霍尔式测速原理
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
实验九霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。
圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。
此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。
三、需用器件与单元霍尔转速传感器、转速测量控制仪。
四、实验步骤1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。
3、将霍尔传感器输出端(黄线)接示波器或者频率计。
4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化),或用频率计观察输出频率的变化。
五、实验结果分析与处理1、记录频率计六组输出频率数值如下:由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。
随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
1。
霍尔测速测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
LM393管脚图实现功能:此版配套测试程序使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchunleo网站:淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!*********************************************************************/ /********************************************************************说明:1、当测量浓度大于设定浓度时,单片机IO口输出低电平*********************************************************************/ #include<reg52.h> //库文件#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型/******************************************************************** I/O定义*********************************************************************/ sbit LED=P1^0; //定义单片机P1口的第1位(即P1.0)为指示端sbit DOUT=P2^0; //定义单片机P2口的第1位(即P2.0)为传感器的输入端/********************************************************************延时函数*********************************************************************/ void delay()//延时程序{uchar m,n,s;for(m=20;m>0;m--)for(n=20;n>0;n--)for(s=248;s>0;s--);}/********************************************************************主函数*********************************************************************/ void main(){while(1) //无限循环{LED=1; //熄灭P1.0口灯if(DOUT==0)//当浓度高于设定值时,执行条件函数{delay();//延时抗干扰if(DOUT==0)//确定浓度高于设定值时,执行条件函数{LED=0; //点亮P1.0口灯}}}}/********************************************************************汇诚科技实现功能:0~9999计数器使用芯片:AT89S52晶振:11.0592MHZ波特率:9600编译环境:Keil作者:zhangxinchunleo网站:淘宝店:汇诚科技【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!******************************************************************/#include <reg52.h>#define uchar unsigned char#define uint unsigned intuchar duan[10]={0xc0,0Xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //所需的段的位码//uchar wei[4]={0XEf,0XDf,0XBf,0X7f}; //位的控制端(开发板) uchar wei[4]={0X80,0X40,0X20,0X10}; //位的控制端(仿真)uint z,x,c,v, date; //定义数据类型uint dispcount=0;/******************************************************************延时函数******************************************************************/void delay(uchar t){uchar i,j;for(i=0;i<t;i++){for(j=13;j>0;j--);{ ;}}}/********************************************************************** 