SPSS—二元Logistic回归结果分析报告
- 格式:doc
- 大小:894.50 KB
- 文档页数:15
SPSS—二元Logistic回归结果分析2011-12-02 16:48身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为,标准误差为:那么wald =( B/²=² = , 跟表中的“几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^ = , 其中自由度为1, sig为,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 =x¯ = 16951 / 489 =所以:∑(Xi-x¯)² =y¯(1-y¯)= *()=则:y¯(1-y¯)* ∑(Xi-x¯)² = * = 5则:[∑Xi(yi - y¯)]^2 =所以:= / 5 = = (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:和,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR 方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:,而临界值为:CHINV,8) =卡方统计量< 临界值,从SIG 角度来看: > , 说明模型能够很好的拟合整体,不存在显著的差异。
SPSS—二元Logistic回归结果分析2011-12-02 16:48身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR 方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
SPSS—二元Logistic回归结果分析2011-12-02 16:48身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR 方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
spss二元logistic回归分析结果解读二元logistic回归分析是一种重要的统计学方法,可以用来对事件发生与否、违约与否等二元变量进行分析,以及把其他自变量与二元变量之间的关系分析出来。
本文将从回归分析的背景、过程、模型分析和结果解释几个方面来论述SPSS二元logistic回归分析结果解读。
一、回归分析的背景二元logistic回归分析是对事件发生状况,如违约情况,是否能够通过自变量的影响而产生波动的状况,比如客户的反应、经济形势以及其他因素。
二元logistic回归分析用于分析违约行为是否与客户的特征有关,以及查看违约行为的发生率随着潜在因素的变化而如何变化。
二、二元logistic回归分析的过程二元logistic回归分析的过程是以自变量对变量(或响应变量)变化来提出研究假设,然后使用这种假设来拟合回归模型,从而评估自变量对变量的影响,并预测其变化。
在SPSS软件中,二元logistic回归分析的过程包括:(1)确定自变量;(2)建立模型;(3)检验模型;(4)分析单个自变量;(5)结果解释。
三、模型分析通过二元logistic回归可以计算回归系数,用于分析自变量对事件发生与否的影响,也可以通过回归系数求出奇异值,来度量回归系数的统计显著性,也即模型拟合度。
SPSS二元logistic回归分析结果输出有两个主要部分,一部分是转换的参数分析,一部分是基础的参数分析。
其中,转换的参数分析中,可以看到回归系数、Odds Ratio以及它们的差异显著性,也可以构建Odds Ratio曲线,来查看自变量的整体影响;基础的参数分析中,可以看到Deviance、Cox & Snell R2以及Nagelkerke R2,来检验模型的拟合度。
结果解释在SPSS二元logistic回归分析结果解释中,可以从回归系数和Odds ratio、Deviance、Cox & Snell R2以及Nagelkerke R2几个方面来解释模型的结果。
SPSS学习笔记之——二项Logistic回归分析[转载]SPSS学习笔记之——二项Logistic回归分析一、概述Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。
他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。
因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。
下面学习一下Odds、OR、RR的概念:在病例对照研究中,可以画出下列的四格表:------------------------------------------------------暴露因素病例对照-----------------------------------------------------暴露 a b非暴露 c d-----------------------------------------------比值、比数,是指某事件发生的可能性(概率)与不发生的可能Odds: 称为性(概率)之比。
在病例对照研究中病例组的暴露比值为:odds1 = (a/(a+c))/(c(a+c)) = a/c,对照组的暴露比值为:odds2 = (b/(b+d))/(d/(b+d)) = b/dOR:比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) =ad/bc换一种角度,暴露组的疾病发生比值:odds1 = (a/(a+b))/(b(a+b)) = a/b非暴露组的疾病发生比值:odds2 = (c/(c+d))/(d/(c+d)) = c/dOR = odds1/odds2 = ad/bc与之前的结果一致。
OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。
OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。
