九年级数学二次函数几种解析式的求法素材
- 格式:doc
- 大小:194.50 KB
- 文档页数:15
二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
二次函数是一种常见的数学函数,其解析式可以有三种常见的形式。
下面我将逐一介绍这三种形式及其求法。
1.顶点形式:y=a(x-h)²+k顶点形式是一种常见的二次函数解析式形式。
其中a,h和k分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,h表示抛物线的横向平移,k表示抛物线的纵向平移。
求解二次函数顶点形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后找出顶点坐标(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。
2. 一般形式:y = ax² + bx + c一般形式是另一种常见的二次函数解析式形式。
其中a,b和c分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,b表示抛物线的横向平移,c表示抛物线的纵向平移。
求解二次函数一般形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后利用求根公式(-b ± √(b² - 4ac)) / 2a,计算出二次函数的根;接着可以利用根的性质求出顶点的横坐标-x = b / 2a,并将x代入二次函数求得顶点的纵坐标y。
3.描点形式:y-y₁=a(x-x₁)(x-x₂)描点形式是一种通过抛物线上两个已知点求解二次函数解析式的形式。
其中a表示抛物线的开口方向和大小,(x₁,y₁)和(x₂,y₂)分别表示已知点的坐标。
求解二次函数描点形式的步骤如下:首先计算a的值,可以利用已知点的坐标代入公式求解;接着将(x₁,y₁)和(x₂,y₂)分别代入描点形式,得到两个方程,再解这个方程组得到二次函数的解析式。
以上介绍了二次函数解析式的三种形式及其求法。
不同形式的解析式适合不同的问题,根据具体情况选取合适的形式求解可以提高解题效率。
希望对你的学习有所帮助!。
二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。
本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。
每种方法的步骤和注意事项都将被详细介绍。
一、公式法公式法是一种求解二次函数解析式的基本方法。
二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。
一个常见的二次函数的例子为y = x²。
1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。
通常情况下,这些值可以从已知的条件中直接得到。
如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。
可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。
可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。
具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。
如果二次函数的解析式没有实数根,则说明这个二次函数不存在。
在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。
求二次函数解析式的方法
一、利用顶点坐标求解析式。
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a, c-b^2/4a)。
因此,我们可以通过已知的顶点坐标来求解析式。
例如,如果已知
顶点坐标为(2, 3),则可以列出方程组:
a2^2+b2+c=3。
a2+b=0。
通过解方程组,即可求得二次函数的解析式。
二、利用描点法求解析式。
描点法是通过已知的函数图像上的点来求解析式的一种方法。
如果已知二次函数上的两个点的坐标分别为(x1, y1)和(x2, y2),
则可以列出方程组:
ax1^2+bx1+c=y1。
ax2^2+bx2+c=y2。
通过解方程组,即可求得二次函数的解析式。
三、利用配方法求解析式。
对于一般的二次函数y=ax^2+bx+c,我们可以利用配方法将其写成完全平方的形式。
例如,对于函数y=x^2+2x+1,我们可以将其写成(y+1)=(x+1)^2的形式,从而得到解析式y=(x+1)^2-1。
四、利用判别式求解析式。
二次函数的判别式Δ=b^2-4ac可以用来判断二次函数的解的情况。
当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数没有实数根。
因此,我们可以通过判别式来求解析式。
以上是几种常用的求二次函数解析式的方法,当然还有其他一些方法,如利用导数、利用函数的对称性等。
