夏普光耦选型手册
- 格式:pdf
- 大小:1.02 MB
- 文档页数:43
光电耦合器(简称光耦)是开关电源电路中常用的器件。
光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
常用的4N系列光耦属于非线性光耦常用的线性光耦是PC817A—C系列。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。
线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。
开关电源中常用的光耦是线性光耦。
如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。
由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。
同时电源带负载能力下降。
在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。
常用的4脚线性光耦有PC817A----C。
PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。
常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
经查大量资料后,以下是目前市场上常见的高速光藕型号:100K bit/S:6N138、6N139、PS87031M bit/S:6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)10M bit/S:6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。
光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。
Pack performance into the smallest dimensionswith Sharp’s solutions for Lighting, Sensing, and Powerhandling. Sharp’s Lighting, Drivers, Power handling, and Sensing modules are specifically designed for engineers with small applications demanding higherpackaging density and a smaller end product. Combine our Lighting with our Driver and Sensing modules for a complete solution. Sharp’s Sensors pro-vide the best cost/performance numbers in the industry, while Sharp’s Photointerrupters are at the forefront insize and ambient light management. Sharp’s Distance Sensors outperform capacitive, ultrasonic, and light-intensity offerings.Lighting• LED Modules • LED Drivers• Ambient Light Sensors• Blue Laser DiodesPower• Photocouplers • PhototriacsSensors• Photointerrupters • Optical System Devices• Emitters/DetectorsElectronic Components GroupSelector GuideSMD High-brightness LEDsPart Number Package Type ColorColorTemperature(°K)DominantWavelength(nm)CurrentMAX.(mA)TestedCurrent(mA)ForwardVoltage(V)ViewingAngle(degrees)LuminousFlux(lm)LuminousIntensity(mcd)GM5BW96385A PLCC2White5,300NA3020 3.2120 6.32,200 GM5BW97330A PLCC4White5,300NA8060 3.2120176,400 GM5BW97331A PLCC4White5,000NA8060 3.2120177,000 GM5BW97332A PLCC4Cool white6700NA8060 3.2120155,800 GM5BW97333A PLCC4Cool white11,500NA8060 3.2120125,100 GM5SAE27P0A PLCC2Warm white2,700NA3020 3.2120 5.82,000 GM5SAE30P0A PLCC2Warm White3,000NA3020 3.2120 5.82,050 GM5SAE35P0A PLCC2Warm White3,500NA3020 3.2120 5.82,100 GM5SAE40P0A PLCC2White4,000NA3020 3.2120 5.82,150 GM5SAE45P0A PLCC2White4,500NA3020 3.2120 5.82,200 GM5SAE50P0A PLCC2White5,000NA3020 