数码管动态扫描*********************************************************************/void xianshi(){/*****************数据转换*****************************/z=date/1000; //求千位x=date%1000/100; //求百位c=date%100/10; //求十位v=date%10; //求个位P2=wei[0];P0=duan[z];delay(50);P2=wei[1];P0=duan[x];delay(50);P2=wei[2];P0=duan[c];delay(50);P2=wei[3];P0=duan[v];delay(50);}/*************************************************************************中断函数**************************************************************************/ void ExtInt0() interrupt 0 //中断服务程序{dispcount++; //每按一次中断按键,计数加一if (dispcount==9999) //计数范围0-9999{dispcount=0;}}/*************************************************************************主函数**************************************************************************/ void main(){TCON=0x01; //中断设置IE=0x81;while(1){date=dispcount;xianshi();}}。
霍尔传感器测速原理:电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量与显示有关电参量。
目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比与相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。
采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路与电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。
因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,就是替代互感器的新一代产品。
在此提出了利用霍尔传感器对电参量特别就是对高电压、大电流的参数的测量。
l测量原理1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场与电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就就是霍尔电动势(或称之为霍尔电压),这种现象称为霍尔效应。
霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。
2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH就是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B与IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B与I乘积的未知量亦可进行测量。
电参量的测量就就是根据这一原理实现的。
若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率与交流电的频率。
1.霍尔传感器测速原理利用霍尔器件将喷药设备的转速转化为脉冲信号,将测量转速的霍尔传感器和喷药设备的车轴同轴连接,与霍尔探头相对的喷药设备的轴上固定着一片磁钢块,车轮每转一周,霍尔传感器便发出一个脉冲信号,由霍尔器件电路输出。
将此脉冲信号接到单片机的IO口上,单片机通过采集IO口的信号来计算单位时间内的脉冲个数,从而计算出喷药设备的行进速度。
2.电磁阀工作原理电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。
这样通过控制电磁铁的电流就控制了机械运动。
2.1直动式电磁阀原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。
2.2分布直动式电磁阀原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。
当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。
2.3先导式电磁阀原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。
3.光电耦合器光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件.它对输入、输出电信号有良好的隔离作用.当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
霍尔传感器测速原理:电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量和显示有关电参量。
目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。
采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。
因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。
在此提出了利用霍尔传感器对电参量特别是对高电压、大电流的参数的测量。
