归一问题之归一和归总(1)
- 格式:pdf
- 大小:384.69 KB
- 文档页数:3
一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。
通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。
本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。
二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。
在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。
1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。
学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。
1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。
在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。
三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。
通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。
2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。
学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。
2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。
在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。
四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。
在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。
归一与归总问题归一问题:首先求出一个单位数量。
归总问题:首先求出总量。
我们在做题时一定要先判断一下,是需要先求出一个单位数量,还是需要先求出总量。
基础必备:1.庆庆在开心农场养了10头奶牛,5天产奶100千克。
(1)10头奶牛1天产奶多少千克?(2)1头奶牛5天产奶多少千克?(3)平均1头牛1天产奶多少千克?2.有4台吊车,7小时卸煤280吨。
(1)1台吊车7小时卸煤多少吨?(2)4台吊车1小时卸煤多少吨?(3)平均1台吊车1小时卸煤多少吨?3. 3台同样的磨面机1小时可磨面粉2400千克(1)这3台磨面机磨5小时可磨出多少千克面粉?(2)1台磨面机磨1小时可磨出多少千克面粉?(3)1台磨面机磨5小时可磨出多少千克面粉?4.某养猪场1头猪10天吃精饲料60千克(1)照这样计算50头猪10天吃多少千克精饲料?(2)照这样计算1头猪1天吃多少千克精饲料?(3)照这样计算50头猪1天吃多少千克精饲料?5. 某养猪场1头猪10天吃精饲料60千克,照这样计算50头猪1天吃多少千克精饲料?例1.王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?思路总结:________________________________________________________________例2 某养猪场养猪2000头,10天吃精饲料60000千克,照这样计算卖出500头猪后,90000千克精饲料可吃多少天?思路总结:________________________________________________________________例3 一个养鸡场有鸡180只,每20只鸡5天要喂饲料25千克,现库存2700千克饲料,这些饲料可以喂多少天?思路总结:________________________________________________________________例43台同样的磨面机2.5小时可磨面2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?思路总结:________________________________________________________________例54台吊车7小时卸煤1414吨,如果增加同样的5台吊车,8小时共可卸煤多少吨?思路总结:________________________________________________________________例6原来3台搅拌机8小时可以搅拌混凝土24吨,现因工期紧,又增加了两台同类型的搅拌机,24小时可以比原来多搅拌出多少吨混凝土?思路总结:________________________________________________________________例74辆大卡车运沙土,7趟共运走沙土336吨,现在有沙土420吨,要求5趟运完。
归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数[小结]总工作量=每份的工作量(单一量)⨯份数 (正归一)例如⑴题份数=总工作量÷每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件(2)如果要生产6300个零件几小时可完成【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务同例5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
四年级数学归一与归总应用题知识要点:1、归一问题:日常生活中要计算几个足球多少钱,就必须先知道每个足球的单价是多少钱;要计算几个人几天所做的工作总量,就必须先知道每人每天所做的工作量等等,一系列的这种应用题,归结为一个单位数量的问题叫归一问题。
2、归总问题:与归一问题对应的是归总问题,归一问题是要求出“单一量”,而归总问题是要求出“总量”。