3.2120 5.82,200 GM5SAE57P0A PLCC2Cool white5,700NA3020 3.2120 5.82,200 GM5SAE65P0A PLCC2Cool white6,500NA3020 3.2120 5.82,200 GM5BW05341A 5.0 × 5.0 with Lens Cool white6,500NA25/25/2520/20/20 3.2602510,000 GM5BW01300A 6.0 × 5.0Cool white6,500NA40/40/4035/35/35 3.4120114,000 NOTE: Ta = 25°CLED Lighting Module “Zenigata”Power (Watt)Part Number Package Type ColorColorTemperature(°K)Current MAX.(mA)Tested Current(mA)ForwardVoltage (V)Viewing Angle(degees)Luminous Flux(lm)3.6GW5BDC15L0218mm × 18mm Warm White280040036010.2120200 GW5BWC15L0218mm × 18mm White500040036010.2120280 GW5BNC15L0218mm × 18mm High CRI White500040036010.2120190 GW5BNC15L1218mm × 18mm High CRI Cool White650040036010.21201906.7GW5BDF15L0018mm × 18mm Warm White280070064010.2120400 GW5BWF15L0018mm × 18mm White500070064010.2120540 GW5BNF15L0018mm × 18mm High CRI White500070064010.2120350 GW5BNF15L1018mm × 18mm High CRI Cool White650070064010.2120350Side Emission LEDsPart Number Package Type ColorColorTemperature(°K)DominantWavelength(nm)Current MAX.(mA)TestedCurrent (mA)ForwardVoltage(V)Viewing Angle(degees)LuminousFlux(lm)LuminousIntensity(mcd)GM4BW853B0A 2.8 × 1.2 (T: 0.8)White8,000NA3520 3.2110 5.82,200 GM4BW653B0A 3.85 × 1.0 (T: 0.6)White8,000NA3520 3.2110 5.82,200 GM4BW53340A 3.85 × 1.0 (T: 0.5) White8,000NA3520 3.2110 5.41,800LED DriversModel No.LED ConfigurationRGB WhiteInputVoltage(V)OutputCurrent(mA)Step-upSwitchingFrequency(Hz)LED Anode VoltageSupply SourceControl PackagePackageDimensions (mm) (parallel)(series)IR2D0716N/A N/A N/A 3.0 – 5.555N/A External (to 7.0 V)3-line serial28-pin SDIP8.6 × 25.5 × 4.4 IR2D20U8+8+8N/A N/A N/A 4.5 – 5.530N/A External (to 18 V)3-line serial52-pin HQFN7.2 × 7.2 × 0.92IR2E46Y73 2 sets of 2 LEDs 1 pair 2 sets of 2 LEDs(series)2.7 – 4.5155 1.2MExternal (to 4.5 V)Built-in step-up CoilI2C bus33-pin WLCSP 3.6 × 3.6 × 0.82IR2E49U65 5 sets of 7 LEDsN/A5 sets of 7 LEDs(series)6 – 28150100k – 1M Built-in step-up Coil Logic input36-pin VQFN 6.2 × 6.2 × 1.0 35 (5 × 7) possibleIR2E51Y74 (W)+ 2 (W)+ 3 (RGB)N/A 1 pair6 LEDs (4+2)(parallel)3.0 –4.52.3 –3.225500kBuilt-in step-upCharge pumpI2C bus35-pin WLCSP 3.6 × 3.6 × 0.82IR2E53Y7 6 (RGB)18 sets of 6 LEDs 618 LEDs 3.0 – 4.52.3 –3.225.9660kBuilt-in step-upCharge pumpI2C bus35-pin WLCSP 3.57 × 3.57 × 0.875PQ6CB11X1CP N/A 1 set of 6 LEDs N/A 6 LEDs (series) 2.7 – 5.5250 1.2M Built-in step-up Coil Logic input6-pin SMD 1.8 × 2.0 × 0.8 PQ7L2020BP N/A 1 set of 9 LEDs N/A9 LEDs (series) 2.9 – 5.5500 1.2M Built-in step-up Coil Logic input6-pin SMD 1.8 × 2.0 × 0.8Ambient Light SensorsModel No. Type PackageAbsoluteMaximumRatingsElectro-optical CharacteristicsTopr(°C)SupplyVoltageV CC (V)IlluminanceRangeEx (lx)DissipationCurrent I CC(μA) TYP.PeakSensitivityWavelengthλp (nm)Output Current V CC(V)I O(mA)I O1 (μA)TYP.I O2 (μA)TYP.GA1A2S100SS Built-in amplification circuit.Peak sensitivity characteristicclose to human vision: Linearcurrent output. Straight leads.Transparentresin(3 × 4 mm)7.0 5 –40 to +85 2.7 to 3.6 10 to 10,000 500 555480 (atEv =1,000 lx)48 (atEv =100 lx)GA1A2S100LY Built-in amplification circuit.Peak sensitivity characteristicclose to human vision: Linearcurrent output. L-bend leads.7.0 5 –40 to +85 2.7 to 3.6 10 to 10,000 500 555480 (atEv =1,000 lx)48 (atEv =100 lx)GA1A1S201WP Built-in amplification circuit.Peak sensitivity characteristicclose to human vision: Loga-rithmic current output.Compact(2.0 × 1.6 mm)Leadless7.0 1 –40 to +85 2.3 to 3.2 3 to 55,000 70 55520 (atEv =100 lx)30 (atEv =1,000 lx)Blue Laser Diodes (with integrated photodiode)Part Number Peak Wavelength(nm)Optical Output Power(mW)Threshold Current(mA)TYP.Operating Current(mA)TYP.Operating Voltage (V)TYP.PackagesGH0420B2A 400 - 413 210 40 120 5.4 f5.6CAN GH04125A2A 400 - 415 20 25 35 5.8 f5.6CANNOTE: Please contact marketing for Current Transfer Ratio (CTR), Tape & Reel and Lead Forming Options.4-pin DIP6-pin DIP Mini-flat4-pinMini-flat5-pinSOP 8-pin8 -pin DIPPC123J00000F, PC357NJ0000F,PC3H7J00000F, PC3H71xNIP0F, PC4H510NIP0F,PC8171xNSZ0F, PC817XJ0000F, PC851XJ0000F, PC3ST11NSZAF, PC3SD12NTZAF, PC3SF11YVZAF, S2S4A000F,PC3SH21YFZBF, PC3SD21YTZBF,PC3SD21YTZDF, PC3SF21YVZBFPC3H41xNIP0F, PC8141xNSZ0F, PC364NJ0000F,PC3H4J00000F, PC3H41xNIP0F, PC35NJ0000F PC355NJ0000F, PC3H5J00000F,PC3H510NIP0F, PC815XJ0000F, PC81510NS0FPC457S0NIP0F, PC957L0NSZ0FPC852XJ0000F, PC853XJ0000FPC410L0NIP0F, PC410S0NIP0FPC412S0NIP0FPC411L0NIP0F, PC411S0NIP0F PC4D10SNIP0FPC923L0NSZ0F, PC924L0NSZ0FPC3ST11NSZAF, PC3SD12NTZAF,PC3SF11YVZAF, PC4SF11YVZAFPC900V0NIPXFS2S4A000F, PC3SH21YFZBF, PC3SD21YTZBF,PC3SD21YTZDF, PC3SF21YVZBFInternal Connection DiagramsGP1S096HCZ0FGPS196HCZSF GP1S097HCZ0FGP1S092HCPIFGP1S094HCZ0FGP1S51VJ000F GP1S52VJ000FGP1S53VJ000FGP1A50HRJ00FGP1A51HRJ00FGP1A57HRJ00FGP1A52HRJ00FGP1A53HRJ00FGP1S58VJ000FGP1A05AJ000F GP2A200LCS0F, GP2A25J0000F,GP2A25NJJ00FGP2A231LRSAF Internal Connection