现代缸内直喷式汽油机(二)
- 格式:doc
- 大小:29.00 KB
- 文档页数:9
汽车发动机的基本构造及工作原理季宏宇(地址乌海职业技术学院邮箱016000 )摘要:本文概括了现代汽车发动机的基本构造和工作原理。
包括四冲程发动机、汽油喷射系统的工作原理、润滑部位和润滑油路、冷却系的工作原理等。
还简略介绍了发动机汽缸的组成及影响:汽缸体、汽缸对数、活塞、缸内直喷技术等。
发动机的工作原理是将某种能量转化为机械能的一种机器。
其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力,不断循环从而带动汽车的轮轴,形成了汽车的动力来源。
关键词:汽车发动机气缸机械能(一)现代发动机的构造发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。
发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异。
汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。
柴油机通常由两大机构和四大系统组成(无点火系)。
1.曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。
这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。
2.配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。
其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。
3.燃料供给系可分为汽油机燃料供给系和柴油机燃料供给系。
汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。
柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。
关于缸内直喷汽油机微粒排放的影响因素分析荆莹【摘要】针对缸内直喷(GDI)汽油机排放微粒的产生机理及危害,深入分析影响微粒排放特性的多种因素,得出合理控制点火时刻、喷油开始时刻、运行工况等因素,可以有效控制 GDI 排放特性,为进一步开发设计缸内直喷燃烧系统,有效降低 GDI 微粒排放具有参考意义。
%In view of the mechanism and hazard of Particle Emission for Gasoline Direct Injection Engine ,the thesis analyzed influence fac‐tors of the characteristics of particulateemissions .T he results show that particulate emission can be effectively put under control with the correct of ignition timing ,start of injection ,cycles and so on .T he result of the analysis has some important significance in developingElectronic Fuel In‐jection System .