所谓总量是指:总路程,总产量,工作总量,物品的总价等等,这种先求“总量”的应用题叫归总问题。
3、主要的数量关系式:单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间速度×时间=路程路程÷速度=时间路程÷时间=速度典型例题:例1、小红买了5支圆珠笔共付15元,现在她要退回去2支圆珠笔,售货员应找回多少元?例2、某工厂用9个工人4天能够做360个机器零件,照这样计算,12个人6天能够做多少个同样的机器零件?例3、6辆卡车4次能够运货96吨,2辆汽车8次能够运货48吨,现在用3辆卡车和1辆汽车同时运15次,能够运货多少吨?例4、假设买4个书包和6盒水彩笔需190元,而假设买2个书包和6盒水彩笔需要140元,求一个书包和一盒水彩笔的单价各是多少元?例5、小明上学每分钟走50米,12分钟到学校,假设他想提前4分钟到达学校,则小明每分钟比原来多行多少米?例6、修一条公路,原计划80人,用100天完成,现在这批工人工作30天后,又增加了20人,问剩下的部分再做多少天能够完成任务?例7、有一段公路,预计用30人每天工作8小时,18天能够修完。
后来要求加快速度,每天增加6个人,并且修路时间每天增加4小时,那么能够提前几天修完这条公路?课堂练习:1、一台磨面机5小时可磨玉米250千克,照这样计算,磨1750千克的玉米,需要几小时?2、百货商店卖出4箱暖瓶,每箱20个,每个15元,现在用卖暖瓶的钱能够去买6箱洗衣粉,每箱100包,每包洗衣粉多少元?3、一本书,原来预计共印180页,每页25行,每行30个字,后来改用小号字,每行36个字,每页能排30行。
第21讲归一与归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
1、一只船发现漏水时,已经进了一些水,现在水匀进人船内,如果4人淘水30分钟可以淘完,6 人淘水18分钟可以把水淘完,那么,3人淘水几分钟可以把水淘完?2、在一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。
设每头牛每天吃草的量是相等的。
14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。
而归一的意思,就是用除法求出单一量,这就是归一的说法。
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。
二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。
所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。
考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。
【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。
【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。
归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量每份的工作量(单一量)份数 (正归一)份数总工作量每份的工作量(单一量) (反归一)每份的工作量(单一量) 总工作量份数[小结]总工作量每份的工作量(单一量)份数 (正归一)例如⑴题份数总工作量每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) 总工作量份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米?【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天?【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时?【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克?【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件?(2)如果要生产6300个零件几小时可完成?【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务?同例 5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件?【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
归一与归总问题知识框架一、归一问题(1)归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
(2)归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?(3)正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.(4)解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
(5)归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.例题精讲一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?【考点】简单的归一问题【难度】1星【题型】解答【解析】153735÷⨯=(千米)。
答:7小时行35千米。
【答案】35【巩固】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【考点】简单的归一问题【难度】1星【题型】解答【解析】先求每小时航行多少千米,再求航行270千米需要几小时,最后求出共需多少小时。
小学数学常见典型应用题——归一问题、归总问题一、方法指导1.归一问题根据已知条件,在解题时要先求出一份是多少(归一),如单位时间内的工作量、单位面积的产量、商品的单价、单位时间内所行的路程等,然后再求出所求问题的应用题叫归一问题。
归一问题分为正归一问题和反归一问题。