DiagramGP1S44S1J00FGP2S60GP2S700HCPGP2D12J0000F, GP2Y0A21YK0F, GP2D120XJ00F, GP2D15J0000F, GP2Y0D21YK0F, GP2D150AJ00FGP2Y0D02YK0F, GP2Y0A02YK0F GP2Y0A700K0F GP2Y0D805Z0F, GP2Y0D810Z0FGL100MN0MP, GL100MN1MP PT100MC0MP, PT100MF0MP,PT100MF1MP11Electronic Components GroupSelector Guide©2008 Sharp Microelectronics of the Americas. Published May 2008SMA08000ANORTH AMERICASharp Microelectronics of the Americas 5700 NW Pacific Rim Blvd.Camas, WA 98607Phone: (360) 834-2500Fax: (360) WEST5901 Bolsa Ave.Huntington Beach, CA 92647Phone: (714) 903-4600Fax: (714) 903-02951980 Zanker Rd.San Jose, CA 95112Phone: (408) 436-4900Fax: (408) 436-0924EAST85 W. Algonquin Rd., Suite 280Arlington Heights, IL 60005Phone: (847) 258-2750Fax: (847) 439-2479200 Wheeler Rd.Burlington, MA 01803Phone: (781) 270-7979Fax: (781) 229-91173001 West Big Beaver Rd., Suite 722Troy, MI 48084Phone: (284) 458-1527Fax: (248-458-62558000 Regency Parkway, Suite 280Cary, NC 27518Phone: (919) 460-0695Fax: (919) 460-07958911 Capital of T exas Hwy., Suite 3130Austin, TX 78759Phone: (512) 349-7262Fax: (512) 349-7002SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP’s product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALL Y EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.Printed on Recycled Paper。
光耦选型经典指南1.0.目的:针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。
2.0.适用范围:本指导书适用于瑞谷光偶的设计,选型,替代等。
3.0.说明:目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。
4.0.内部结构图及CTR 的计算方法:●规格定义CTR:Ice/I F*100% (检测条件:I F =5 ma Vce=5V, 2701,2801系列)5.0.光偶主要特性分析,设计选型替代要求:5.1外观尺寸:设计,选型,替代注意:●封装正确,本体MARK字迹要清晰,品牌正确,与技术规格书一致;●替代时,如都为标准件封装,基本上装配没有问题,但需注意厚度是否与原料相同,是否满足整机的工艺要求。
5.2不同输入控制电流I F,CTR 值不同;●由图表显示,IF在5-15ma时CTR值最大;在小于5mA时(目前我们产品设计大多如此),CTR值一般小于正常额定规格值;●附加Cosmo KPS2801-B 实测数据:J16(2009年第16周生产)的光耦在室温下的CTRI F(VCE=5V)#1 #2 #3 #4 #5 #6 #71mA 88.3% 90.48% 90.57% 86.56% 87.1% 85.12% 87..39%2mA 133% 130% 130% 125% 135% 122% 126%3mA 150% 154% 154% 147% 151% 139% 150%5mA 177% 187% 183% 177% 178% 170% 177%J25(2009年第25周生产)的光耦在室温下的CTRI F(VCE=5V)#1 #2 #3 #4 #5 #6 #71mA 69.24% 78.61% 66.68% 66.41% 65.7% 75.5% 79.0%2mA 97% 105% 110% 104% 101% 122% 126%3mA 121% 121% 131% 132% 129% 151% 151%5mA 166% 147% 174% 174% 173% 210% 196%●评注:IF不同,CTR不同,且差异非常大;不同DATECODE的也有差异,但在IF=5ma时,CTR值都在规格(130-260)范围内;●设计,选型,替代注意:设计时工作电流应接近来料的检测电流值(目前大多IF=5ma),否则应用的CTR值无法保证,产品动态性能将很差;5.3不同环境温度,CTR 值不同;●由图表显示,CTR 值与光偶的工作环境有关,温度太高或太低都小于常温附近的检测值;●附加Cosmo KPS2801-B 实测数据(单体):光耦随温度变化的CTR(%)#1 #2 #3 #4-40℃149 147 137 13025℃170 172 176 16785℃140 143 149 141注:测试条件:V CE=5V,I F为5mA●评注:温度不同,CTR不同,温度太高或太低都低于常温,且差异很大;●设计,选型,替代注意:产品在高低温CTR的值是否满足产品反馈环路的增益?