【期刊名称】《商丘职业技术学院学报》【年(卷),期】2015(000)005【总页数】3页(P56-58)【关键词】汽油机;缸内直喷(GDI);微粒排放【作者】荆莹【作者单位】徐州工业职业技术学院,江苏徐州 221140【正文语种】中文【中图分类】TK419缸内直喷汽油机燃烧运行时能有效地降低燃油消耗,同时还具备良好的瞬态性能和全负荷性能,但GDI排放微粒明显高于进气道喷射汽油机,对人体危害很大.欧Ⅴ排放法规已将GDI排放纳入法规测试要求,有效控制GDI发动机排放尤为迫切.1.1 GDI排放微粒的产生机理GDI汽油发动机的排放物包括CO、HC、NOx和排气微粒.排气微粒主要包括核态和积聚态两种[1]613-617.核态粒子粒径在5~30 nm之间,由硫酸盐、未燃烧的HC和部分金属化合物构成.积聚态粒子粒径范围30~1 000 nm之间,由来自燃油严重不完全燃烧的无定形碳及吸附在它表面的碳氢化合物和少量无机化合物构成[2]892-897.缸内直喷发动机混合气的模式有分层混合气、均质稀混合气、均质混合气三种,在不同的工况下采用不同的模式.当GDI切换到分层燃烧模式时,火焰由浓混合气处向稀混合气处传播中极易产生碳烟.此外,由于缸内直喷式汽油机混合气形成时间短,特别是采用壁面引导时燃油会碰壁,从而使微粒排放显著增加.1.2 GDI排放微粒的危害排气微粒中绝大部分为纳米级微粒,对人体危害严重,因为纳米级微粒可以进入肺泡,且不易排出体外;同时,随着粒径的减小,这些粒子的总表面积会迅速增加,其表面可以吸附重金属、毒性成分和致癌可溶性有机成分,导致癌症发病率升高. 合理组织缸内气流运动,精确控制喷油时刻和点火时刻,良好的运行工况和保养是进一步改善缸内混合气的质量、提高汽油机燃烧过程、降低微粒排放的重要途径.2.1 点火时刻点火时刻的变化能显著影响汽油机燃烧过程,对燃油消耗率、扭矩输出和排放特性等具有较大的影响.由图1发现,排气微粒物在核态区域呈现双峰分布.随着延迟点火定时,GDI汽油机微粒物排放量随之降低[3]25-28.因为推迟点火定时,缸内燃油与新鲜空气的混合时间逐渐增加,缸内工质的混合雾化状态逐步改善,缸内燃烧更为充分,减轻了局部过浓区域燃油的热裂解和脱氢倾向,有利于抑制初级碳烟粒子的生成,减少积聚态颗粒物的生成;同时,推迟点火定时使膨胀行程缸内燃烧温度和排气温度升高,增强了高温条件下积聚态颗粒物的氧化速率,导致积聚态颗粒物排放降低.2.2 喷油开始时刻控制喷油时刻对发动机性能的影响尤为重要,正确的喷油策略控制形成合理的混合气分布,有效控制燃油碰壁的出现,降低机油被稀释的可能,进而减少碳烟等颗粒物排放的形成,改善燃油经济性和燃烧稳定性.由图2可见,随着喷油提前角的推迟,燃油碰壁量呈下降趋势.喷油开始时刻为400°曲轴转角时为最佳点,燃烧速率最快且油耗最低;喷油时刻继续推迟,虽然燃油碰壁量进一步降低,但要注意混合气均匀性会变差,燃烧不充分会导致油耗增大且燃烧稳定性恶化[4]565-570.2.3 火花塞通过加长火花塞裙部、改变火花塞的点火高度及观察对缸内汽油直喷发动机油气混合的影响,发现由于火花塞在缸内所占容积很小,火花塞的局部改变,对缸内平均湍动能基本无影响.总体上来说,对点火性能、排放性能影响不大.2.4 不同辛烷值的汽油高辛烷值汽油可以增强发动机的动力性,改善燃油经济性.但在大负荷时,由于使用95 号汽油发动机的点火提前角推迟,使缸内最高燃烧温度降低,生成NOx量减少,随着转速的升高,生成NOx降幅量越大;燃烧相位后移,使排气行程中已燃气体的温度增加,提高了CH、CO后期的氧化速率,THC、CO排放降低.在中低负荷,辛烷值的变化对CO排放影响不大.因此,燃用低辛烷值汽油可以降低THC、CO和NOx的排放量,但影响程度会随负荷和转速不同而变化.2.5 活塞形状对于直喷汽油机,有燃烧室凹坑的活塞燃烧效果要明显优于平顶活塞.