(1)正归一总量÷数量=单一量单一量×新的数量=新的总量综合式:总量÷数量×新的数量=新的总量(2)反归一总量÷数量=单一量新的总量÷单一量=新的数量综合式:新的总量÷(总量÷数量)=新的数量2.归总问题归总问题是指解答时要先计算出总数量(称为“总”),然后再算出所要求的数量是多少的应用题。
归总问题暗含着“总”不变,即乘积不变,因此这类问题也可以用反比例知识解答。
解答归总问题的关键在于先求“总数”,且总数相等。
归总问题也是两组同类数量关系复合构成的。
二、典型例题例1:学校买5个同样的篮球共用375元,照这样计算,买13个这样的篮球要用多少元?分析:通过读题知道,这是一道一次正归一应用题。
我们可以先求出篮球的单价,再求出13个篮球的总价。
解:分步列式:375÷5=75(元)75×13=975(元)列综合算式:375÷5×13=75×13=975(元)答:买13个这样的篮球要用975元。
例2:李叔叔装一批计算机,每天装12台,30天以完成。
如果每天装15台,几天可以完成?分析:由题意可知这批计算机的总数量是一定的,因此要求几天完成,需要知道这批单位计算机共有多少台和每天装多少台。
现在知道每天装15台,所以要先求这批计算机共有多少台。
解:这批计算机共有多少台?12×30=360(台)要几天能完成?360÷15=24(天)综合算式:12×30÷15=360÷15=24(天)答:24天可以完成。
第17讲归一与归总问题(一)知识概要归一问题是常见的典型应用题之一。
这类问题的求解,往往是归结到先求出一个单一量,然后再求若干个单一量是多少或总量里包含几个这样的单一量,因此把用这种方法解答的应用题,我们称为归一问题;与归一问题相类似:在解答某一类问题时,先求出总数是多少(归总),然后用这个总数和题中的有关条件求出最后问题,这类问题叫做归总问题。
例题解评例1、造纸厂用机器粉碎稻草做造纸原料。
8小时能粉碎稻草360吨,照这样计算,24小时能粉碎稻草多少吨?思路点拨:“照这样计算”的含义,就是“照平均每小时粉碎稻草多少吨”这个数量来计算。
本题是一道“直进归一”的应用题,它的解题思路,可以从条件出发,也可以从问题出发进行思考。
从条件出发的思路是:“根据8小时能粉碎稻草360吨”,可以知道平均每小时能粉碎稻草多少吨。
然后根据平均每小时粉碎的稻草吨数和24小时,就可以求出24小时能粉碎稻草多少吨。
从问题出发的思路是:要求24小时能粉碎稻草多少吨,先要求出平均每小时能粉碎稻草多少吨。
这两种解题思路的列式都是相同的。
解:(1)平均每小时能粉碎稻草多少吨?360÷8=45(吨)(2)24小时能粉碎稻草多少吨?45×24=1080(吨)综合算式解答:360÷8×24=45×24=1080(吨)答:24小时能粉碎稻草1080吨。
〖评注〗“直进归一”的应用题先用除法求出单一量,再用乘法求出几个这样单位数量的和。
课堂练习 1张师傅4小时加工了36个零件,如果用同样的速度,9小时可加工多少个零件?例2、3辆同种型号的载重汽车,两次可以运送货物48吨。
8辆同样的汽车,7次可以运送货物多少吨?【分析】这道题是“双归一”问题,要先通过连除法,求出每辆汽车每次运送货物多少吨(即单一量),然后再求8辆汽车7次运送货物多少吨。
【解】(48÷3÷2)×8×7=8×8×7=448(吨)答:8辆同样的汽车,7次可以运送货物448吨。
14.归一、归总问题知识要点梳理一、归一问题1.归一问题来历:我国珠算除法中有一种方法,称为归除法,除数是几,就称几归;除数是8,就称为8归。
而归一的意思,就是用除法求出单一量,这就是归一的说法。
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其他条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
2.归一问题有两种基本类型如下:先求单一量再一次归一:一步求单一量归正归一:求几个单一量一是多少(乘)二次归一:两步求单一量问题反归一:先求单一量再求包含几个单一量(除)3.正、反归一问题的相同点是:第一步先求出单一量;不同点是:第二步正归一是乘法,反归一是除法。
二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是先找出“总量”,然后再根据其他条件算出所求的问题,叫归总问题。
所谓“总量”是指几小时(几天)的总工作量、几亩地上的总产量、总路程、总产量、工作总量、物品的总价等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路:先求出总数量,再根据题意得出所求的数量。
考点精讲分析典例精讲考点1 正归一问题【例1】一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?【精析】为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米单一量(一次归一)即蜗牛的速度,然后以单一量为依据按要求算出结果。
【答案】①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
【归纳总结】一般情况下第一步先求出单一量,第二步求几个单一量是多少。
【例2】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?【精析】第一步先算1头奶牛7天产的牛奶为单一量一次归一,再算1头奶牛1天产的牛奶为单一量二次归一,最后8头奶牛15天可产牛奶多少千克。
区分归一、归总问题归一问题:先求出一个单位(单个)数量,再求出总量或用包含除求份量在第二步求总量的称为正归一,一般用除乘,巧记为“分总”;求份量的称为反归一,一般用除除,巧记为“分分”标志:归一问题一般包含“照这样算、按这样速度、同等速度下”等词,抓住不变量,区分乘除法,从而判断题型。
例1:3个学生分12本书,照这样算,36本书可以分给几个学生?分析:要求出36本书分给多少人?必须先求出一个学生分多少本书。
所以第一步求出单个量:除法。
算出一个人对应4本书;第二步,36本书里包含几个4就是几个人,所以属于包含除,是典型的反归一问题。
12÷3=4(本)36÷4=9(人)答:36本书可以分给9人。
例2:3个学生分12本书,照这样算,5个学生可以分几本书?分析:要求出5个学生分几本书?必须先求出一个学生分多少本书。
所以第一步求出单个量:除法。