spss二元logistic回归分析结果解读二元logistic回归分析是一种被广泛应用于多元研究中的统计分析方法,它可以帮助研究者了解因变量与自变量之间的关系,探索如何调节自变量,以达到改变因变量的目的。
本文主要就二元logistic回归分析结果如何解释进行讨论,旨在帮助读者更好地理解并解读此类分析结果。
一、二元logistic回归分析概述二元logistic回归分析是一种常见的回归分析模型,它可以用来预测一个特定的结果,或者说一个事件的发生可能性,以及它的发生概率有多大。
它比较适合于研究两个变量之间的关系,一个变量是被解释变量,另一个变量是解释变量,被解释变量只有两种可能的结果,比如两个不同的类别。
二元logistic回归分析的基本思想是利用自变量来预测因变量,它通过计算自变量之间的相关性,来预测因变量的发生可能性,比如我们可以利用自变量,如性别、年龄等,来预测一个人是否会患上某种疾病。
二元logistic回归分析结果分析二元logistic回归分析的结果可以分为三类,分别是系数、截距和拟合指数。
1、系数系数指的是每个自变量变化时,因变量变化的程度,系数的正负可以表示因变量变化的方向,正数表示因变量随自变量变化而增大,负数表示因变量随自变量变化而减小。
系数的大小可以表示因变量变化的幅度,数值越大,表明因变量变化的越明显。
2、截距截距表示自变量为0时因变量的值,即任何自变量都不存在的情况下,因变量的值。
它的大小可以反映因变量变化的数量级,它的正负可以表示因变量变化的方向,正数表示因变量变化而增大,负数表示因变量变化而减小。
3、拟合指数拟合指数是一种衡量模型准确度的指标,其数值越大,表明模型越准确。
一般来说,当拟合指数大于0.6时,可以认为模型较准确。
三、典型二元logistic回归分析结果解读1、系数如果某个自变量的系数为正,表示随着自变量增加,因变量也随之增加;如果系数为负,表示随着自变量增加,因变量会减小。
SPSS—回归—⼆元Logistic回归案例分析数据分析真不是⼀门省油的灯,搞的⼈晕头转向,⽽且涉及到很多复杂的计算,还是书读少了,⼩学毕业的我,真是死了不少脑细胞,学习⼆元Logistic回归有⼀段时间了,今天跟⼤家分享⼀下学习⼼得,希望多指教!⼆元Logistic,从字⾯上其实就可以理解⼤概是什么意思,Logistic中⽂意思为“逻辑”但是这⾥,并不是逻辑的意思,⽽是通过logit变换来命名的,⼆元⼀般指“两种可能性”就好⽐逻辑中的“是”或者“否”⼀样,Logistic 回归模型的假设检验——常⽤的检验⽅法有似然⽐检验(likelihood ratio test)和 Wald检验)似然⽐检验的具体步骤如下:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL02:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InL13:最后⽐较两个对数似然函数值的差异,若两个模型分别包含l个⾃变量和P个⾃变量,记似然⽐统计量G的计算公式为 G=2(InLP - InLl). 在零假设成⽴的条件下,当样本含量n较⼤时,G统计量近似服从⾃由度为 V = P-l 的 x平⽅分布,如果只是对⼀个回归系数(或⼀个⾃变量)进⾏检验,则 v=1.wald 检验,⽤u检验或者X平⽅检验,推断各参数βj是否为0,其中u= bj / Sbj, X的平⽅=(bj / Sbj), Sbj 为回归系数的标准误这⾥的“⼆元”主要针对“因变量”所以跟“曲线估计”⾥⾯的Logistic曲线模型不⼀样,⼆元logistic回归是指因变量为⼆分类变量是的回归分析,对于这种回归模型,⽬标概率的取值会在(0-1),但是回归⽅程的因变量取值却落在实数集当中,这个是不能够接受的,所以,可以先将⽬标概率做Logit变换,这样它的取值区间变成了整个实数集,再做回归分析就不会有问题了,采⽤这种处理⽅法的回归分析,就是Logistic 回归设因变量为y, 其中“1” 代表事件发⽣, “0”代表事件未发⽣,影响y的 n个⾃变量分别为 x1, x2 ,x3 xn等等记事件发⽣的条件概率为 P那么P= 事件未发⽣的概理为 1-P事件发⽣跟”未发⽣的概率⽐为( p / 1-p ) 事件发⽣⽐,记住Odds将Odds做对数转换,即可得到Logistic回归模型的线性模型:还是以教程“blankloan.sav"数据为例,研究银⾏客户贷款是否违约(拖⽋)的问题,数据如下所⽰:上⾯的数据是⼤约700个申请贷款的客户,我们需要进⾏随机抽样,来进⾏⼆元Logistic回归分析,上图中的“0”表⽰没有拖⽋贷款,“1”表⽰拖⽋贷款,接下来,步骤如下:1:设置随机抽样的随机种⼦,如下图所⽰:选择“设置起点”选择“固定值”即可,本⼈感觉200万的容量已经⾜够了,就采⽤的默认值,点击确定,返回原界⾯、2:进⾏“转换”—计算变量“⽣成⼀个变量(validate),进⼊如下界⾯:在数字表达式中,输⼊公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置⼀个“选择条件”点击“如果”按钮,进⼊如下界⾯:如果“违约”变量中,确实存在缺失值,那么当使⽤"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“ 也就是不存在缺失值的现象点击 ”继续“按钮,返回原界⾯,如下所⽰:将是“是否曾经违约”作为“因变量”拖⼊因变量选框,分别将其他8个变量拖⼊“协变量”选框内,在⽅法中,选择:forward.LR⽅法将⽣成的新变量“validate" 拖⼊"选择变量“框内,并点击”规则“设置相应的规则内容,如下所⽰:设置validate 值为1,此处我们只将取值为1的记录纳⼊模型建⽴过程,其它值(例如:0)将⽤来做结论的验证或者预测分析,当然你可以反推,采⽤0作为取值记录点击继续,返回,再点击“分类”按钮,进⼊如下页⾯在所有的8个⾃变量中,只有“教育⽔平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育⽔平分为:初中,⾼中,⼤专,本科,研究⽣等等, 参考类别选择:“最后⼀个” 