通过这些方法,我们可以灵活地求得二次函数的解析式,从而更好地理解和应用二次函数。
求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x xx x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
求二次函数解析式的四种方法详解二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数。
常见的四种方法求二次函数解析式包括配方法、因式分解法、求根公式法和完成平方法。
1.配方法:配方法适用于二次函数的系数不为1时,即a≠1的情况。
步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。
例如:y=x^2+6x+5可以写成y=(x+3)^2-4b)化简得到二次函数的解析式。
例如:在上述例子中,化简得到y=x^2+6x+5=(x+3)^2-42.因式分解法:因式分解法适用于二次函数可以被因式分解的情况,即可以找到两个一次因式的乘积形式。
步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。
例如:y=x^2+6x+5可以写成y=(x+1)(x+5)。
b)化简得到二次函数的解析式。
例如:在上述例子中,化简得到y=x^2+6x+5=(x+1)(x+5)。
3.求根公式法:求根公式法适用于二次函数的解存在有理根的情况。
步骤:a) 根据二次函数的系数a、b、c,计算出二次函数的判别式Δ=b^2-4ac。
b)根据判别式Δ的数值,判断方程的解的情况:-如果Δ>0,则有两个不相等的实根;-如果Δ=0,则有两个相等的实根(重根);-如果Δ<0,则没有实根,但可能有两个虚根。
c)根据求根公式x=(-b±√Δ)/(2a),求出实根或复根。
4.完成平方法:完成平方法适用于二次函数的系数为1时,即a=1的情况。
步骤:a)将二次函数进行配方,将其转化成完全平方的形式。
例如:y=x^2+6x+___,需要找到一个数来补全。
根据(b/2)^2的性质,可以将6/2=3得到的平方数补全,即y=x^2+6x+9b)化简得到二次函数的解析式。
例如:在上述例子中,化简得到y=x^2+6x+9=(x+3)^2通过以上四种方法,可以根据具体的二次函数形式,选择适合的方式来求得二次函数的解析式。
谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。
本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。
二次函数的解析式的求法有很多种,但常见的也就以下几种。
(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。
解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。
例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。
例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。
解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。
二次函数三种解析式的求法二次函数是高中数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a不等于0。
在解析式的求法方面,有三种常用的方法,分别是配方法、因式分解和求根公式。
下面将分别介绍这三种方法的求解步骤和应用场景。
一、配方法配方法是一种通过“配方”的方式将二次函数转化为平方的形式,从而求解方程的方法。
其基本思想是通过添加适当的常数来构造完全平方。
具体步骤如下:1. 将二次函数化为平方项的和。
对于一般形式的二次函数y=ax^2+bx+c,我们可以通过添加适当的常数来将其转化为完全平方的形式。
首先,我们需要找到一个常数k,使得ax^2+bx+c=k(x+m)^2+n,其中k、m、n为常数,且k不等于0。
2. 求解方程。
将转化后的函数形式与零相等,即k(x+m)^2+n=0,我们可以解得x 的值。
3. 检验解的正确性。
将求得的x代入原方程中,检验得到的解是否满足原方程。
配方法适用于一般形式的二次函数,其步骤相对简单,容易掌握和应用。
但在某些情况下,由于二次函数的系数较大或方程较复杂,配方法可能不易实施。
二、因式分解因式分解是将二次函数化为一个或多个因式的乘积形式,进而求解方程的方法。
其基本思想是将二次函数进行因式分解,然后利用零乘积法则得到方程的解。
具体步骤如下:1. 将二次函数因式分解。
对于一般形式的二次函数y=ax^2+bx+c,我们需要找到两个因式,使得二次函数可以表示为这两个因式的乘积形式。
2. 利用零乘积法则求解方程。
将因式分解后得到的方程中的每个因式分别与零相等,即得到若干个方程。
然后,求解这些方程,得到x的值。
3. 检验解的正确性。
将求得的x代入原方程中,检验得到的解是否满足原方程。