l测量原理1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场和电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就是霍尔电动势(或称之为霍尔电压),这种现象称为霍尔效应。
霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。
2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B和IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B和I乘积的未知量亦可进行测量。
电参量的测量就是根据这一原理实现的。
若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率和交流电的频率。
霍尔测速原理
霍尔测速原理是利用霍尔效应来测量物体的速度。
霍尔效应是指当电流通过一个垂直于磁场的导体时,导体两侧会产生电压差。
这个电压差与导体所受到的磁场强度以及电流方向有关。
在霍尔测速中,通常会将霍尔元件放置在需要测速的物体上。
当物体运动时,流经霍尔元件的电流也会发生变化,从而导致产生电压差。
根据霍尔效应的原理,可以通过测量这个电压差的大小来获得物体的速度信息。
通过将霍尔元件与电源和测量电路连接,可以实现对速度的准确测量。
电源提供电流,而测量电路测量电压差。
根据霍尔效应的公式,电压差与磁场强度、电流和物体速度之间存在一定的关系。
因此,通过测量电压差的大小,可以推导出物体的速度。
霍尔测速原理的优点是测量精度高、灵敏度高,可以应用于各种不同的速度测量场景。
同时,它还具有非接触性的特点,能够避免物体表面的磨损、污染等影响测量结果的因素。
因此,在许多工业领域和应用中,霍尔测速已被广泛采用。
车速传感器的工作原理
车速传感器是一种用于测量车辆速度的装置。
它通常安装在车辆的车轮上,利用其与车轮的转动相互作用来测量车辆的速度。
车速传感器的工作原理基于霍尔效应。
霍尔效应是指当通过一块金属材料的两侧施加垂直磁场时,材料中的电荷将偏转,形成一个电势差。
利用这个原理,车速传感器中使用了霍尔元件。
当车辆以一定速度行驶时,车轮会带动车速传感器中的磁尺。
磁尺的旋转使得磁场发生变化,进而引起霍尔元件中的电势差变化。
车速传感器将根据电势差的变化量来计算车辆的速度。
为了保证测量的准确性,车速传感器还需要考虑其他因素,比如车轮的直径和胎压等。
通常,车速传感器还会与车辆的控制单元相连接,将速度信息传输给车辆系统,以便进行相应的调节和控制。
总的来说,车速传感器利用霍尔效应来测量车轮的转速,从而计算得出车辆的速度。
它在现代车辆中起着重要的作用,为驾驶者提供准确的速度信息,同时也为车辆的安全和性能提供了支持。
霍尔传感器测转速工作原理1. 引言说到转速测量,大家可能会想到那些复杂的仪器和晦涩的理论。
其实,霍尔传感器就像一位默默无闻的英雄,帮助我们在各种设备中轻松测量转速。
今天,我们就来聊聊这位“转速小能手”的故事。
准备好了吗?让我们一起探讨霍尔传感器的神奇之处吧!2. 霍尔效应的基本原理2.1 霍尔效应是什么?首先,咱们得了解霍尔效应的由来。
它可不是某个神秘的实验室里的黑科技,而是物理学家埃德温·霍尔在19世纪发现的一个现象。
简单来说,当电流通过导体时,如果在导体上施加一个垂直的磁场,导体内部就会产生一个电压,这个电压的方向和电流及磁场的方向都有关。
听起来有点抽象,但其实很简单,就是电流在磁场里转了一圈,搞出了一点小“电压骚动”。
2.2 霍尔传感器的构造霍尔传感器就是利用这个原理的小设备。
它的结构其实不复杂,里面有一个半导体材料,通常是硅,外面还配有磁铁或者其他能产生磁场的装置。
当转速提高时,转动的物体会产生变化的磁场,这样一来,霍尔传感器就能感受到这个变化并产生对应的电信号。
这一转,哎呀,就像转动的风车一样,轻轻松松地把转速信息传递出来。
3. 霍尔传感器的工作原理3.1 如何测转速?那么,霍尔传感器是怎么具体测量转速的呢?其实,这个过程就像我们在排队等公交车一样,车来的频率就代表了转速的快慢。
霍尔传感器会随着转动的物体旋转,产生周期性的电信号。
每当一个转子经过传感器时,它就会发出一次“嗡”的信号,咱们可以把这个信号称为“脉冲”。
通过测量单位时间内发出的脉冲数量,我们就能算出转速了。
就像数着班车来多少趟,最后得出你等的时间长不长。
3.2 应用场景霍尔传感器可不止局限在一个小地方,它的身影几乎无处不在。
无论是电动车的转速监测,还是汽车的发动机控制,甚至是洗衣机的转速调节,霍尔传感器都在默默地发挥作用。
听说,某些高端汽车的引擎里,霍尔传感器甚至能够帮助调整油门,确保你在高速公路上平稳驾驶。
试想一下,开车的时候,转速表在你面前“嗡嗡”作响,那种感觉可真是别提多爽了!4. 优缺点分析4.1 霍尔传感器的优点当然,霍尔传感器也有很多优点。
霍尔式车速表工作原理
一、车速表概述
车速表是汽车仪表中重要的测速仪器之一,能实时测量车辆行驶速度,并将速度值转化为物理量输出至仪表盘上,使车辆驾驶员能够了解车
速情况,保证安全驾驶。
霍尔式车速表又称磁敏式车速表,是一种常
用的测速仪器。
霍尔式车速表的工作原理如下:
二、霍尔效应
霍尔效应是指将材料置于磁场中时,通过材料内部的电荷载流子受到
洛仑兹力的影响,从而在材料厚度的方向上产生电势差,进而产生电
流的现象。
霍尔效应是磁敏式车速表测速的基础。
三、霍尔式车速表工作原理
1. 总体构造
霍尔式车速表分为传感器和车速表两部分。
传感器一侧为磁铁,安装
在车轮或传动轴上,车速表内部则有霍尔元件、电路测量系统和显示
系统组成。
2. 测量原理
车轮或传动轴上的磁铁在旋转时,会产生不断变化的磁场,磁场穿过
传感器内部的霍尔元件。
磁场的变化会引起霍尔元件输出电信号的变
化大小,其大小与车速成正比。
电路将信号经过放大、处理和滤波,
最终输出电压信号。
电路放大的幅度和调节信号的频率以便与车速成
比例。
输出信号转化后,可在车速表的显示区域,将车速以数字形式
显示于仪表盘上。
3. 应用效果
霍尔式车速表的应用效果在于,靠磁铁计数来确定车轮转速,可避免因经过路面不平且超速。
从而实现精确测速,增加了驾驶员对车辆的控制能力。