以四气门发动机为研究对象,活塞顶部具备4气门对应的凹坑为基本结构,形成以下4种活塞顶:大凹坑(如图3中a),在活塞顶部添加滚流引导槽(如图3中b),取消导流槽(如图3中c)或活塞顶面平齐,取消燃烧室凹坑的高背(如图3中d).通过模拟直喷汽油机的进气、喷油和燃烧等工作过程,有研究发现:图3中d的设计有利于加强缸内湍流,促进燃油的蒸发,减少活塞的燃油碰壁量,有利于降低碳烟的排放,但缸内温度和压力峰值更高,增加了 NOx的生成[5]345-352.2.6 良好的运行工况和保养发动机运行工况会影响微粒排放情况.冷机怠速工况微粒排放较高,随着暖机进行,微粒排放减少.这是由于冷车起动时,汽缸的混合气浓度高,混合气氧含量低,排气微粒质量迅速增加,颗粒物的毒性最大.因此,对于缸内直喷汽油机,起动前同样需要预热,特别是冬季及严寒地区.另外缸内直喷发动机具有高压缩比,可达到25∶1,缸内具有高温、高压的特点,因此为保证发动机内部良好的润滑和冷却,降低微粒排放,一般情况下需要加合成机油,个别车型发动机要求加注全合成机油.缸内直喷汽油机以高动力、低油耗、高功率质量比在世界范围内得到认可,但同时要重视缸内直喷汽油机的微粒排放.通过以上的分析发现,适当的延迟点火定时,推迟喷油提前角,选择“平顶+凹坑”的活塞设计、快速暖机、合理控制空燃比等措施,可以优化GDI汽油机燃烧过程,能有效控制GDI微粒排放.【相关文献】[1] 李新令,黄震. 柴油机排气尾流中核模态颗粒数浓度和粒径分布变化特性[J]. 科学通报,2012(01).[2] 裴毅强,张建业,李翔,等.增压直喷汽油机起动怠速及混合气浓度对微粒排放的影响[J].天津大学学报(自然科学与工程技术版),2014(02).[3] 魏传芳,董伟,于秀敏,等.点火提前角对直喷汽油机微粒排放特性的影响[J].车用发动机,2014(04).[4] 韩文艳,许思传,周岳康,等.喷油开始时刻对缸内直喷汽油机性能的影响[J]. 同济大学学报(自然科学版),2013,41(4).[5] 郑朝蕾,刘春涛,胡铁刚,等.活塞形状对直喷汽油机工作影响的数值模拟[J]. 内燃机学报,2014(04).。
缸内直喷汽油机颗粒捕集器(GPF)技术研究进展分析发布时间:2023-01-31T06:04:16.347Z 来源:《中国科技信息》2022年第18期作者:刘发明[导读] 为了满足国六排放标准的严苛要求,近年来汽油机开发了多种先进的颗粒物捕集器(GPF)技术刘发明安徽江淮汽车集团股份有限公司技术中心整车设计院安徽合肥 230601摘要:为了满足国六排放标准的严苛要求,近年来汽油机开发了多种先进的颗粒物捕集器(GPF)技术。
GPF是一种新型的非吸收式捕集器,其最大特点是能够捕获到废气中的颗粒,从而在汽油机中实现对排气的净化。
目前国内外对该技术开展研究较多且较为成熟。
本文主要就其技术原理、工作工况、存在问题及解决方案等方面进行了介绍分析。
关键词:颗粒捕集器;汽油机;非吸收器;排放控制&节能减排随着我国大气污染治理逐渐进入深度阶段,我国汽车尾气排放水平已达到欧Ⅲ及欧盟国家 VⅡ排放标准,为了满足日益严格的污染当量标准,目前汽油机中燃烧后会产生大量污染物——颗粒物(PM)和氮氧化物等,这两种污染是我国机动车尾气中非常重要的组成成分,对大气和环境都有很大的危害。
关键词:直喷汽油机;颗粒物GPF;过滤效率;排气背压由于其动力性、经济性、驾驶性和排污性等优势,目前已越来越多地应用于汽车。
GDI发动机的燃料是直接喷射到气缸内,造成的油液混合不均,燃料湿壁的存在,大大提高了微粒的排放质量和数量。
目前,我国关于微粒污染物的研究多集中在汽油机上,关于 GDI发动机的微粒和污染物的治理方面的研究还很少。
国外对 GDI发动机的微粒和微粒的控制问题进行了大量的研究,主要是因为发动机的直接喷射技术和排放标准比较严格。