因式分解方法适用于二次函数可以进行因式分解的情况,它的求解步骤相对简单,但需要对因式分解有一定的掌握和理解。
三、求根公式求根公式是一种通过使用二次函数的系数来直接求解方程的方法。
一、 已知三点求二次函数的解析式例1、已知二次函数的图象经过点A )23,2(-、B )6,7(、C )30,5(-,求这个二次函数的解析式。
二、已知顶点坐标、对称轴、或极值求二次函数的解析式当已知顶点坐标、对称轴、或极值时,可设其解析式为n m x a y +-=2)((即顶点式)较为简便。
例2、已知二次函数图象的顶点为(2,5),且与y 轴的交点的纵坐标为13,求这个二次函数的解析式。
例3、已知二次函数的图象过点(-1,2),对称轴为1=x 且最小值为-2,求这个函数的解析式。
三、已知图象与x 轴两交点坐标求解析式当已知二次函数图象与x 轴的两交点坐标时,可设其解析式为))((21x x x x a y --=(即交点式)较为简便。
例4、已知二次函数的图象与x 轴交于)0,1(-A 、)0,3(B 两点,与y 轴交点的纵坐标为2,求此二次函数的解析式。
四、已知图象与x 轴两交点间的距离求解析式当已知二次函数与x 轴两交点间的距离时,常用一般式c bx ax y ++=2和关系式:a x x ∆=-21(其中ac b 42-=∆)求解。
例5、已知二次函数的图象x 轴两交点间的距离为6,且经过点(-2,2)和(4,-4),求这个二次函数的解析式。
五、由二次函数的图象平移变换求解析式例6、将二次函数5822-+-=x x y 的图象向左平移3个单位,再向下平移2个单位,求所得二次函数的解析式。
六、二次函数的图象绕顶点旋转0180或沿x 轴翻折变换求解析式例7、把函数1422+-=x x y 的图象绕顶点旋转1800,求所得抛物线的解析式。
例8、把二次函数522+-=x x y 的图象沿x 轴翻折,求所得抛物线的解析式。
十种二次函数解析式求解方法一、二次函数解析式的一般形式二次函数解析式一般形式为:f(x) = ax² + bx + c ,其中 a、b、c 是给定的实数,且a ≠ 0。
二、求解二次函数解析式的常见方法1.完全平方解法:将二次函数解析式表示为完全平方形式,进而求得其最简形式。
2.因式分解法:将二次函数解析式进行因式分解,得到对应的零点和轴对称线方程。
3.配凑法:变形后的二次函数解析式可以通过配凑使其变为一个完全平方式,然后用完全平方解法求解。
4.直接开方法:将二次函数解析式表示为开方形式,求出其零点和轴对称线方程另一种方法。
5.图像法:通过绘制函数图像的方法可以得到二次函数的对称轴、顶点和图像的开口方向。
6.列出方程法:通过已知条件列出关于二次函数解析式的方程,进而求解二次函数解析式。
7.求导法:通过对二次函数解析式进行求导,可以得到对应的切线方程,知道切线方程后可以求解出二次函数解析式。
8. 借助计算机软件:使用计算机软件如Mathematica、MATLAB等,在计算机中输入二次函数解析式,即可得到其解析式。
9.使用求根公式:二次函数解析式可以通过求根公式求解,即利用一元二次方程求根公式求解。
10.公式推导:根据二次函数的定义和性质,利用一些数学推导方法求解二次函数解析式。
三、各种方法的详细解释1.完全平方解法:通过完全平方公式将二次函数解析式写成完全平方的形式,然后根据完全平方公式的性质,求得其最简形式。
2.因式分解法:将二次函数解析式进行因式分解,得到对应的零点和轴对称线方程。
根据因式分解的结果可以知道解析式的特征。
3.配凑法:变形后的二次函数解析式可以通过配凑使其变为一个完全平方式,然后用完全平方解法求解。
配凑的目的是为了得到一个方便求解的二次函数形式。
4.直接开方法:将二次函数解析式表示为开方形式,通过解方程求出开方后的值,进而求得零点和轴对称线方程。
5.图像法:在坐标系中通过绘制函数图像的方法可以得到二次函数的对称轴、顶点和图像的开口方向。
二次函数解析式的8种求法二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、经过点A (1,3)的抛物线的解析式是 .三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,a 的值不变,口诀为:左加右减,上加下减.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.以上三类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29)4.已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。
二次函数的解析式求法求二次函数的解析式这类题涉及面广,灵活性大,技巧性强,笔者结合近几年来的中考试题,总结出几种解析式的求法,供同学们学习时参考。
一、 三点型例1 已知一个二次函数图象经过(-1,10)、(2,7)和(1,4)三点,那么这个函数的解析式是_______。
分析 已知二次函数图象上的三个点,可设其解析式为y=ax 2+bx+c,将三个点的坐标代入,易得a=2,b=-3,c=5 。