产品动态稳定吗?开关机,输出是否产生震荡掉沟等不良,5.4光偶有RL阻值大小及工作频带带宽要求;●由图表可看出:光偶有频带要求,如上图为KPS-2801光偶,工作频率基本在500KHZ以内,且对于高频工作时,RL(输出分压电阻)要小;●设计,选型,替代注意:产品工作频率,RL选取阻值务必在带宽内,且考虑IF电流大小,VCE工作压降;5.5不同环境温度,输入控制电流可能产生变化:●由图表可看出:环境温度超过55-60度后,输入控制电流I F 的最大值将随着温度上升而显著减小;●设计,选型,替代注意:选取合适的IF电流,使输入控制电流的变动都能及时反馈到输出端,保证产品反馈环的稳定;5.6 环境温度及功耗特性曲线●由图表可看出:光偶的输出部分(或集电极)功耗在低温时,在温度高时数值变小;●设计,选型,替代注意:1,器件常温时可提供功耗值;2,高温过程变化曲线;3,有必要计算产品在高温工作时光偶功耗值;4,替代时考虑常温功耗,高温状态替代料是否优于原料;5.7 Ic,If,Vce关系曲线:●由图表可看出:Vce必须大于一定电压,Ic才能达到最大,CTR值才会大;●设计,选型,替代注意:Vce在电路应用中,保证设计有一定的电压值,否则Ic将较小,CTR将较小,一般设计Vc应大于3V。
立足本土,作国内最杰出最用心的MCU设计公司GPIO 通用型MCU芯片型号可编程只读存储器随机存储器EEPROM工作电压(伏)内部振荡器(赫兹)外部振荡器(赫兹)系统时钟I/O端口+Input脉宽调制中断源定时器工作电流待机电流看门狗定时器低电压复位工作温度封装型式其他Part Number ROM RAM EEPROMVoltage(V)InternalOscillator(HZ)ExternalOscillator(HZ)Fsys I/O +IN PWMInterruptSourceTimerOperatingCurrentIdleCurrentWDT LVROperatingTemp.PKG Type OtherMC20P011Kx8Bit64×8Bit/ 2.0~5.52M/4M/8M±2%400K~8M2T11/5+11CH8Bit62/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP14/8与义隆153S和松翰8P2501B脚位兼容。
具有硬件Buzzer输出端口MC20E011Kx8Bit64×8Bit 256x8Bit2.0~5.52M/4M/8M±2%400K~8M2T11/5+11CH8Bit62/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP16/8用MCP技术把一颗EEPROM(24C02)封装进去,E2ROM是串行通讯,占去2个IO口MC20P02B2Kx8Bit64×8Bit/ 2.0~5.52M/4M/8M±2%400K~8M2T17/15/13/11/5+1/51/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP20/18/16/14/818pin与中颖69P20C,松翰8P2612,义隆78P156脚位兼容20pin与松翰8P2613脚位兼容MC20E02B2Kx8Bit64×8Bit 256x8Bit2.0~5.52M/4M/8M±2%400K~8M2T11/9+1/51/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP 16用MCP技术把一颗EEPROM(24C02)封装进去,E2ROM是串行通讯,占去2个IO口MC20P044K×8Bit128×8Bit/ 2.0~5.52M/4M/8M±2%400K~8M2T17/15/13+1/51/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP20/18/1618pin与中颖69P20C,松翰8P2612,义隆78P156脚位兼容20pin与松翰8P2613脚位兼容具有2路比较器(可软件修调偏置)MC20P8011Kx8Bit64×8Bit/ 2.0~5.51M/2M/4M/8M±2%/2T5/3+11CH8Bit42/8Bit3mA/4M<1uA yes2.1V3.6V-40~85℃DIP/SOP8SOT23-6TSSOP8VPP可作输入/开漏输出SOT23-6封装可直接烧写MC30P011Kx14Bit48×8Bit/ 2.0~5.51M/2M/4M/8M/455K±1.5%32K500~20M2T4T11/5/3+11CH8Bit42/8Bit1mA/4M<1uA yes1.5V3.6V7级可选-40~85℃DIP/SOP14/8管脚和程序全面兼容AM8EB153XFM8PS53,EM78P153,仅管脚和兼容SN8P2501B☆MC30P022Kx16Bit64×8Bit/ 2.0~5.51M/2M/4M/8M/455K±1.5%32K500~20M2T4T17/15/13+1243/8Bit1mA/4M<1uA yes1.5V3.6V7级可选40~85℃DIP/SOP20/18/1618pin与中颖69P20C,松翰8P2612,义隆78P156脚位兼容20pin与松翰8P2613脚位兼容具有2路比较器(可软件修调偏置)*拥有更佳的RAM掉电保持功能:只要芯片的VDD和GND之间电压维持在0.7V以上时,RAM数据就可以一直保持,正常情况下断电后依靠外挂电容即可以保持RAM数据24小时以上。