综上所述,霍尔式车速表是汽车仪表中重要的一种测速仪器,其工作原理基于霍尔效应原理,通过传感器、电路测量系统和显示系统的组合,将车速以数字形式显示于仪表盘上,有利于驾驶员的安全驾驶。
霍尔传感器测转速原理
霍尔传感器是一种利用霍尔效应来测量物体转速的传感器。
霍尔效应是当有电流通过导体时,若在该导体附近存在磁场,则会在导体两侧产生电势差。
霍尔传感器利用这个原理来测量转速。
在一个转速测量系统中,霍尔传感器通常被安装在旋转轴上,并与传动装置相连。
当传动装置转动时,霍尔传感器受到磁场的影响,导致在霍尔传感器两侧产生电势差。
该电势差的大小与磁场的强度和传动装置的转速成正比。
为了测量转速,通常需要将霍尔传感器输出的电压信号转换成数字信号,并通过计算得到转速的值。
这可以通过连接霍尔传感器和微控制器来实现。
微控制器可以采样霍尔传感器的输出电压,并根据预先设定好的转速和电压之间的关系,计算出物体的转速值。
需要注意的是,霍尔传感器的输出电压与转速并不是线性关系。
因此,在进行转速测量时,可能需要进行一定的校准和调整,以确保测量结果的准确性。
总的来说,霍尔传感器测转速的原理是利用霍尔效应测量导体两侧产生的电势差,将其转换为数字信号并计算出物体的转速值。
这种传感器通常被用于各种需要准确测量转速的应用中。
霍尔测试原理霍尔测试原理是指利用霍尔效应来进行电气测量的一种方法。
霍尔效应是指当导体中的电流通过时,如果在导体上加上一个磁场,就会产生一种电压。
这种电压被称为霍尔电压,它与磁场的大小和方向成正比。
利用这种效应,可以测量电流、磁场和导体的性质。
霍尔测试原理在电子、电气领域有着广泛的应用,下面将详细介绍霍尔测试原理的相关知识。
首先,我们来了解一下霍尔效应的基本原理。
当导体中有电流通过时,电子会受到洛伦兹力的作用,从而导致电子在导体中的移动方向发生偏转。
如果在导体上加上一个垂直于电流方向的磁场,那么受到洛伦兹力的作用,电子就会在导体中产生一个偏转运动,最终导致导体上出现一种电压,这就是霍尔电压。
霍尔电压的大小与电流、磁场的大小和导体的性质有关,可以通过测量霍尔电压来获取这些信息。
在实际的应用中,我们可以利用霍尔测试原理来测量电流。
通过将霍尔元件置于电流所在的导体中,当电流通过时,霍尔元件上就会产生霍尔电压。
通过测量霍尔电压的大小,就可以得到电流的大小。
这种方法可以实现对电流的非接触式测量,具有很高的精度和稳定性。
除了测量电流,霍尔测试原理还可以用于测量磁场。
当导体中有电流通过时,如果在导体周围加上一个磁场,就会产生霍尔电压。
通过测量霍尔电压的大小和方向,就可以获取磁场的大小和方向。
这种方法在磁场测量领域有着广泛的应用,可以实现对磁场的精确测量。
此外,霍尔测试原理还可以用于测量导体的性质。
由于霍尔电压的大小与导体的性质有关,可以通过测量霍尔电压的大小来获取导体的电阻率、载流子浓度等信息。
这对于研究材料的电学性质和导体的质量控制具有重要意义。
总的来说,霍尔测试原理是一种非常重要的电气测量方法,它可以实现对电流、磁场和导体性质的精确测量。
在实际的应用中,霍尔测试原理已经被广泛应用于电子、电气领域,为工程技术和科学研究提供了重要的手段。
通过深入了解霍尔测试原理的相关知识,可以更好地掌握这一测量方法的原理和应用,为相关领域的研究和应用提供有力的支持。
1前言霍尔传感器是基于霍尔效应的一种磁敏式传感器。
霍尔效应1897年首次被美国物理学家霍尔在金属材料中发现,但由于霍尔效应在金属材料中太微弱而没有得到人们的重视及较好的应用。
直到20世纪50年代,随着半导体技术的发展,利用半导体材料做成的霍尔元件的霍尔效应比较显着,从而霍尔效应被人们所重视和充分利用,霍尔式传感器得到了快速的应用和发展。
目前霍尔传感器已经广泛的应用于电磁、电流、水位、速度、振动等的测量领域。
由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图1所示,是其中一种型号的外形图。
2霍尔元件2.1霍尔元件及霍尔元件的命名方法霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。
在金属或半导体薄片相对两侧面通以控制电流I,在薄片垂直方向上施加电场B,则在垂直于电流和磁场的方向上,即另两侧面会产生一个大小与控制控制电流I和磁场B乘积成正比的电压U H,这一现象称为霍尔效应。
所产生的电压U H叫霍尔电压。
即式中K H------霍尔元件的灵敏度。
式中R H------霍尔系数,它反映元件霍尔效应的强弱,有材料性质决定。
单位体积内导电粒子数越少,霍尔效应越强,半导体比金属导体霍尔效应强,所以常采用半导体材料做霍尔元件;d------霍尔元件的厚度;图2霍尔效应原理由上式可知对于材料和尺寸确定的元件,K H保持常数,霍尔电压U H仅与IB的乘积成正比。
利用这一特性,在恒定电流之下可用来测量磁感应强度B;反之,在恒定的磁场之下,也可以用来测量电流I。
当K H和B恒定时,I越大,U H越大。
同样,当K H和I恒定时,B越大,U H也越大。
当所加磁场方向改变时,霍尔电压U H的符号也随之改变。
当磁场方向不垂直于元件平面,而是与元件平面的法线成一角度θ时,实际作用于元件上的有效磁场是其法线方向的分量,即B,这时霍尔元件的输出为cos2.2霍尔元件的材料及结构霍尔元件通常采用的半导体材料有N型锗(Ge),锑化铟(InSb)、砷化铟(InAs)、砷化镓(GaAs)及磷砷化铟(InAsP)、N型硅(Si)等。
霍尔传感器测速原理:电流的测量采用磁平衡式霍尔电流传感器传感器可测量从直流到100kHz的交流量在自动测控系统中,常需要测量与显示有关电参量。
目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比与相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。
采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路与电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。
因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,就是替代互感器的新一代产品。
