仿真1.学习PID控制器的基本原理和调节方法,运用MATLAB/Simulink软件进行PID控制器的建模和仿真;2.通过对比不同PID控制器的响应特性,分析影响控制性能的因素,并利用优化算法提高控制精度;3.选取不同的控制对象进行实验,以比较不同控制策略的效果,并讨论实际应用PID控制器的具体应用场景。
实验项目二:控制系统的网络化设计和远程控制实验1.学习计算机辅助设计软件的基本原理和方法,理解控制系统的网络化设计思想;2.利用网络资源和远程控制工具,实现对控制系统的远程监控和控制,观察系统的响应情况;3.分析网络化控制系统的优势和局限,并讨论如何利用现有技术和资源优化控制系统的设计和运行效率。
三、课程设计实验结果与讨论根据课程设计的要求,学生需要独立完成实验设计和数据分析,并用MATLAB/Simulink和计算机辅助设计软件实现控制系统的数字仿真和优化。
实验结果如下:实验项目一在PID控制器的设计和仿真实验中,学生选定一种控制对象,利用MATLAB/Simulink软件建立控制系统模型,并确定PID控制器的参数。
例如,在石油管道的温度控制系统中,学生需要确定适当的比例系数、积分系数和微分系数,以满足系统的温度控制要求。
通过仿真实验,学生记录下控制系统的输入和输出数据,并利用MATLAB/Simulink进行数据分析和优化。
matlab控制系统课程设计一、课程目标知识目标:1. 学生能掌握MATLAB软件的基本操作,并运用其进行控制系统的建模与仿真。
2. 学生能理解控制系统的基本原理,掌握控制系统的数学描述方法。
3. 学生能运用MATLAB软件分析控制系统的稳定性、瞬态响应和稳态性能。
技能目标:1. 学生能运用MATLAB软件构建控制系统的模型,并进行时域和频域分析。
2. 学生能通过MATLAB编程实现控制算法,如PID控制、状态反馈控制等。
3. 学生能对控制系统的性能进行优化,并提出改进措施。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术的兴趣和热情,提高创新意识和实践能力。
2. 学生在团队协作中,学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能认识到控制系统在现代工程技术中的重要作用,增强社会责任感和使命感。
课程性质:本课程为实践性较强的课程,注重理论知识与实际应用相结合。
学生特点:学生具备一定的数学基础和控制理论基础知识,对MATLAB软件有一定了解。
教学要求:教师需采用案例教学法,引导学生运用MATLAB软件进行控制系统设计,注重培养学生的实际操作能力和解决问题的能力。
同时,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 控制系统概述:介绍控制系统的基本概念、分类及发展历程,使学生了解控制系统的基本框架。
- 教材章节:第一章 控制系统概述2. 控制系统的数学模型:讲解控制系统的数学描述方法,包括微分方程、传递函数、状态空间方程等。
- 教材章节:第二章 控制系统的数学模型3. MATLAB软件操作基础:介绍MATLAB软件的基本操作,包括数据类型、矩阵运算、函数编写等。
- 教材章节:第三章 MATLAB软件操作基础4. 控制系统建模与仿真:利用MATLAB软件进行控制系统的建模与仿真,分析系统的稳定性、瞬态响应和稳态性能。
- 教材章节:第四章 控制系统建模与仿真5. 控制算法及其MATLAB实现:讲解常见控制算法,如PID控制、状态反馈控制等,并通过MATLAB编程实现。
课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
控制系统计算机仿真课程设计前言计算机仿真作为一个重要的工具,在控制系统的设计和实现中发挥着重要作用。
本文将介绍控制系统计算机仿真课程设计的内容和步骤,并结合一个实际的案例阐述如何利用计算机仿真技术进行控制系统设计。
设计内容和步骤设计内容控制系统计算机仿真课程的设计内容通常包括以下几个方面:1.系统建模:选择合适的控制模型,建立数学模型和仿真模型。
2.系统分析:分析系统的稳态和暂态响应,优化控制系统的性能。
3.控制器设计:设计合适的控制器结构和参数,实现闭环控制。
4.系统仿真:利用计算机仿真软件进行系统仿真,并分析仿真结果。
5.实验验证:通过实验验证仿真结果的正确性,进一步优化控制系统的性能。
设计步骤控制系统计算机仿真课程的设计步骤可以分为以下几个部分:1.系统建模掌握控制系统建模方法,能够从实际物理系统中抽象出控制对象、控制器等模型,建立相应的数学模型和仿真模型。
2.系统分析使用数学分析方法,分析系统的稳态和暂态响应,评估控制系统的性能。
