弹性力学复习题

  • 格式:doc
  • 大小:1.02 MB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论

(1)《弹性力学》与《材料力学)、《结构力学》课程的异同。

(从研究对象、研究内容、研究方法等讨论)

(2)《弹性力学》中应用了哪些基本假定?这些基本假定在建立弹性力学基本方程时的作用是什么?举例说明哪些使用这些假

定?

(3)弹性力学中应力分量的正负是如何规定的?与材料力学中有何不同?

第二章平面问题的基本理论

(1)两类平面问题的特点?(几何、受力、应力、应变等)。(2)试列出两类平面问题的基本方程,并比较它们的异同。

(3)在建立平面问题基本方程(平衡方程、几何方程)时,作了哪些近似简化处理?其作用是什么?

(4)位移分量与应变分量的关系如何?是否有位移就有应变?

(5)已知位移分量可唯一确定其形变分量,反过来是否也能唯一确定?需要什么条件?

(6)已知一点的应力分量,如何求任意斜截面的应力、主应力、主方向?

(7)什么是线应变(正应变)、剪应变(切应变、角应变)?如何由一点应变分量求任意方向的线应变、主应变、主应变方向?(8)平面应力与平面应变问题的物理方程有何关系?

(9)边界条件有哪两类?如何列写?

)

(y xf y =σ0

=y σ)(y f y =σx O

τb

q θτθ2sin 2q r -=θb a 非轴对称问题

楔形体一侧受分布力)

)()(1r f q r f θ+)

(3r 2∂ϕ)(r f =ϕθϕsin )(r f =θ

ϕcos )(r f =

课堂练习:

(1)试用边界条件确定,当图示变截面杆件受拉伸

时,在靠杆边的外表面处,横截面上的正应力

与剪应力间的关系。设杆的横截面形状为狭长矩形,板厚为一个单位。y

x σ

σ, xy

τ

(2)z方向(垂直于板面)很长的直角六面体,上边界受均匀压力p 作用,底部放置在绝对刚性与光

滑的基础上,如图所示。不计自重,试确定其应

力和位移分量。

r=b的圆周

上作用着均匀分布剪应力,如图所示。试确定圆

温度应力的平面问题

)了解温度应力产生的原因:为温度的变化量,而不是温度值。

)了解温度应力问题的基本方程:平衡方程、几何方程、物理方程。

(仅为物理方程的不同)

第八章空间问题的基本理论

(1)空间一点的应力状态及其表示;如何由一点应力状态的六个分量求任意斜截面上的应力、主应力、主应力方向、最大最小正应

力,最大最小剪应力及其所在作用面方向;

(2)何为应力不变量?各个应力不变量的物理意义及其计算?

(3)空间一点的应变状态及其表示;如何由一点应变状态的六个分量求任意方向线应变、主应变、主应变方向;

(4)何为应变不变量?各个应变不变量的物理意义及其计算?

(5)能否证明三个主应力方向一定互相垂直;三个主应变方向一定互相垂直?

(6)何为张量?一点应力状态的张量表示;一点应变状态的张量表示;一点位移分量的张量表示;

(7)应变张量分量与工程应变分量之间有何关系?

(8)空间问题的基本方程:平衡方程、几何方程、物理方程;基本方程的张量表示;

(9)空间问题物理方程的各种表达形式:

(a)用应力表示应变,式(8-17);

(b)用应变表示应力,式(8-19);

(c)用体积应力表示体积应变,式(8-18);

(10)线弹性状态下,材料的拉压弹性模量E、剪切弹性模量G、体积弹性模量K、材料的泊松比 间存在什么关系?

(11)对极端各向异性体,存在多少个独立材料常数?正交各向异性体存在多少个独立材料常数?横观各相同性体有多少个独立材料常

数?各向同性弹性体具有多少个独立的材料常数?

(12)对极端各向异性体,存在多少个独立材料常数?正交各向异性体存在多少个独立材料常数?横观各相同性体有多少个独立材料常

数?各向同性弹性体具有多少个独立的材料常数?

(13)空间轴对称问题的基本方程:平衡方程、几何方程、物理方程;(14)空间球对称问题的基本方程:平衡方程、几何方程、物理方程;(15)空间问题的边界条件列写;

第九章空间问题的解答

(1)按位移求解空间问题的基本方程:

(a)用位移平衡微分方程;

(b)应力边界条件;位移边界条件。

(2)按位移求解空间轴对称问题的基本方程;按位移求解球对称问题的基本方程。

(3)按位移直接求解空间问题:

(a)半无限大弹性体,受重力及在边界上受均布压力作

用;

(b)空心球体受均布内压或外压作用。

(4)什么是位移势函数?位移势函数与位移分量的关系如何?位移函数与应力分量的关系如何?

(5)在无体力的情况下,若弹性体存在位移势函数ψ,则该位移势函数ψ应满足什么方程?该方程的物理意义如何?

(该位移势函数ψ应为调和函数;该方程表明各点体积应变e =0)

(6)拉甫位移函数的概念;拉甫位移函数与轴对称位移分量间的关系如何?拉甫位移函数与应满足何条件?拉甫位移函数应为什么性

质的函数?拉甫位移函数法主要用来解决什么样的弹性力学问

题?

(7)伽辽金位移函数的概念;伽辽金位移函数与位移分量间的关系如何?伽辽金位移函数与应满足何条件?伽辽金位移函数应为什么

性质的函数?

(8)半空间体在边界上受法向集中力作用问题的求解?空间一点的沉陷的计算公式(9-19)?与半无限平面问题中一点的沉陷公式(4-30)有何区别?

(9)按应力求解空间问题的基本方程:

(a)平衡微分方程;

(b)相容方程(9-31)、(贝尔特拉密方程)(9-32);

(c)边界条件。

(10)空间的变形协方程(应变相容方

程);

(11)按应力求解空间轴对称问题的基本方程;

(12)按应力求解空间轴对称问题的应力函数法。