算出一个学生对应4本书;再求5个学生书的总量,自然是用乘法。
属于正归一问题。
12÷3=4(本)4×5=20(本)答:5个学生可以分20本书。
点题:区分正归一和反归一重点在于求完单个量后,再求总量(正归一)还是求某个包含的份量(反归一)归总问题:先求出“总量”再根据条件求其他,一般用乘除,巧记为“总分”例3:小红有一些玻璃球,5个装一袋,可以装6袋,如果改为6个装一袋可以装几袋?分析:要想求出6个装一袋可以装几袋,必须知道玻璃球总数,且无论怎么分数量装袋,总数永远不变,抓住这个“不变量”。
第二步就是对总数进行包含除,求出份数。
5×6=30(个)30÷6=5(袋)答:6个装一袋可以装5袋。
点题:在归一、归总问题教学时,学生常分不清乘除法,导致无法判断。
一般来说,求“总数、总量、总和等”常用乘法;求“份数、部分、平均分”常用除法。
这类题需要多做多想,逐步习惯这类题解题思考模式,所以在下页准备了一些典型题目,希望我们三二班的孩子可以多做多想。
归一问题之归一和归总图图吃哈密瓜,在12分钟里吃了4块。
请问:图图吃掉6块需要多少分钟?【拓展】王子吃哈密瓜,15分钟吃了5块。
那么王子吃掉12块需要多长时间?图图和王子3小时种了180棵哈密瓜,还要种420棵,那么,图图和王子完成任务共需要多长时间?现在有向日葵种子200千克,图图3小时种了60千克种子下去,照这样计算,种完剩下的向日葵需要多长时间?【拓展】如果王子和图图栽种的速度一样快,如果从一开始王子就和图图一起种,那么种完所有的向日葵,需要多长时间?收获时间,图图、王子和八戒5分钟收获哈密瓜90个。
请问:如果要收获540个哈密瓜,需要多长时间?收获向日葵,开始时,有4个小八戒2个小时收获640千克向日葵,照这样计算,八戒要在3个小时内继续收获1200千克向日葵,那么八戒还要变出多少个小八戒?【趣味大挑战】王子负责锯木头,他用12分钟把一根树干锯成了3段,那么把树干锯成8段需要多长时间?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
例1测:一个工人在森林中锯木头,他用8分钟把一根树干锯成了3段(锯两次),那么把同样的树干锯成8段(锯7次)需要多长时间?A.25 B.28 C.22 D.32例2测:绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天?A.12 B.8 C.10 D.15例3测:一个工人要磨面粉100千克,3小时磨了60千克。
照这样计算,磨完剩下的面粉还要几小时?A.8 B.1 C.2 D.6例4测:5个人挖3米长的沟需要用3个小时,那么这5个人挖50米的沟需要多长时间?A.25 B.75 C.60 D.50例5测:5台拖拉机24天耕地12000公亩。
要18天耕完54000公亩土地,需要增加同样拖拉机多少台?A.30 B.25 C.20 D.27。
归一问题和归总问题有什么区别?(一)归一问题和归总问题的区别:1、含义不同归一问题:先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
归总问题:先找出总数量,然后再根据其他条件算出所求的问题,叫归总问题。
2、解题思路不同归一问题:根据已知条件,先求出一个单位量的数值,在求出总量。
归总问题:根据已知条件,先求出一个总量,在求出单位量的数值。
3、运用不同四则运算归一问题是求每份是多少,用除法。
归总问题是求一共是多少,用乘法。
(二)扩展资料归一问题的分类:1、直进归一在一些实际问题中,常常要先算出一个单位的数量是多少,然后求所需求的问题。
例如:“买3支铅笔要4角8分,买同样的5支铅笔要多少钱?”这样的问题,称为归一问题。
归一问题有:(1)直进归一,如上例便是直进归一,需先求买1支铅笔要几分,再求买5支铅笔要多少钱。
列式为:48÷3×5=80(分)。
2、返回归一(逆归一)例如:“一辆汽车4小时行120千米,照这样计算,行180千米要用几小时?”先求平均1小时行多少千米,再求行180千米要几小时。
列式为:180÷(120÷4)=180÷30=6(时)。
3、两次归一例如:“2台拖拉机4天耕地32公顷,照这样计算,5台拖拉机7天耕地多少公顷?”先求1台拖拉机1天耕地多少公顷,再求5台拖拉机7天耕地多少公顷。
列式为:32÷2÷4×5×7=140(公顷)。
小学数学归一、归总问题一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量X所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解: (1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12X16=1.92(元)列成综合算式0.6÷5X16=0.12X16=1.92(元)答:需要1.92元。
练习1、李叔叔制作8个零件需要30分钟,李叔叔2小时能制作多少个零件?2、一辆公共汽车4小时行280千米,照这样计算,7小时行多少千米?3、妈妈买5个橘子,用了25元,如果买7个同样的橘子,需要多少元?4、选果机4小时选果400斤,照这样计算,6台选果机可以选果多少斤?5、一个修路队,4天修路180米,照这样计算,7天可以修多少米?6、小明家5天吃完30千克苹果,照这样计算,8天要吃多少千克?7、小王买7本笔记本用了56元,买9本同样的笔记本需要多少元?8、买5支钢笔要90元钱,买同样的8支铅笔需要多少元?9、小王看一本童话书,3天看了54页,12天能看多少页?11、一玩具厂4小时可生产玩具524个.照这样计算,生产1572个玩具,要多少小时?12、某水泥厂计划24天完成一批任务,每天应生产45吨水泥.改进技术后,每天比原计划多生产15吨,这样提前几天完成?二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量X份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
1本讲主线
1.2. 1.归一问题
(1)单位量:每天生产多少个(1) 单位量:每天生产多少个,每小时生产多少个。
(2) 求解“单位量”、利用“单位量”进行分析问题的应用题称为
“归一问题”。
归2. 归一问题关键:寻找单位量。
【课前小练习】(★)
1.小图图每分钟吃3块西瓜,5分钟可以吃____块.