包括评估系统的稳定性、快速性、抗干扰性等。
3.控制器设计使用控制理论,设计合适的控制器结构和参数,实现闭环控制。
掌握 PID、根轨迹、频域等控制器设计方法,能够根据系统要求选择合适的控制器。
4.系统仿真使用计算机仿真软件,进行系统仿真,验证控制系统的性能和预测实际系统行为。
掌握仿真软件的使用方法,能够进行仿真实验设计、仿真模型编写、仿真实验执行等。
5.实验验证在实验室、车间等实际环境中,利用实验设备和仪器对控制系统进行实验验证,验证仿真结果的正确性。
并通过实验优化控制器参数,提高控制系统的性能。
实例分析在本节中,我们将结合一个实际的案例,介绍控制系统的计算机仿真课程设计。
案例背景某高速公路入口处的车道管理系统由计算机控制,通过红绿灯控制车辆的通行。
系统从入口指示车辆能否进入高速公路,在出口将车辆计数和收费。
由于车辆的流量较大,系统的控制效果受到影响,需要进行优化。
控制系统课课程设计一、教学目标本节课的教学目标是使学生掌握控制系统的基本概念、原理和分析方法,培养学生运用控制系统理论知识解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解控制系统的定义、分类和性能指标;(2)掌握线性系统的状态空间表示、传递函数和频率响应分析方法;(3)理解控制器的设计方法和步骤。
2.技能目标:(1)能够运用状态空间方法分析和设计控制系统;(2)能够运用传递函数法分析控制系统性能;(3)能够运用频率响应法设计控制器。
3.情感态度价值观目标:(1)培养学生的团队合作精神和自主学习能力;(2)激发学生对控制系统学科的兴趣和好奇心;(3)培养学生的工程实践能力和创新意识。
二、教学内容本节课的教学内容主要包括以下几个部分:1.控制系统的基本概念和性能指标;2.线性系统的状态空间表示和传递函数;3.控制系统的设计方法和步骤;4.控制系统性能分析的频率响应法。
具体安排如下:第一课时:控制系统的基本概念和性能指标;第二课时:线性系统的状态空间表示和传递函数;第三课时:控制系统的设计方法和步骤;第四课时:控制系统性能分析的频率响应法。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:用于讲解控制系统的基本概念、原理和分析方法;2.案例分析法:通过分析实际案例,使学生更好地理解控制系统的设计和分析方法;3.实验法:安排实验室实践环节,让学生亲自动手进行控制系统的设计和调试,提高学生的实践能力;4.讨论法:学生进行分组讨论,培养学生的团队合作精神和沟通能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:《控制系统》教材,用于引导学生学习和复习;2.参考书:提供相关控制系统领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作课件和教学视频,生动形象地展示控制系统的设计和分析过程;4.实验设备:安排实验室实践环节,提供所需的控制系统实验设备。
MATLAB与控制系统的数字仿真及CAD课程设计引言MATLAB是一种高性能计算软件,广泛应用于科学计算、信号处理、图像处理、数据分析、控制工程等领域。
控制系统是MATLAB中应用广泛的一类工程实践。
数字仿真是利用计算机对各类物理、化学、机械、电气、通信等各类系统进行模拟,以求得对系统性能的认识和分析的一种有效方法。
此文档旨在介绍MATLAB与控制系统的数字仿真及CAD课程设计。
MATLAB数字仿真MATLAB数字仿真是一种基于MATLAB软件平台的模拟方法,可以有效模拟和分析电子系统、传感器、组装等各类系统的工作性能。
MATLAB软件有强大的数值计算和可视化工具,使得控制系统的数字仿真具有高精度的仿真结果和优秀的用户体验。
仿真工具箱MATLAB提供了很多工具箱,包括信号处理工具箱、图像处理工具箱等,控制系统仿真工具箱也是其中之一。
控制系统仿真工具箱提供了包括连续时间系统、离散时间系统、多变量系统、无线系统在内的多种控制系统模型,并提供了丰富的仿真方法,例如最小二乘法、维纳滤波等。
用户可以通过编写脚本或使用图形化界面操作控制系统仿真工具箱,实现自己想要的仿真结果。
建立仿真模型在进行数字仿真前,需要先建立仿真模型。
对于控制系统而言,建立仿真模型需要明确系统的输入、输出、各组件之间的关系以及系统的初始条件等。
建立好仿真模型后,可以对系统的工作过程进行仿真和分析。
以温度控制系统为例,建立仿真模型。
该温度控制系统包含温度感应器作为输入,控制器和加热器作为输出。
建立好模型后,系统可以对不同的工作条件下进行仿真和分析,例如调节感应器灵敏度、控制器输出功率等。