通过对燃烧系统的优化、喷注压力的增加、点火和喷油定时的调节,可以在一定程度上降低悬浮颗粒的排放。
但日益严格的法规规定,在更广泛的工作条件下,直喷发动机仍能维持稳定和更低的 PM排放量。
所以,虽然 GDI发动机的技术还在发展,但仅仅依靠内部净化已经很难适应新的排放标准。
缸内直喷技术缸内直喷(GDI),就是直接将燃油喷入气缸内与进气混合的技术。
优点是油耗量低,升功率大,压缩比高达12,与同排量的一般发动机相比功率与扭矩都提高了10%。
它的劣势是零组件复杂,而且价格通常要贵。
缸内喷注式汽油发动机与一般汽油发动机的主要区别在于汽油喷射的位置,普通电喷汽油发动机上所用的汽油电控喷射系统,是将汽油喷入进气歧管或进气管道上,与空气混合成混合气后再通过进气门进入气缸燃烧室内被点燃作功;而缸内直喷式汽油发动机顾名思义是在汽缸内喷注汽油,它将喷油嘴安装在燃烧室内,将汽油直接喷注在气缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃作功,这种形式与直喷式柴油机相似,因此有人认为缸内直喷式汽油发动机是将柴油机的形式移植到汽油机上的一种创举。
喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点。
同时,喷嘴位置、喷雾形状、进气气流控制,以及活塞顶形状等特别的设计,使油气能够在整个气缸内充分、均匀的混合,从而使燃油充分燃烧,能量转化效率更高。
因此有人认为缸内直喷式汽油发动机是将柴油机的形式移植到汽油机上的一种创举。
缸内直喷式汽油发动机的优点是油耗量低,升功率大。
空燃比达到40:1(一般汽油发动机的空燃比是14.7:1),也就是人们所说的“稀燃”。
汽车缸内直喷技术Gasoline Direct Injection(GDI)在不同汽车品牌中各自有着不同的学名,比如奔驰CGI/ BlueDIRECT、宝马HPI、奥迪TFSI、大众TSI、通用SIDI、福特EcoBoost、丰田D4、本田Earth Dreams Technology (地球梦)、尼桑DIG、马自达SKYACTIV(创驰蓝天)、现代GDI等在近来各厂采用的发动机科技中,最炙手可热的技术非缸内直喷莫属。
这套由柴油发动机衍生而来的科技目前已经大量使用在包含VAG、BMW、Mercedes-Benz、GM以及Toyota(Lexus)车系上。
范明强(本刊专家委员会委员)教授级高级工程师,曾任中国第一汽车集团公司无锡研究所发动机研究室主任、湖南奔腾动力科技有限公司轿车柴油机项目部总工程师、无锡柴油机厂高级技术顾问和多所高校客座教授。
大众公司EA111和EA112系列1.4L燃油分层直喷式汽油机(一)文/江苏 范明强一、现代汽油发动机的发展随着全球生态环境日益恶化,欧盟议会要求到2012年,各汽车公司所生产的汽车平均CO2排放量应低于90g/k m,也就是汽油车燃油耗低于3.8L/100km,柴油车燃油耗低于3.4L/100km(见图1)。
随着技术的发展,直喷式柴油机的普遍推广与应用,特别是汽油缸内直接喷射技术的逐渐成熟,使汽油车的燃油耗和C O2的排放量也大幅降低,越来越接近柴油机的水平(见图2)。
但是,欧洲汽车制造商联合会只能承诺到2012年,汽油车平均CO2排放量达到120g/km,也就是汽油车燃油耗低于5.1L/100km,柴油车燃油耗低于4.5L/100km,与欧盟议会的要求还有相当大的差距,有待于继续挖掘直喷式汽油机的节油潜力。
图3示出了现代汽油发动机各种技术措施节油潜力的比较。
图中可以清楚地看出,单一措施的汽油缸内直接喷射蕴含着最大的节油(即降低CO2排放量)潜力。