2.老师给3个同学分了18个苹果,那么每个人分___个苹果.
只猴子,6天吃多少个桃个桃,按照这样的速度,9只猴子,9天吃多少个桃
11.
先求单一量,如:每分钟、每小时、每天
;
时间是2倍,结果是2倍;人数是2倍,结果是2倍;
时间、人数都是2倍,结果就是原来的4倍.。
归一问题一、内容分析:归一问题主要研究单一量和总量之间的数量关系,生活中随处可见,具有很强的实用性。
在内容上,呈现了两种不同的解题思路,归一和归总,知识的综合性更强。
老师应逐步引导学生理清数量关系:①审清题意,找出题中数据(包含隐形数据)并整理和分析数据;②找到数据间的联系,用量的关系来描述解题思路,从而找到解题方法。
此外,还有一些比较巧妙的方法,在一些变化的数量中,通过比较、消去找到数量关系,从而解决问题问题。
在教学中鼓励学生多向思维,体会解决问题策略的多样化,但注意学生的个体差异,不要求每个同学都掌握多种解题方法,这样会给部分学生造成不必要的负担。
二、学生分析:四年级的学生从知识技能上,已经基本理解乘除法计算的意义,掌握了两三位数的乘除法,整数的四则混合运算,和单位间的转换等知识,具备基本的解决问题的能力。
从心理发育上分析,四年级的学生开始转变思想方法,从过去笼统的印象判断转变为具体的分析。
这些分析主观性较强,偏重对自己喜欢的事物认真分析,思维形式开始形成初步的抽象思维。
四年级学生可以进行比较复杂的分析。
所以老师可以从学生感兴趣的方向,结合生活实际问题入手,逐步引导学生理解并掌握归一问题。
三、教学目标:1、认识并掌握归一、归总问题的特征2、运用综合法、分析法解决实际问题3、通过归一、归总的相互转化,学生会观察问题、发现问题并解决问题,感受到数学与生活的联系,体会到数学的魅力四、教学重点:1.理解并掌握归一、归总应用题的结构特点。
2.理清归一,归总问题的解题思路,掌握解决这类问题的方法五、教学难点:1.归一与归总之间的转换2.多次归一、多次归总3.通过数量变化关系找到突破口六.教学方式:启发式、引导式、讲练结合。
七.教学过程(预计4课时):(一)引入:情景引入(培优班20分钟,精英班15分钟)我们每天都要吃早餐,有一天,张瘦子和袁胖子去买包子,张瘦子吃得少,买了2个包子,用了4元钱,袁胖子你们都懂的,他要买5个包子需要多少元?设问:在这个问题中,要想知道5个包子多少钱,需要知道什么呢?设问:类似的问题,要计算5个包子需要多少钱,需要知道一个包子卖多少钱;要计算几人几天干了多少工作,要知道每人每天干多少工作......(多举例说明)也就是说,要解决这类问题,首先要知道一个本子多少钱,一个人一天完成多少工作,一亩地产多少千克玉米,一小时小明能走多少千米……像这样的量,我们把它称之为要“单位量”,即一个单位产生的量。
1本讲主线
1.2. 1.归一问题
(1)单位量:每天生产多少个(1) 单位量:每天生产多少个,每小时生产多少个。
(2) 求解“单位量”、利用“单位量”进行分析问题的应用题称为
“归一问题”。
归2. 归一问题关键:寻找单位量。
【课前小练习】(★)
1.小图图每分钟吃3块西瓜,5分钟可以吃____块.
2.老师给3个同学分了18个苹果,那么每个人分___个苹果.
只猴子,6天吃多少个桃个桃,按照这样的速度,9只猴子,9天吃多少个桃
11.
先求单一量,如:每分钟、每小时、每天
;
时间是2倍,结果是2倍;人数是2倍,结果是2倍;
时间、人数都是2倍,结果就是原来的4倍.。