控制系统CAD设计控制系统的CAD设计是指利用计算机辅助设计软件(Computer-ded Design,简称CAD)进行控制系统的三维模型设计、仿真、优化等工作。
控制系统CAD设计可以有效降低设计成本,提高设计效率和质量。
CAD软件常用的CAD软件有AutoCAD和SolidWorks。
控制系统建模与仿真设计课程一、课程简介控制系统建模与仿真设计课程是电子信息工程专业的必修课程,旨在培养学生对控制系统建模、仿真和设计的基本理论和方法的掌握,以及对工程实践中常用的控制系统建模与仿真软件的熟练应用能力。
二、课程内容1. 控制系统基础知识2. 系统建模方法3. 系统仿真技术4. 控制器设计方法5. 闭环控制系统分析与设计三、教学目标1. 掌握控制系统基础知识;2. 熟悉常见的系统建模方法;3. 掌握常用的系统仿真技术;4. 掌握控制器设计方法;5. 能够进行闭环控制系统分析与设计。
四、教学方式1. 讲解理论知识;2. 演示实验操作;3. 分组实验操作。
五、教材参考书目1. 《现代控制理论》(第三版)李国栋,高等教育出版社,2010年。
2. 《MATLAB/Simulink在自动化中的应用》(第二版)张晓峰等,机械工业出版社,2012年。
六、实验项目1. 传感器模型建模与仿真;2. 电机系统建模与仿真;3. 磁悬浮系统建模与仿真;4. PID控制器设计与实现。
七、考核方式1. 平时成绩:课堂表现、作业完成情况等;2. 实验报告:对实验结果的分析和总结;3. 期末考试:理论知识和实验操作的综合考核。
八、教学效果评估1. 学生掌握控制系统建模与仿真的基本理论和方法;2. 学生能够熟练应用常用的控制系统建模与仿真软件进行实践操作;3. 学生能够进行闭环控制系统分析与设计,具备一定的工程应用能力。
九、教学经验总结通过本课程的教学,可以让学生在理论知识和实践操作中相互促进,提高了学生的动手能力和解决问题的能力。
同时,本课程还注重培养学生的团队协作精神和创新意识,为其未来从事相关工作打下坚实基础。
目录题目:切换系统的仿真 (2)摘要 (3)1 引言 (4)2 一般控制系统 (4)2.1 控制器的设计 (4)2.2 仿真实例 (5)2.3 改变参数对系统性能的影响 (6)2.3.1 时滞环节对系统性能的影响 (7)2.3.2 切换函数对系统性能的影响 (8)2.4 状态观测器的设计 (10)2.4.1 仿真实例 (10)3 非线性系统 (12)3.1 非线性切换系统的稳定性 (12)3.2 改变参数对非线性系统性能的影响 (16)3.2.1 时滞环节对系统性能的影响 (16)3.2.2 切换函数对系统性能的影响 (17)3.3 非线性系统的控制器设计 (18)3.3.1 仿真实例 (18)4 结论 (21)参考文献 (23)题目:切换系统的仿真问题描述:利用Matlab 软件仿真如下随机切换系统1、一般控制系统:)())(()()(t u D t t x B t x A t xσσσστ+-+= 其中x 为状态,u 为控制。
2、非线性系统:)))((())(()()(t d t x g W t x g B t x A t x-++=σσσ 要求:(1)给出仿真程序,系统的状态曲线;(2)改变参数,探索控制算法的设计及其性能。
课程设计报告摘要1 引言切换系统是一个由一个系列的连续或离散的子系统以及协调这些子系统之间起切换的规则组成的混合系统。
关于切换系统最重要的研究是关于其稳定性能的研究,切换系统的稳定性具有三个基本问题:对于任意切换序列系统的稳定性;对给定的某类切换序列系统的稳定性;构造使系统能够稳定的切换序列,即镇定问题。
切换系统的稳定性有一个显著的特点是,其子系统的稳定性不等于整个系统的稳定性,即可能存在这样的情形,切换系统的每个子系统的是稳定的,但是在按照规则进行切换时,会导致整个系统不稳定,与此相对,也可能存在这样的情形,尽管每个子系统是不稳定的,但是可以通过某种切换规则使整个系统稳定。
控制系统类的课程设计一、教学目标本课程的教学目标是让学生掌握控制系统的基本概念、原理和方法,培养学生分析和解决控制系统问题的能力。
具体来说,知识目标包括:掌握控制系统的数学模型、稳定性分析、控制器设计等基本理论;技能目标包括:能够运用MATLAB等软件进行控制系统分析和仿真;情感态度价值观目标包括:培养学生对控制工程的兴趣,提高学生的问题意识和创新精神。
二、教学内容根据课程目标,教学内容主要包括控制系统的基本概念、数学模型、稳定性分析、控制器设计等。
具体安排如下:1.第一章:控制系统导论,介绍控制系统的基本概念、发展历程和应用领域。
2.第二章:控制系统的数学模型,学习状态空间表示、系统性质和状态反馈。
3.第三章:稳定性分析,掌握李雅普诺夫方法、劳斯-赫尔维茨准则等。
4.第四章:控制器设计,学习PID控制、状态反馈控制和观测器设计。