在此提出了利用霍尔传感器对电参量特别就是对高电压、大电流的参数的测量。
l测量原理1霍尔效应原理如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场与电流的方向向导体两端移动,并在导体两端形成一个稳定的电动势UH,这就就是霍尔电动势(或称之为霍尔电压),这种现象称为霍尔效应。
霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。
2用霍尔传感器测量电参量的原理由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH就是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B与IC 两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B与I乘积的未知量亦可进行测量。
电参量的测量就就是根据这一原理实现的。
若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率与交流电的频率。
实验三霍尔式、磁电式转速传感器测速实验一、实验目的:了解磁电式传感器测量转速的原理、了解霍尔转速传感器的应用。
二、基本原理:根据霍尔效应表达式:UH=KHIB, 当KHI不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。
圆盘每转一周经过霍尔元件表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次,此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。
三、需用器件与单元:霍尔转速传感器、磁电式转速传感器、转动源(2000型)或转速测量控制仪(2000型)。
四、实验步骤:1、根据图5-4,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。
2、将主控箱上的+5V直流电源加于霍尔转速传感器的电源输入端,红(+)、绿(⊥),不要接错。
3、将霍尔转速传感器输出端(黄线)插入数显单元fin端,转速/频率表置转速档。
4、将主控台上的+2V—+24V可调直流电源接入转动电机的+2V—+24V输入插口(2000型)。
调节电机转速电位器使转速变化,观察数显表指示的变化。
5、参照实验图安装磁电式转速传感器,传感器端面离转动盘面约2mm左右,并且对准转盘内的磁钢。
将磁电式传感器的输出线插入主控台fim输入端,并将转速/频率表置转速档。
6、将主控台上的+2V—+24V可调直流电源接入转动电机的+2V—+24V插口(2000型),调节电机转速电位器使转速变化。
观察数显表指示的变化。
五、思考题:1、利用霍尔元件测转速,在测量上是否有限制?2、本实验装置上用了十二只磁钢,能否只用一只磁钢?3、为什么说磁电式转速传感器不能测很低速的转动,能说明理由吗?4、磁电式传感器需要供电吗?。
霍尔测速实验一、实验目的:了解霍尔转速传感器的应用。
二、基本原理:利用霍尔效应表达式U H = K H IB ,当被测圆盘上装上N 只磁性体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)三、需用器件与单元:霍尔转速传感器、转速调节2-24V 、转动源单元、数显单元的转速显示部分。
四、实验步骤:1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面的磁钢。
2、将直流源加于霍尔元件电源输入端。
红(+)接+5V ,黑(┴)接地。
3、将霍尔转速传感器输出端(蓝)插入数显单元F in 端。
4、将转速调节中的2-24V 转速电源引到转动源的2-24V 插孔。
5、将数显单元上的转速/频率表波段开关拨到转速档,此时数显表指示转速。
6、调节电压使转动速度变化。
观察数显表转速显示的变化。
五、思考题:1、利用霍尔元件测转速,在测量上是否有限制?2、本实验装置上用了十二只磁钢,能否用一只磁钢,二者有什么区别呢?图1霍尔、光电、磁电转速传感器安装示意图实验三十一光纤传感器测速实验一、实验目的:了解光纤位移传感器用于测量转速的方法。
二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
三、需用器件与单元:光纤传感器、光纤传感器实验模块、转速/频率数显表、直流源±15V、转速调节2~24V,转动源模块。
四、实验步骤:1、光纤传感器按图1装于传感器支架上,使光纤探头与电机转盘平台中磁钢反射点对准。
2、按“光纤位移特性实验”的连线图,如图2所示,将光纤传感器实验模块输出Vo1与数显电压表Vi端相接,接上实验模块上±15V电源,数显表的切换开关选择开关拨到20V档。
①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节Rw2使数显表显示接近零(≥0),此时Rw1处于中间位置。
霍尔传感器测转速原理
磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。
在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。
霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。
霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。
若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。
下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。
这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。
霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。
霍尔效应传感器
1-霍尔半导体元件2-永久磁铁3-挡隔磁力线的叶片
1。