这种效果一方面是因为发动机的无节流运行降低了换气损失,另一方面由于充量分层运行,燃烧在燃烧室中央进行,周围有隔热的空气层,减小了壁面的热损失。
此外,全负荷时,爆震倾向降低,所以发动机能够以较高的压缩比运行。
这些措施在发动机整个特性曲线场范围内,对燃油耗起到了有利的作用。
而燃烧室内经过优化的充量运动,也使得混合汽在以化编者按:节能减排是现代乘用车发动机发展的永恒主题和不懈追求的目标。
12年来,大众公司在EA111系列1.4L汽油机平台的基础上,运用汽油缸内分层直接喷射和增压等现代新技术,开发出了1.4L-FSI自然吸气机型和1.4L-TSI废气涡轮与机械式复合增压机型。
现代缸内直喷式汽油机(二)(接上期)2缸内直喷式汽油机的发展历史在内燃机出现的早期,即20世纪初,人们就已对汽油喷射方式进行过研究。
1900年德国Deutz公司就曾经生产过汽油喷射的固定式发动机。
以后,汽油喷射的应用范围逐步转移到活塞式航空发动机上。
二战前夕的20世纪30年代,德国已开始用Benz和BMW公司的汽油喷射发动机装备军用飞机。
航空发动机采用汽油喷射技术所取得的成果,自然也引起了人们将其应用到汽车上的兴趣。
但是,当时并没有对化油器式汽油机的燃烧方法做重大改动。
通常是为了提高汽车发动机的功率,往往仅在现有的汽缸盖结构基础上,为配备直接喷射喷油器而进行相应的修改,因此开发的重点侧重于喷油装置及其调节。
1938年德国空军研究所(DVL)和Bosch 公司合作,首先致力于汽车二冲程缸内直喷式汽油机的研究,并完成了装车试验。
Daimler Benz公司也于1939年推出了专供赛车使用的四冲程缸内直喷式汽油机。
直到1952年汽油直接喷射才首次批量应用于汽车,Gutbrod公司首先使用Bosch公司提供的机械控制式汽油喷射系统批量生产装有二冲程缸内直喷式汽油机的轿车,因二冲程汽油机采用缸内直接喷射之后可避免扫气过程中的燃油损失,与当时的化油器汽油机相比,其燃油耗节约了25%~40%。
1954年Benz 公司首次推出了排量为3.1L的四冲程直立6缸M198缸内直喷式汽油机(图5和图6中),搭载于300SL型轿车。
虽然1934年德国就开始研究如何通过把燃油直接喷入燃烧室而得到不均匀的混合汽,即分层充量。
在20世纪50-60年代,美国Texaco公司也推出了TCP(Texaco Combustion Process)燃烧系统以及1968年Ford公司推出的PROCO(Ford-Programmed Combustion Process)燃烧系统(图6右),立足于节能减排,力求通过分层稀薄燃烧方式来提高压缩比,使汽油机在保持本身优点的前提下,在燃油经济性方面达到或接近柴油机的水平。
但是,由于缸内直喷式汽油机既有喷油系统又有点火系统,结构较为复杂,成本也较高,同时在燃烧室内实现分层燃烧的调试比较困难,开发费用大,再加上当时尚缺乏供稀薄燃烧用的NOx后处理技术,因此一直到20世纪80年代末,汽油机缸内直喷分层稀燃技术仍未进入实用阶段。
随着内燃机技术的进步,特别是基于微电子技术的计算机技术的迅速发展,为汽油机缸内直接喷射技术的重新发展提供了前提条件。
同时迫于节能和环保要求日益严格的压力,也对汽油机缸内直接喷射寄予新的期望而再次提上议事日程。
因而20世纪90年代各国纷纷加强了对汽油机缸内直喷技术的研究,至1996~1997年日本三菱和丰田公司率先相继将其开发的缸内分层稀燃直喷式汽油机投入批量生产。
特别是最近10来年,欧洲在Bosch等燃油喷射系统专业生产厂商的汽油缸内直接喷射系统日趋成熟和完善的基础上,各大汽车公司,诸如大众和BMW等,不断推出了动力性能优异、节油效果明显并达到欧4/欧5排放标准的新款缸内直喷式汽油机轿车,标志着汽油缸内直喷技术,无论是在喷油系统、缸内空气运动和燃烧过程的组织及其调试方面,还是在电子控制系统和废气后处理系统方面都已相当成熟。