5.第五章:控制系统仿真,利用MATLAB进行控制系统分析和仿真。
三、教学方法为了激发学生的学习兴趣和主动性,本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于传授基本理论和概念,引导学生掌握控制系统的基本知识。
2.讨论法:学生针对实际案例进行讨论,培养学生的分析问题和解决问题的能力。
3.案例分析法:分析控制系统在实际工程中的应用,帮助学生了解控制系统的应用价值。
4.实验法:利用MATLAB进行控制系统分析和仿真,提高学生的动手能力和实践能力。
四、教学资源为了支持教学内容和教学方法的实施,本课程准备以下教学资源:1.教材:《控制系统导论》、《控制工程基础》等。
2.参考书:《现代控制系统》、《控制理论及其应用》等。
3.多媒体资料:制作课件、教学视频等,以便于学生复习和自学。
4.实验设备:计算机、MATLAB软件、控制系统实验板等,用于实验教学和仿真练习。
五、教学评估本课程的评估方式包括平时表现、作业、考试等。
平时表现主要评估学生的课堂参与度、提问和讨论等,占总成绩的20%;作业主要包括练习题和小论文,占总成绩的30%;考试分为期中考试和期末考试,各占总成绩的30%。
控制系统课程设计--转速反馈控制直流调速系统的仿真控制系统课程设计设计内容:转速反馈控制直流调速系统的仿真院系: 信息科学与技术部专业: 电气工程及其自动化班级 : 11Q电气7 班目录一.仿真软件的选用 ..................................................................... .. (1)1.1 MATLAB简介 ..................................................................... . (1)1.2 对SIMULINK的简介 ..................................................................... ................................. 1 二.仿真框图及说明 ..................................................................... .. (2)2.1比例积分控制的直流调速系统的仿真框图 .....................................................................22.2仿真参数要求 ..................................................................... ................................................ 2 三.仿真模型图及参数设置 ..................................................................... ......................................... 2 四.仿真结果 ..................................................................... .. (4)4.1 仿真过程 ..................................................................... . (4)4.2调节器参数的调整 ..................................................................... ........................................ 6 五. 总结...................................................................... . (8)六.参考文献 ..................................................................... ................................................................. 9 七.致谢...................................................................... ........................................................................9一.仿真软件的选用1.1 MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