在对⽐中选择“指⽰符” 点击继续按钮,返回再点击—“保存”按钮,进⼊界⾯:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学⽣化”点击继续,返回,再点击“选项”按钮,进⼊如下界⾯:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别⽤值“1“和“0”代替,在“分类变量编码”中教育⽔平分为5类,如果选中“为完成⾼中,⾼中,⼤专,⼤学等,其中的任何⼀个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究⽣“ 频率分别代表了处在某个教育⽔平的个数,总和应该为 489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“⽅程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029⼏乎接近,是因为我对数据进⾏的向下舍⼊的关系,所以数据会稍微偏⼩,B和Exp(B) 是对数关系,将B进⾏对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中⾃由度为1, sig为0.000,⾮常显著1:从“不在⽅程中的变量”可以看出,最初模型,只有“常数项”被纳⼊了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, ⽽其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了⼀个平⽅)下⾯来举例说明这个计算过程:(“年龄”⾃变量的得分为例)从“分类表”中可以看出:有129⼈违约,违约记为“1” 则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五⼊)计算过程采⽤的是在 EXCEL ⾥⾯计算出来的,截图如下所⽰:从“不在⽅程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采⽤的是:向前步进的⽅法,在“模型系数的综合检验”表中可以看出:所有的SIG ⼏乎都为“0” ⽽且随着模型的逐渐步进,卡⽅值越来越⼤,说明模型越来越显著,在第4步后,终⽌,根据设定的显著性值和⾃由度,可以算出卡⽅临界值,公式为:=CHIINV(显著性值,⾃由度) ,放⼊excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR⽅和 Nagelkerke R⽅拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,最⼤似然平⽅的对数值都⽐较⼤,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR⽅的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含⾃变量的检验)再根据公式:即可算出:Cox&SnellR⽅的值!提⽰:将Hosmer 和 Lemeshow 检验和“随机性表” 结合⼀起来分析1:从 Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡⽅统计量为:11.919,⽽临界值为:CHINV(0.05,8) =15.507卡⽅统计量< 临界值,从SIG ⾓度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
〔一〕数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为〔1、0〕分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换〔下面还会介绍〕,因此为方便期间我们这里先将男女赋值置换,即男性为“0〞,女性为“1〞。
图1-1第二步:打开“二值Logistic 回归分析〞对话框:沿着主菜单的“分析〔Analyze〕→回归〔Regression〕→二元logistic 〔Binary Logistic〕〞的路径〔图1-2〕打开二值Logistic 回归分析选项框〔图1-3〕。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等〔P<0.05〕,因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量〔Dependent〕中,而将性别和年龄选入协变量〔Covariates〕框中,在协变量下方的“方法〔Method〕〞一栏中,共有七个选项。
采用第一种方法,即系统默认的强迫回归方法〔进入“Enter〞〕。
接下来我们将对分类〔Categorical〕,保存〔Save〕,选项〔Options〕按照如图1-4、1-5、1-6中所示进行设置。
SPSS作业8:二项Logistic回归分析为研究和预测某商品消费特点和趋势,收集到以往胡消费数据。
数据项包括是否购买,性别,年龄和收入水平。
这里采用Logistic回归的方法,是否购买作为被解释变量(0/1二值变量),其余各变量为解释变量,且其中性别和收入水平为品质变量,年龄为定距变量。
变量选择采用Enter方法,性别以男为参照类,收入以低收入为参照类。
(一)基本操作:(1)选择菜单Analyze-Regression-Binary Logistic;(2)选择是否购买作为被解释变量到Dependent框中,选其余各变量为解释变量到Covariates框中,采用Enter方法,结果如下:消费的二项Logistic分析结果(一)(强制进入策略). 专业专注.分析:上表显示了对品质变量产生虚拟变量的情况,产生的虚拟变量命名为原变量名(编码)。
可以看到,对收入生成了两个虚拟变量名为Income (1)和Income(2),分别表示是否中收入和是否高收入,两变量均为0时表示低收入;对性别生成了一个虚拟变量名为Gedder(1),表示是否女,取值为0时表示为男。