开始进入蓬勃发展的崭新阶段。
与此同时,大众公司已在我国大连设厂开始批量生产缸内直喷式汽油机,供应一汽大众和上海大众轿车,与欧洲同步推出新车型供应国内市场。
因此,对于我国汽车维修行业来讲,这种技术含量颇高的节能减排的新车型,既为拓展维修市场空间提供了新的机遇,也对知识的更新和提高维修技术提出了新的挑战。
第二篇基本原理和结构特点1缸内直喷式汽油机的工作原理1.1混合汽的形成与调节方面的基本要求及特点人们在发展现代汽油机缸内直喷技术时,力图综合传统汽油机和柴油机两方面的优点。
众所周知。
柴油机按狄塞尔(Diesel)循环工作,即采用压燃和混合汽质调节方式工作。
其燃油经济性明显优于汽油机。
而汽油机则采用奥托(Otto)循环工作,混合汽进行量调节,过量空气系数(实际空气量/燃油按化学计量比燃烧所需空气量=空燃比/14.7)小,实现均质预混合燃烧,其动力性能指标,即升功率要高于柴油机。
而在柴油机中进行的是非均质混合汽扩散燃烧,尽管总体上过量空气系数λ>1,但混合汽中仍存在局部缺氧的情况,以至于形成了柴油机特有的碳烟与颗粒排放,这在缸内直喷式汽油机中,特别是在分层混合汽燃烧过程中的浓混合汽区域要尽量避免出现类似的情况。
为了扬长避短,综合汽油机和柴油机两方面的优点,要求在现代缸内直喷式汽油机中,如图7所示。
在部分负荷时燃油于压缩行程后期喷入,实现混合汽分层稀薄燃烧(过量空气系数λ≥1.9~2.2),并采用混合汽调节,以避免节气门的节流损失,力求达到与柴油机相当的燃油经济性;而在中等直至高负荷时,燃油在进气行程中喷入,根据运行工况的需要,实现均质稀薄混合汽燃烧(λ=1.3~1.4)或均质燃烧(λ=1.0)或均质加浓混合汽燃烧(λ提高6%~10%,燃油耗降低6%,并达到欧4排放标准(将在本文后续中的国内外典型机型章节中予以专门介绍)。
大众公司在我国大连生产的直喷式汽油机,也就是因我国市场目前暂时无法供应低硫汽油以及缺乏维修经验的实际情况而将原来的分层混合汽燃烧过程改为均质混合汽燃烧过程。
2006年,BMW 公司开发的335i-3.0L轿车上搭载的直喷式汽油机也采用均质混合汽运行,从而在喷油量跨度较大的涡轮增压机型上能够采用每循环多次喷射的策略。
在小负荷工况时只需进气行程期间的单次喷油就足以获得均匀的油气混合汽,而在低速高负荷运转工况时,在进气行程期间将喷油量分成2次或3次喷射,这样就能够在尽可能少湿壁的情况下获得非常均匀的油气混合汽,图8示出了其在发动机特性曲线场范围内多次喷射的应用情况,其燃油耗也要比相应的进气道喷射机型低10%,而且废气排放也能得到明显的改善。
特别是在冷启动后采用2次喷油策略,第一次在进气行程喷油,第二次在压缩行程喷油,此时只要不损坏发动机的运转平稳性,点火时刻可以明显延迟到点火上止点后。
从而使废气温度提高200℃以上,大大加快催化转化器的加热,使NOx和HC排放明显降低,可比采用单次喷油时低大约30%(图9)。
此外,应当指出,分层混合汽运行并不是减少换气过程泵气损失的唯一途径,可变气门正时也可以减少这种损失。
如果均质混合汽燃烧的直喷式汽油机与可变气门正时装置(VVT)结合起来。
其燃油耗可与分层混合汽燃烧系统相当。
1.2燃烧系统的基本要求和特点如何有效而稳定可靠地实现部分负荷时缸内混合汽的分层与稀薄燃烧是缸内直喷式汽油机成功的关键技术。
按照混合汽分层的机理,现代缸内直喷式汽油机的分层燃烧系统大体上可分为喷射油束引导、壁面引导和空气气流引导三种,图10示出了这些燃烧系统的结构型式。