pid控制系统仿真课程设计一、课程目标知识目标:1. 学生能理解PID控制系统的基本原理,掌握其数学模型及系统组成;2. 学生能描述PID控制系统中各参数对系统性能的影响;3. 学生能运用仿真软件进行PID控制系统的建模与仿真。
技能目标:1. 学生能够运用所学知识,设计简单的PID控制系统仿真实验;2. 学生能够通过仿真软件分析PID控制系统性能,并调整参数优化系统性能;3. 学生能够利用仿真结果,撰写实验报告,进行结果分析。
情感态度价值观目标:1. 学生通过本课程的学习,培养对自动化技术的兴趣和热情;2. 学生在团队合作中进行仿真实验,培养沟通协调能力和团队精神;3. 学生在实验过程中,认识到理论与实践相结合的重要性,培养严谨的科学态度。
课程性质:本课程为实践性较强的课程,要求学生在掌握理论知识的基础上,运用仿真软件进行实际操作。
学生特点:学生具备一定的控制理论基础,对PID控制系统有初步了解,但对仿真软件的使用相对陌生。
教学要求:结合学生特点,注重理论与实践相结合,通过实际操作使学生深入理解PID控制系统的原理和性能。
在教学过程中,强调学生的主体地位,激发学生学习的积极性,培养学生独立思考和解决问题的能力。
将课程目标分解为具体的学习成果,以便于后续教学设计和评估。
二、教学内容1. 理论知识:- PID控制系统的基本原理与数学模型;- PID控制系统中比例、积分、微分三个环节的作用及影响;- 控制系统稳定性、快速性、准确性的分析。
2. 实践操作:- 仿真软件的安装与使用方法;- 基于仿真软件的PID控制系统建模;- PID控制参数的调整与优化;- 控制系统性能的分析与评价。
3. 教学大纲:- 第一周:PID控制系统的基本原理与数学模型;- 第二周:比例、积分、微分环节的作用及影响;- 第三周:控制系统稳定性、快速性、准确性的分析;- 第四周:仿真软件的安装与使用方法;- 第五周:基于仿真软件的PID控制系统建模;- 第六周:PID控制参数的调整与优化;- 第七周:控制系统性能的分析与评价及实验报告撰写。
自动控制系统计算机仿真课程设计一、设计背景自动控制系统是现代控制理论在工程实践中应用的一个重要领域,在诸如工业控制、航空航天、军事装备等领域都有广泛应用。
为了方便学生深入理解自动控制系统的原理和应用,让学生熟悉自动控制系统的建模、仿真和控制方法,本设计课程采用计算机仿真的方法进行教学。
二、设计目标1.让学生掌握自动控制系统的基本原理和应用,了解自动控制系统的各部分组成和功能。
2.培养学生独立进行系统建模和仿真的能力,掌握MATLAB等软件实现自动控制系统仿真的方法。
3.让学生通过实践掌握控制算法的设计和实现,提高学生的分析和解决问题的能力。
三、设计内容本课程设计分为以下四个部分:1. 自动控制系统建模本部分将在讲解自动控制系统的概念、原则和应用基础上,引导学生进行系统建模。
我们将以一个缸内压力的控制系统为例,进行建模和仿真的讲解。
学生需要完成系统建模、系统参数假设、控制策略设计等步骤。
在此基础上,我们将使用Simulink等软件进行系统的仿真,并分析仿真结果。
2. 控制系统性能分析本部分将以均方根误差和最大偏差两个指标为例,引导学生进行控制系统性能分析。
学生需要了解这两个指标的含义及其适用范围,进行仿真实验并分析实验结果。
3. 控制算法设计本部分将在讲解PID控制算法、自适应控制算法、模糊控制算法等基础上,引导学生进行控制算法的设计。
学生需要选择合适的控制算法进行仿真实验,并进行实验数据分析。
4. 系统鲁棒性分析本部分将以干扰抑制能力和控制鲁棒性为例,引导学生进行系统鲁棒性分析。
学生需要了解干扰产生的原因和控制方法,并进行仿真实验和数据分析。
四、设计要求1.学生需要具备基本的线性代数、微积分和控制理论基础,掌握MATLAB等软件的使用方法。
2.学生需要自主选定一个自动控制系统进行仿真实验,并在课程中完成建模、控制算法设计、实验仿真和数据分析等步骤。
3.学生需按时提交课程设计报告和仿真代码,课程设计报告中需包含设计题目、背景和目的、仿真实验步骤和数据分析结果等内容。
控制系统仿真课程设计(2010级)题目控制系统仿真课程设计学院自动化专业自动化班级学号学生姓名指导教师王永忠/刘伟峰完成日期2013年7月控制系统仿真课程设计(一)——锅炉汽包水位三冲量控制系统仿真1.1 设计目的本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。
1.2 设计原理锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。
汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。
汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。
常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。
影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。
图1-1 锅炉汽水系统图在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示:(1)汽包水位在给水流量作用下的动态特性汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。
因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。
虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。
“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2)常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。
单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。
而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。
但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。
为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。
图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。
图1-2 三冲量调节系统图锅炉水位的三冲量调节系统是一种前馈-串级符合调节系统,调节系统框图如图1-3所示,其中G3为给水系统传递函数,a1、a2、a3分别为汽包液位传感器、给水流量传感器及蒸汽流量传感器转换系数。
ΣG 1a3G 3FC LC a 1G 2a2R Y +-+-++F+L图1-3 三冲量调节系统框图在仿真实验中,以200t/H 蒸汽锅炉汽包水位控制为例,参数设置如下: 0173.0,033.0,20,037.0,15,6.3,30,037.032132211=========a a a G K T K T K f 初始时刻加入单位阶跃响应,t =550s 时加入给水流量25%内扰,在1200s 时加入水位25%干扰,1600s 加入蒸汽流量25%外扰1.3 设计内容1.掌握汽包水位的单冲量、双冲量及三冲量控制的原理及优缺点;单冲量:以液位为被控变量,对给水流量进行调整。
优点:结构简单,设计方便;缺点:易受虚假水位的影响。
双冲量:以液位为被控变量,对蒸汽量进行前馈控制,构成的前馈反馈控制系统,从而对给水流量进行调整。
优点:可以克服虚假水位的影响;缺点:对给水流量的影响不能进行调节。
三冲量:以液位为主被控变量,给水流量为副被控变量,对蒸汽量进行前馈控制,构成的前馈串级控制系统,从而对给水流量进行调整。
优点:可以克服虚假水位和给水流量波动的影响;缺点:结构较为复杂。
2.利用Matlab实现汽包水位的三冲量控制仿真;参数结果:主环:Kp=3.3175 ;KI=0.0036 ;Kd=0.0012副环:Kp=15;Ki=0;kd=03.完成对锅炉水位三冲量控制系统的参数整定,要求超调小、调节时间短,对扰动的抑制效果好;在t=550s时加入给水流量25%内扰,在1200s时加入水位25%干扰(此处放大了4倍),1600s加入蒸汽流量25%外扰。
调节结果较好,在300秒左右就稳定了,上升时间较快,超调量较小。
4.分析:(1)蒸汽扰动下的汽包水位动态特性;显然,蒸汽对汽包液位的影响具有反向特性,即当蒸汽增加时,汽包水位先升后降。
(2)不同扰动下系统的调节性能:a.蒸汽流量发生扰动时的调节性能;如图,蒸汽的波动对也为影响也通过前馈调节器较为快速的克服了。
说明前馈可以快速克服扰动。
b.给水压力(流量)发生扰动时的调节性能。
从图中可以看出来,给水量可以快速地通过副环进行调节。
速度相当快,若没有副环,调节结果如下图所示,过程相当慢,而且超调量和调节时间都增加了。
也由此可见,副环可以减小了响应时间,快速克服环内干扰。
1.4 设计问题回答1. 根据单冲量调节系统原理,说明单冲量调节系统不能克服“虚假水位”影响;答:当蒸汽流量突然增加时,汽包水位不降反升;而当蒸汽流量突然减小时,汽包水位不先反降,这即为虚假水位。
