一(二)数”是一分数 或是数与字母的乘积 要时用, 括号把这个数整
个括起来,再平方;
最后的结果 又要去掉括号。
生活实践,学以致用
⑴计算:1998×2002
⑵现在你能揭开小林快速口算出4.2×3.8的秘 密吗?
随堂练习
随堂练习
1、计算:
(1)(a+2)(a−2);
(2)(3a +2b)(3a−2b) ;
多项式乘法 法则是:
用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
(m+a)(n+b)= mn+mb+an+ab
如果m=n,且都用 x 表示,那么上式就成为:
(x+a)(x+b) = x2+(a+b)x+ab
这是上一节学习的 一种特殊多项式的乘法——
两个相同字母的 二项式的乘积 .
(3)(−x+1)(−x−1) ; (4)(−4k+3)(−4k−3) .
纠错练习
指出下列计算中的错误:
(1) (1+2x)(1−2x)=1−2x2 第二数被平方时,未添括号。 (2) (2a2+b2)(2a2−b2)=2a4−b4第一 数被平方时,未添括号。 (3) (3m+2n)(3m−2n)=3m2−2n2
3.(5+a)( ) =25-a²
本节课你的收获是什么?
试用语言表述平方差公式 (a+b)(a−b)=x2−b2。
两数和与这两数差的积,等于它们的平方差。
应用平方差公式 时要注意一些什么?
运用平方差公式时,要紧扣公式的特征, 找出相等的“项”和符号相反的“项”,然后应用公 式对于;不符合平方差公式标准形式者, 要利用加法交换律,或提取两“−”号中的“−”号,