光耦的选型与应用[ 2008-2-3 8:54:00 | By: SystemARM ]4推荐光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。
光耦的结构是什么样的?光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。
为什么要使用光耦?发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。
光耦爱坏吗?只要光耦合器质量好,电路参数设计合理,一般故障少见。
如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能承受的电压,就会使之被击穿损坏。
光耦的参数都有哪些?是什么含义?1、CTR:电流传输比2、Isolation Voltage:隔离电压3、Collector-Emitter Voltage:集电极-发射极电压CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?关于TLP521-1的光耦的导通的试验报告要求:3.5v~24v 认为是高电平,0v~1.5v认为是低电平思路:1、0v~1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V左右;2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上;3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50%;电路:1、发光管端:实验室电源(0~24V)->2K->1N4001->TLP521-1(1)->TLP521-1(2)-gnd12、光敏三极管:实验室电源(DC5V)->10K->TLP521-1(4)->TLP521-1(3)-gnd23、万用表直流电压挡20V万用表+ -> TLP521-1(4)万用表- -> TLP521-1(3)试验结果输入电源万用表电压(V)1.3V 51.5V 4.81.7V 4.411.9V 3.582.1V 2.942.3V 1.82.5V 0.582.7V 0.22.9V 0.193.1V 0.173.3V 0.163.5V 0.165V 0.1324V 0.06思考题:光耦的CTR(电流传输比)是什么含义?思考题:1、光耦的CTR(电流传输比)是什么含义?2、CTR与上拉电阻和光耦的光敏三极管之间与饱和导通或者截至之间的关系;参考资料:TLP521-1的CTR为50%(最小值);TLP521-1的长相TLP521-1的长相线性光耦原理与电路设计【转】线性光耦原理与电路设计来源:21IC中国电子网作者:佚名1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。
光耦选型经典指南光电耦合器是一种将电信号和光信号相互转换的器件,广泛应用于各种电子设备中。
在进行光耦选型时,需要考虑多个因素,包括光电耦合器的类型、特性参数以及应用环境等。
下面是一份光耦选型经典指南,帮助您进行正确的选型。
1.光耦类型选择:根据应用需求和场景,选择合适的光耦类型。
常见的光耦类型包括光电二极管、光电三极管、光敏场效应管以及光电双向晶闸管等。
根据需要选择合适的类型,例如光电二极管适用于高速传输和低电流驱动的场景,而光电三极管适用于高功率驱动和低频传输的场景。
2.光电参数选择:光电耦合器的特性参数对其性能和应用具有重要影响。
在选型时,需要关注以下特性参数:-光电转换系数:光电转换系数表示光信号转换为电信号的效率,一般以A/W为单位。
较高的光电转换系数意味着更好的灵敏度和响应速度。
-电流传输比:电流传输比表示光信号与电信号之间的等效电流关系。
选用合适的电流传输比可以确保电信号在传输过程中不受损失。
-切换速度:切换速度表示光电耦合器在从关断到导通状态的响应时间。
对于高速传输的应用,需要选用较高切换速度的光电耦合器。
3.耐压与耐磁参数选择:在一些特殊环境下,需要考虑光电耦合器的耐压和耐磁性能。
耐压参数表示光电耦合器所能承受的最大电压。
当应用场景中存在高电压时,选择具有足够耐压能力的光电耦合器。
耐磁参数表示光电耦合器在磁场中的工作性能。
在靠近强磁场或高频磁场的应用中,选择具有良好耐磁性能的光电耦合器。
4.封装类型选择:根据实际使用环境和布局要求,选择合适的封装类型。
光电耦合器的封装类型分为DIP、SOP、SMD等多种形式。
DIP封装适用于手工焊接和低密度布线的应用,而SMD封装适用于自动化焊接和小型化设计的应用。
5.其他因素:在选型过程中,还需要考虑其他因素,例如价格、供应商信誉度、长期供货能力等。
选择信誉度较高的供应商,能够获得质量稳定、售后服务完善的光电耦合器。
总结:在进行光耦选型时,需要综合考虑光耦类型、特性参数、耐压耐磁性能、封装类型以及价格等多个因素。
光电耦合器的作用与选型技巧经验总结光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
本篇文章主要以线性与非线性两个方面分别介绍光电耦合器的作用,以及华强北IC代购网工程师的一些光电耦合器选型技巧经验总结,望对大家的电路设计有所帮助。
光电耦合器的作用介绍1、线性光电耦合器线性光耦器件又分为两种:无反馈型和反馈型;无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性的非线性得到改善。
但由于固有特性,改善能力十分有限。
这种光耦器件主要用于对线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。