. 专业专注.消费的二项Logistic分析结果(二)(强制进入策略)Block 0: Beginning Block分析:上表显示了Logistic分析初始阶段(第零步)方程中只有常数项时的错判矩阵。
可以看到:269人中实际没购买且模型预测正确,正确率为. 专业专注.100%;162人中实际购买了但模型均预测错误,正确率为0%。
模型总的预测正确率为62.4%。
消费的二项Logistic分析结果(三)(强制进入策略)分析:上表显示了方程中只有常数项时的回归系数方面的指标,各数据项的含义依次为回归系数,回归系数标准误差,Wald检验统计量的观测值,自由度,Wald检验统计量的概率p值,发生比。
由于此时模型中未包含任何解释变量,因此该表没有实际意义。
spss的二元logistic回归
SPSS(Statistical Product and Service Solutions)是一款数据统计与分析软件。
SPSS软件可以提供全面高级的统计分析,方便易用可快速操作,可缩小数据科学与数据理解之间的差距;在具体的应用方向方面,SPSS提供了高级统计分析、大量机器学习算法、文本分析等功能,具备开源可扩展性,可与大数据的集成,并能够无缝部署到应用程序中。
Logistic回归:主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。
变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。
Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。
OR(OddsRatio):比值比,优势比。
二元logistic回归是研究二分类反应变量和多个解释变量间回归关系的统计学分析方法。
二元logistic回归spss结果解读
性。
二元logistic回归是一种用于分析二元变量之间关系的统计方法,它可以用来检验一个变量是否对另一个变量有影响。
SPSS是一款统计分析软件,它可以帮助我们进行二元logistic回归分析,并输出结果。
二元logistic回归的结果解读主要包括以下几个方面:
1.模型拟合度:模型拟合度指标可以反映模型的拟合程度,如果拟合度较高,说明模型拟合数据较好,可以用来预测。
2.回归系数:回归系数可以反映自变量对因变量的影响程度,如果系数较大,说明自变量对因变量的影响较大,反之亦然。
3.显著性检验:显著性检验可以检验回归系数是否显著,如果显著性检验的p值小于0.05,说明回归系数显著,反之亦然。
4.拟合优度检验:拟合优度检验可以检验模型的拟合优度,如果拟合优度检验的p值小于0.05,说明模型拟合优度较高,反之亦然。
通过以上几个方面的解读,我们可以更好地理解二元logistic回归的结果,从而更好地分析变量之间的关系。
如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图 1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
如何用SPSS做logistic回归分析解读————————————————————————————————作者:————————————————————————————————日期:如何用进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图 1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
如何⽤SPSS做logistic回归分析报告解读汇报如何⽤spss17.0进⾏⼆元和多元logistic回归分析⼀、⼆元logistic回归分析⼆元logistic回归分析的前提为因变量是可以转化为0、1的⼆分变量,如:死亡或者⽣存,男性或者⼥性,有或⽆,Yes或No,是或否的情况。
下⾯以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进⾏⼆元logistic回归分析。
(⼀)数据准备和SPSS选项设置第⼀步,原始数据的转化:如图1-1所⽰,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输⼊到spss中,⽽性别需要转化为(1、0)分类变量输⼊到spss当中,假设男性为1,⼥性为0,但在后续分析中系统会将1,0置换(下⾯还会介绍),因此为⽅便期间我们这⾥先将男⼥赋值置换,即男性为“0”,⼥性为“1”。
图1-1第⼆步:打开“⼆值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→⼆元logistic (Binary Logistic)”的路径(图1-2)打开⼆值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素⽅差分析中与ICAS 显著相关的为性别、年龄、有⽆⾼⾎压,有⽆糖尿病等(P<0.05),因此我们这⾥选择以性别和年龄为例进⾏分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选⼊因变量(Dependent)中,⽽将性别和年龄选⼊协变量(Covariates)框中,在协变量下⽅的“⽅法(Method)”⼀栏中,共有七个选项。
采⽤第⼀种⽅法,即系统默认的强迫回归⽅法(进⼊“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所⽰进⾏设置。
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