它们在混合汽的形成及其向火花塞的输送以及充量运动的产生等方面的设计思想存在着很大的不同,而喷油器和火花塞的空间布置不仅影响气缸盖的结构,而且也影响形成可供点燃的混合汽的时间和区域,因而对燃烧过程产生重大的影响。
(1)喷射油束引导喷射油束引导的燃烧过程(图10左)由于喷油器和火花塞布置得非常紧凑,直接位于喷射油束的边缘,混合汽向火花塞的输送实际上仅依靠喷射油束的能量,在不同的发动机负荷即不同的喷油量时,获取形成混合汽所需的空气是通过调节喷射油束的物理参数――贯穿深度来实现的,而充量运动和燃烧室的几何形状的影响较小。
同时,由于火花塞与喷油器之间的间距较小,其燃烧过程可用于混合汽形成的时间非常短,使得只有非常少的混合汽能够可靠地点燃,因而其分层燃烧的能力极为有限,而且混合汽的点燃是在一个过量空气系数具有很大梯度的范围内实现的,因而对于局部过量空气系数的波动(例如因喷射油束的差异)反应极其敏感。
其燃烧过程强烈地依赖于喷射油束的形状及其特性的误差。
另一方面,喷射油束对火花塞的直接撞击,不仅会导致采用普通电极材料的火花塞寿命缩短,而且还出现了难以解决的火花塞易于积胶等方面的问题。
此外,这种喷射油束引导的燃烧系统由于喷油器必须紧靠火花塞,至少在四气门汽油机的情况下,还带来一个附加的缺点,即会明显地减小气门尺寸。
(2)壁面引导对于壁面引导的燃烧过程(图10中),喷油器与火花塞彼此之间的间距较大,此时燃烧室壁面(由燃烧室凹坑的几何形状来调整)将喷射的燃油导向火花塞,同时进气道和燃烧室凹坑几何形状所产生的充量运动(滚流或涡流)起到了辅助作用。
在这种燃烧过程中,在着火之前有较长的混合汽准备时间,因此能够在较大的区域内形成可点燃的空燃混合汽,从而使得这种壁面引导的燃烧过程对喷油的误差并不敏感。
(3)空气气流引导空气引导的燃烧过程(图10右)主要是依靠充量运动(滚流或涡流)将燃油中已准备好的气态部分从喷射油束输往火花塞,并且还必须确保在喷射油束和充量运动的共同作用下,在发动机负荷/转速特性场的宽广范围内,获得足够多的充量分层和混合汽均质化。
虽然根据混合汽形成的机理按上述方式来分类,但是实际上存在着各种方式相互交叉的情况,其中各种因素并存且相辅相成,需应用这些机理的组合效应来达到充量分层的效果,并确保其稳定可靠地运行。
例如壁面引导和空气气流引导两种机理往往是无法分离而独立存在的,只仅是以一种机理为主而另一种机理为辅,起到相互支持的效果。
特别是进气道和燃烧室凹坑几何形状所产生的充量运动(滚流或涡流),不仅能在充量分层时起到主导作用,而且强烈的充量运动在晚些时候蜕变成较小幅度的涡流,它们有助于混合汽的均质化以及随后燃烧过程中的物质交换,促进充量的完全燃烧。
以大众Lupo轿车1.4L-FSl分层稀燃直喷式汽油机为例,图11示出了其燃烧系统的原理图。
活塞顶面有两个特殊造型的导向坑,确保在分层稀燃(FSI)燃烧过程中获得所期望的燃油壁面导向和空气气流导向的组合效应。
图12是用计算流体动力学(CFD)方法得到的气流和燃油喷射的计算结果,清晰地显示了这种组合效果。
借助于气流导向坑的形状特别是以其流出角所形成的气流,使燃油喷束在撞到燃油导向坑背风面之前首先受到制动。
由于进气空气滚流和喷油的这种相互作用,使喷出燃油中的一小部分在上止点前55°CA就已形成了很好的混合汽。
处在燃油导向坑背风面的燃油到达坑的底部,并从那里转向火花塞方向(上止点前49°CA)。
这部分燃油从燃油导向坑离开以后,被气流导向坑上方一直存在的空气滚流挤向火花塞,使得到点火时刻在火花塞下方已准备好了良好的空燃混合汽,以确保稳定可靠地点燃(上止点前30°CA)。
此外,由于滚流的强度随转速而增强,因此诸如喷油压力和喷油定时等喷射参数必须作相应的调整来适应工况的变化,以保持空气气流、喷射油束和燃烧室几何形状三者之间良好的配合。