不过这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场合。
另一种线性光耦是反馈型器件。
其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈,通过这样的方式来抵消直通通路的非线性,从而达到实现线性隔离的目的。
这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC 系列线性光耦,惠普公司生产的HCNR200/201线性光耦等。
2、非线性光电耦合器非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N系列光耦属于非线性光耦。
如4N25、4N26、4N35、4N36。
选型技巧经验总结在设计光耦光电隔离电路时必须正确选择光耦合器的型号及参数,选型经验总结如下:1、由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件;2、光耦合器的电流传输比(CTR)的允许范围是不小于500%。
光耦参数选型重要指标光耦,听起来挺高大上的,实际上它就像电路里的“桥梁”,连接着两个电路,让它们彼此交流,但又不互相干扰。
想象一下,两条河流,光耦就像那座小桥,让水流自由地流动,却又不让它们混在一起。
选购光耦的时候,可别小看了这小家伙,里面可是有不少讲究哦。
工作电压,这个指标得仔细瞧瞧。
电压高了可就没法用了,电压低了也会导致信号不稳定。
就好比你出门时,带的雨伞和衣服要和天气相符,不然可就糗大了。
你要了解自己的电路需求,选择一个合适的电压范围,这样才能让光耦发挥出最佳性能,真是事半功倍!传输速率也是个关键因素。
传输速率决定了信息传递的速度,这就像你发微信消息一样,有时候快得像闪电,有时候慢得像乌龟。
想象一下,要是你家里的设备需要实时反馈,但光耦传输太慢,那真是叫天天不应,叫地地不灵。
选择光耦的时候,得看清楚它的传输速率是否符合你的需求,别到时候急得像热锅上的蚂蚁。
再说说隔离电压,这个可得注意了。
隔离电压就像是保护膜,能让你的电路远离干扰和意外,给你一份安全感。
想想要是隔离电压不够,那可是隐患满满,电路出故障可就麻烦了。
选择光耦时,挑个隔离电压高的,心里也能踏实,仿佛给自己装了一个安全锁。
别忘了光耦的封装形式,咱们总是希望东西好用还要方便。
封装就像是衣服的样式,合适的样式才能穿出门。
如果你要在狭小的空间里使用光耦,选择一个小巧的封装形式可就显得尤为重要。
就像咱们挑衣服一样,得根据场合来选。
温度范围也不能忽略。
温度过高或过低都可能影响光耦的性能,选择适合的温度范围,确保光耦在工作时不受环境的干扰。
就好比我们每个人都需要一个舒适的环境,才能发挥出最佳的状态。
光耦也是,得让它在一个适合它的“温床”里工作。
还有一个不得不提的就是失效率,俗话说“千里之行,始于足下”,光耦的可靠性可关系到整个电路的稳定。
失效率低的光耦能让你高枕无忧,减少故障的发生。
想想要是频频出问题,得多让人抓狂,所以选择时,得关注这项指标。
光耦选型手册光耦简介:光耦合器(opticalcoupler ,英文缩写为OC )亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED )与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED ),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
光耦的分类:(1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N 系列光耦属于非线性光耦。
线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。
常用的线性光耦是PC817A—C 系列。
(2)常用的分类还有:按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。
按通道分,可分为单通道,双通道和多通道光电耦合器。
按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V ,空封低于2000V )和高压隔离光电耦合器(可分为10kV ,20kV ,30kV 等)。
按输出形式分,可分为:a 、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。
b 、NPN 三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。
c 、达林顿三极管输出型,其中包括交流输入型,直流输入型。
d 、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。
e 、低导通输出型(输出低电平毫伏数量级)。
光耦选型常用参数光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。
光耦的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。
此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。
CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。
当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。