故所求函数解析式为y=2x 2-3x+5.这种方法是将坐标代入y=ax 2+bx+c 后,把问题归结为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax 2+bx+c.二、交点型例2 已知抛物线y=-2x 2+8x-9的顶点为A ,若二次函数y=ax 2+bx+c 的图像经过A 点,且与x 轴交于B (0,0)、C (3,0)两点,试求这个二次函数的解析式。
分析 要求的二次函数的图象与x 轴的两个交点坐标,可设y=ax(x-3),再求也y=-2x 2+8x-9的顶点A (2,-1)。
将A 点的坐标代入y=ax(x-3),得到a=21∴y=21x(x-3),即 y=x x 23212 .三、顶点型例 3 已知抛物线y=ax 2+bx+c 的顶点是A(-1,4)且经过点(1,2)求其解析式。
分析 此类题型可设顶点坐标为(m,k),故解析式为y=a(x-m)2+k.在本题中可设y=a(x+1)2+4.再将点(1,2)代入求得a=-21∴y=-,4)1(212++x即y=-.27212+-x x由于题中只有一个待定的系数a ,将已知点代入即可求出,进而得到要求的解析式。
四、平移型例 4 二次函数y=x 2+bx+c 的图象向左平移两个单位,再向上平移3个单位得二次函数,122+-=x x y 则b 与c 分别等于 (A)2,-2;(B)-6,6;(c)-8,14;(D)-8,18.分析 逆用平移分式,将函数y=x 2-2x+1的顶点(1,0)先向下平移3个单位,再向右平移两个单位得原函数的图象的顶点为(3,-3)。
∴y=x 3)3(22--=++x c bx =x .662+-x∴b=-6,c=6.因此选(B )五、弦比型例 5 已知二次函y=ax 2+bx+c 为x=2时有最大值2,其图象在X 轴上截得的线段长为2,求这个二次函数的解析式。
分析 弦长型的问题有两种思路,一是利用对称性求出交点坐标,二是用弦比公式d=a∆就本题而言,可由对称性求得两交点坐标为A(1,0),B(3,0)。
再应用交点式或顶点式求得解析式为y=-2x2+8x-6.六、识图型例 6 如图1,抛物线y=cxbx+++)2(212与y=dxbx+-+)2(212其中一条的顶点为P,另一条与X轴交于M、N两点。
(1)试判定哪条抛物线与X轴交于M、N点?(2)求两条抛物线的解析式。
解(1)抛物线y=cxbx+++)2(212与x轴交于M,N两点(过程从略);(2)因y=dxbx+-+)2(212的顶点坐标为(0,1),∴b-2=0,d=1, ∴b=2.∴Y=1212+x.将点N的坐标与b=2分别代入y=221x+(b+2)x+c得c=6.∴y=221x +4x+6七、面积型例 7 已知抛物线y=x c bx ++2 的对称轴在 y 轴的右侧,且抛物线与 y 轴交于Q (0,-3),与x 轴的交点为A 、B ,顶点为P ,ΔPAB 的面积为8。
求其解析式。
解 将(0,-3)代入y=c bx x ++2得 c=-3. 由弦长公式,得122+=b AB点P 的纵坐标为4122b --由面积公式,得.8412122122=--⋅+b b解得.2±=b因对称轴在y 轴的右侧,∴ b=-2.所以解析式为y=322--x x八、几何型例 8 已知二次函数y=2x -mx+2m-4如果抛物线与x 轴相交的两个交点以及抛物线的顶点组成一个等边三角形,求其解析式。
解 由弦比公式,得AB=4)42(42-=--m m m顶点C 的纵坐标为-4)4(2-m∵ΔABC 为等边三角形∴43214)4(2-⋅=--m m解得m=4,32±故所求解析式为 y=,344)324(2+++-x x 或y=344)324(2-+--x x九、三角型例 9已知抛物线y=c bx x ++2的图象经过三点(0,2512)、(sinA ,0)、(sinB ,0)且A 、B 为直角三角形的两个锐角,求其解析式。
解 ∵A+B=900,∴sinB=cosA.则由根与系数的关系,可得⎩⎨⎧=⋅-=+c A A b A A cos sin cos sin将(0,2512)代入解析式,得c=.2512(1)2)2(2⨯-,得 ,125242=-b ∴57±=b ∵-b ,0〉∴b=-57所以解析式为y=2512572+-x x十、综合型例 10 如图2,已知抛物线y=-q px x ++2与x 轴交于A 、B 两点,与y 轴交于C 点, 若∠ACB=900,且tg ∠CAO-tg ∠CBO=2,求其解析式.解 设A ,B 两点的横坐标分别为x 21,x ,则q=(-x .)21OB OA x ⋅=⋅由ΔAOC ~ΔCOB ,可得OC 2=OA ·OB ,∴q 2=q 解得q 1=1,q 2=0(舍去),又由tg ∠CAO-tg ∠CBO=2得2=-OB OCOA OC即21121=--X X∴x 1+x 2=-2x 1x 2 即 p=2p=2所以解析式为y=-x 2+2x+1最小值-2。
(1)求这个二次函数的解析式(2)若此函数图象上有一点P,使ΔP A B的面积等于12个平方单位,求P点坐标。