而单冲量以汽包液位作为被控量,当蒸汽量增加时,汽包水位先升高,这时结果引起进水量下降,而事实上应该增加水量,以防止干烧。
同理,当蒸汽量减小时,液位先下降,这是进水量就增加;而事实上应减小进水量,所以单冲量调节系统不能克服虚假水位。
2. 在锅炉水位三冲量调节系统中,前馈、主回路、副回路分别起什么作用;答:前馈:测量蒸汽量干扰,并且快速的通过前馈控制器加以克服;副回路:对进水流量的波动进行快速消除;主回路:通过反馈调节,使汽包液位稳定在设定值上。
3.请说明主、副回路参数整定的方法;答:两步整定法:按照串级调节系统主、副回路的情况,先整定副调节器步骤:step1:在工况稳定下,主、副调节器都在纯比例作用运行的条件下,将主调节器的比例度固定在100%刻度上,逐渐减小副调节器的比例度,求取副回路在满足某种衰减比(如4:1)过渡过程下的副调节器比例度和操作周期,分别用s 2δ和s T 2表示。
step2:在副调节器比例度等于s 2δ的条件下,逐步减小主调节器的比例度,直至得到同样衰减比下的调节过程,记下此时主调节器的比例度s 1δ,和操作周期s T 1。
step3:根据上面得到的s 2δ、s T 2、s 1δ,s T 1,计算主、副调节器的比例度、积分时间和微分时间。
step4:按“先副后主”、“先比例次积分后微分”的整定规律,将计算出的调节器参数加到调节器上。
step5:观察调节过程,适当调整,直到获得满意的过渡过程。
4.若锅炉工况发生变化,如锅炉的热负荷发生改变时,是否需要重新整定控制系统参数,并说明什么样的系统适合用PID 控制方法。
答:不需要当对象为高阶又有滞后特性时,控制要求高,则采用PID 控制,并运用多种控制级联手段。
控制系统仿真课程设计(二)——异步电机调速仿真设计本课程设计的目的在于了解交流异步电机的原理,组成及各主要单元部件的原理。
设计交流异步电机动态结构系统;掌握交流异步电机调速系统的调试步骤,方法及参数的整定。
2.1 设计内容1.熟悉异步电机动态方程和调速方法。
异步电机调速方法有很多,按照调节手段可分为调压调速、调阻调速和调频调速;按照调节阶段可分为稳态调速和动态调速。
异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。
仿真电动机参数如下:Ω=85.1s R ,Ω=658.2r R ,V U n s Nm J H L H L H L N p m r s 380,2,.1284.0,2838.0,2898.0,2941.02======,HZ f N 50=,此外,中间需要计算的参数如下:rs m L L L 21-=σ,r r r R L T =, 222rm r r s t L L R L R R +=,m N T L .10=。
βα,坐标系状态方程: αβααωψψψs rm r r r r i T L T dt d +--=1 βαββωψψψs rm r r r r i T L T dt d ++-=1 ααβααωψψσs s rm r r s r r m r r r m s s u i L L R L R L L T L L dt di L ++-+=222 ββαββωψψσs s r m r r s r r m r r r m s s u i L L R L R L L T L L dt di L ++--=222电磁转矩:()βααβψψs s s s r mp e i i L L n T -=2.熟悉异步电机动态结构图。
以[]T s s r r i i X βαβαψψω=为状态变量;[]T L s s T u u U βα=为输入变量而输出变量为[]Tr r Y 22βαψψω+=。
通过这些变量作出的结构图是进行仿真的基础和依据。
3.异步电机动态动态性能仿真。
步骤1:打开simulink 仿真程序。
绘制异步电机动态结构图。
步骤2:封装上图中的框图。
结果如图2-1所示。
图2-1 异步电机simulink结构图封装步骤3:绘制3/2转换环节。
在图2-1封装基础上,添加三相交流UA、UB、UC 输入,该输入经过3/2坐标变换,作为 坐标系的输入,如图2-2。
步骤4:添加2/3转换环节,如图2-2和图2-4。
图2-2 带3相输入的异步电机框图其中,3/2 transform子系统框图如下图2-3;2/3 transform见下图2-4:图2-3. 3/2图2-4. 2/3转换子系统注意:1)图5,6中标注的三角形增益为矩阵增益,假设输入为U,增益为矩阵C ,那么,增益(Gain)环节的设置如下:2)三项电流频率设为2*pi*fn ,相位分别设为0,-2*pi/3, 2*pi/3,大小设为Un 。