采用一只光敏三极管的光耦合器,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~5000%。
这表明欲获得同样的输出电流,后者只需较小的输入电流。
因此,CTR参数与晶体管的hFE有某种相似之处。
线性光耦合器与普通光耦合器典型的CTR-IF特性曲线普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。
线性光耦合器的CTR-IF 特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。
因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。
这是其重要特性。
使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国内应用地十分普遍。
光耦选型经典指南一、文档说明:针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。
光耦属于易失效器件,选型和使用过程中要特别的小心。
目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。
二、原理介绍:光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装图二光电耦合器之内部结构图三极管接收型 6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装图四光电耦合器之内部结构图可控硅接收型 6脚封装图五光电耦合器之内部结构图双二极管接收型 6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
光耦主要参数和高速光耦如何选型光耦是一种将电气信号转换为光信号或将光信号转换为电气信号的器件。
它由光电二极管和光敏三极管(或光控双极晶体管)组成,具有隔离电解、放大、调制和调制功能。
在实际应用中,选择适合的光耦是至关重要的,以下将讨论光耦的主要参数以及如何选型高速光耦。
光耦的主要参数如下:1.光耦电流传输比(CTR):CTR是光耦输出电流与输入电流的比值,通常以百分比表示。
CTR越高,输入光功率相同,输出电流就越大。
选取适当的CTR可以确保信号传输的准确性和稳定性。
2.光耦响应时间:光耦响应时间是光信号从输入端到输出端需要的时间。
高速信号传输需要快速的响应时间,因此在选择高速光耦时要确保响应时间能满足实际应用需求。
3.隔离电压:隔离电压是光耦能够承受的最大电压。
对于需要高电压隔离的应用,需要选择具有足够高隔离电压的光耦。
4.工作温度范围:光耦的工作温度范围取决于其元件材料和封装方式。
在选择光耦时,要确保其工作温度范围能够适应实际应用环境。
5.耐压能力:耐压能力指的是光耦能够承受的最大电压。
在选择光耦时要根据所需的电压范围来确定光耦的耐压能力。
6.封装类型:光耦的封装类型也是选择的一个重要因素。
常见的封装类型包括DIP(双列直插封装)、SMD(表面贴装封装)和COB(芯片封装)等。
选择适合的封装类型可以简化产品的安装和布局。
对于高速光耦的选型,除了上述主要参数外,还需要考虑以下几个因素:1.带宽:高速光耦的带宽是指其能够传输的最高频率。
通常以MHz或GHz为单位。
在选择高速光耦时,要根据实际应用需求确定所需的带宽范围。
2.上升时间:上升时间是指光信号从0%到90%上升的时间。
它是评估光耦响应速度的重要指标。
较低的上升时间可以实现更快的信号传输。
3.构造和材料:高速光耦通常采用功率放大器来提高高速信号的响应速度。
不同的构造和材料可以对高速光耦的性能产生影响。
因此,在选型时要仔细考虑构造和材料的选择。
光电耦合器的作用与选型技巧经验总结光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
本篇文章主要以线性与非线性两个方面分别介绍光电耦合器的作用,以及华强北IC代购网工程师的一些光电耦合器选型技巧经验总结,望对大家的电路设计有所帮助。
光电耦合器的作用介绍1、线性光电耦合器线性光耦器件又分为两种:无反馈型和反馈型;无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性的非线性得到改善。
但由于固有特性,改善能力十分有限。
这种光耦器件主要用于对线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。
不过这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场合。
另一种线性光耦是反馈型器件。
其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈,通过这样的方式来抵消直通通路的非线性,从而达到实现线性隔离的目的。
这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC 系列线性光耦,惠普公司生产的HCNR200/201线性光耦等。
2、非线性光电耦合器非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。
常用的4N系列光耦属于非线性光耦。
如4N25、4N26、4N35、4N36。
选型技巧经验总结在设计光耦光电隔离电路时必须正确选择光耦合器的型号及参数,选型经验总结如下:1、由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件;2、光耦合器的电流传输比(CTR)的允许范围是不小于500%。