分析:由已知可得抛物线的对称轴是直线x=3,根据抛物线的对称性,又由抛物线在x轴上截得线段A B的长是4,可知其与x轴交点为(1,0),(5,0)解:(1)∵当x=3时y取得最小值-2.即抛物线顶点为(3,-2).∴设二次函数解析式为y=a(x-3)2-2又∵图象在x轴上截得线段A B的长是4,∴图象与x轴交于(1,0)和(5,0)两点∴a(1-3)2-2=0∴a=∴所求二次函数解析式为y=x2-3x+(2)∵ΔP A B的面积为12个平方单位,|A B|=4∴×4×|P y|=12∴|P y|=6∴P g=±6但抛物线开口向上,函数值最小为-2,∴P y=-6应舍去,∴P g=6又点P在抛物线上,∴6=x2-3x+x1=-1,x2=7即点P的坐标为(-1,6)或(7,6)说明:此题如果设图象与x轴交点横坐标为x1,x2,运用公式|x1-x2|=,会使运算繁琐。
这里利用抛物线的对称性将线段长的条件转化为点的坐标,比较简便。
例8.如图,矩形E F G H内接于ΔA B C。
E、F在A C边上H、G分别在A B、B C边上,A C=8c m,高B D=6c m,设矩形的宽H E为x(c m)。
试求出矩形E F G H的面积y(c m2)与矩形E F G H的宽x(c m)间的函数关系式,并回答当矩形的宽取多长时,它的面积最大,最大面积是多少?解:∵四边形E F G H是矩形∴H G∥A C∴ΔA B C∽ΔH B G设B D交H G于M则B D与B M分别是ΔA B C和ΔH B G的高。
∴∵H G∥A C,∴M D=H E=x,B M=6-x∴,∴H G=∵y=S矩形E F G H=H E*H G∴y=x*整理得y=-x2+8x∵B D=6∴自变量x的取值范围是0<x<6∵x2的系数为-<0,∴y有最大值当x=-=3时,y最大值==12∴所求函数的解析式为y=-x2+8x(0<x<6),当它的宽为3c m时,矩形E F G H面积最大,最大面积为12c m2。
例9.二次函数y=a x2+b x-5的图象的对称轴为直线x=3,图象与y轴相交于点B,设x1,x2是方程a x2+b x-5=0的两个根,且x12+x22=26,又设二次函数图象顶点为A,(1)求二次函数的解析式(2)求原点O到直线A B的距离解(1)如图∵-=3∴-=6又x1+x2=-=6x1*x2=-由已知,有x12+x22=26,∴(x1+x2)2-2x1x2=26即(-)2+=26,=26-36解得a=-1∴解析式为y=-x2+6x-5=-(x-3)2+4(2)∵O B=5,O C=4,A C=3∴A B==3又O A==5∴ΔA O B为等腰三角形,作O D⊥A B于D,∴B D=∴O D=,即原点O到直线A B的距离为三、同步测试:选择题:1.如果点P(3m-p,1-m)是第三象限的整数点,那么P点坐标是()(A).(-2,-1)(B)(-3,-1)(C)(-3,-2)(D)(-4,-2)2.若点P(a,b)在第二、四象限两轴夹角平分线上,则a与b的关系是()(A)a=b(B)a=-b(C)a=|b|(D)|a|=b3.点P(x,y)在第二象限,且|x|=2,|y|=3,则点P关于x轴对称点的坐标为()(A)(-2,3)(B)(2,-3)(C)(-2,-3)(D)(2,3)4.函数y=中,自变量x的取值范围是()(A)x≤2(B)x<2(C)x≠2(D)x>25.函数y=中,自变量x的取值范围是()(A)x>-2且x≠1(B)x≥-2且x≠1(C)x≥-2且x≠±1(D)x≥-2或x≠±16.在下列函数中,成正比例函数关系的是()(A)圆的面积与它的周长(B)矩形面积是定值,矩形的长与宽(C)正方形面积与它的边长(D)当底边一定时,三角形面积与底边上的高7.函数y=k(x-1)与y=(k<o)在同一坐标系下的图象大致如图()8.如果直线y=k x+b的图象过二、三、四象限,那么()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<09.对于抛物线y=-+x-x2,下列结论正确的是()(A)开口向上,顶点坐标是(,0)(B)开口向下,顶点坐标是(,0)(C)开口向下,顶点坐标是(-,)(D)开口向上,顶点坐标是(-,-)10.若a>0,b<0则函数y=a x2+b x的图象是下面图中的()11.已知:二次函数y=a x2+b x+c的图象如图,则()(A)a>0,b>0,c>0,Δ<0(B)a<0,b>0,c<0,Δ>0(C)a>0,b<0,c<0,Δ>0(D)a<0,b<0,c>0,Δ<012.把函数y=2x2-4x-5的图象向左平移2个单位,再向下平移3个单位后,所得到的函数图象的解析式为()(A)y=2x2+4x-8(B)y=2x2-8x+8(C)y=2x2+4x-2(D)y=2x2-8x-2填空题13.点A(,-5)到x轴的距离是____;到y轴的距离是____;到原点的距离是____.14.直线y=k x+b与直线y=-x平行,且通过点(2,-3),则k=__,在y轴上的截距为___.15.一次函数的图象经过(1,-5)点且与y轴交于(0,-1)点,则一次函数的解析式为____.16.已知抛物线的顶点为M(4,8)且经过坐标原点,则抛物线所对应的二次函数的解析式为____.解答题:17.一次函y=x+分别与x轴,y轴交于点A,B,点C(0,a)且a<0,若∠B A C为直角,求图象过点C与点A的一次函数解析式。