二元Logistic回归案例分析二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为“逻辑”但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指“两种可能性”就好比逻辑中的“是”或者“否”一样,Logistic 回归模型的假设检验——常用的检验方法有似然比检验(likelihood ratio test)和 Wald检验)似然比检验的具体步骤如下:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL02:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InL13: 最后比较两个对数似然函数值的差异,若两个模型分别包含l个自变量和P个自变量,记似然比统计量G的计算公式为 G=2(InLP - InLl). 在零假设成立的条件下,当样本含量n较大时,G统计量近似服从自由度为 V = P-l 的 x平方分布,如果只是对一个回归系数(或一个自变量)进行检验,则 v=1.wald 检验,用u检验或者X平方检验,推断各参数βj是否为0,其中u= bj / Sbj, X的平方=(bj / Sbj), Sbj 为回归系数的标准误这里的“二元”主要针对“因变量”所以跟“曲线估计”里面的Logistic曲线模型不一样,二元logistic回归是指因变量为二分类变量是的回归分析,对于这种回归模型,目标概率的取值会在(0-1),但是回归方程的因变量取值却落在实数集当中,这个是不能够接受的,所以,可以先将目标概率做 Logit变换,这样它的取值区间变成了整个实数集,再做回归分析就不会有问题了,采用这种处理方法的回归分析,就是Logistic回归设因变量为y, 其中“1” 代表事件发生,“0”代表事件未发生,影响y的 n个自变量分别为 x1, x2 ,x3 xn 等等记事件发生的条件概率为 P那么P= 事件未发生的概理为 1-P事件发生跟”未发生的概率比为( p / 1-p ) 事件发生比,记住Odds将Odds做对数转换,即可得到Logistic回归模型的线性模型:还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:点击继续,再点击确定,可以得出分析结果了分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为 489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )则:y¯(1-y¯)* ∑(Xi-x则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 = 7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
SPSS—二元Logistic回归结果分析2011-12-02 16:48身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为,标准误差为:那么wald =( B/²=² = , 跟表中的“几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^ = , 其中自由度为1, sig为,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489那么: y¯ = 129/489 =x¯ = 16951 / 489 =所以:∑(Xi-x¯)² =y¯(1-y¯)= *()=则:y¯(1-y¯)* ∑(Xi-x¯)² = * = 5则:[∑Xi(yi - y¯)]^2 =所以:= / 5 = = (四舍五入)计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:和,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR 方的值!提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:,而临界值为:CHINV,8) =卡方统计量< 临界值,从SIG 角度来看: > , 说明模型能够很好的拟合整体,不存在显著的差异。
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
SPSS—二元Logistic回归结果分析
2011-12-02 16:48
身心疲惫,睡意连连,头不断往下掉,拿出耳机,听下歌曲,缓解我这严重的睡意吧!今天来分析二元Logistic回归的结果
分析结果如下:
1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为 1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个
1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)
2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为
-1.026,标准误差为:0.103
那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,
B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1, sig为0.000,非常显著
1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型
表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:
(公式中(Xi- X¯) 少了一个平方)
下面来举例说明这个计算过程:(“年龄”自变量的得分为例)
从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为 129,选定案例总和为489
那么: y¯ = 129/489 = 0.16
x¯ = 16951 / 489 = 34.2
所以:∑(Xi-x¯)² = 30074.9979
y¯(1-y¯)=0.16 *(1-0.16 )=0.216
则:y¯(1-y¯)* ∑(Xi-x¯)² =0.216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8
所以:
=43570.8 / 5 840.9044060372 = 7.76 = 7.46 (四舍五入)
计算过程采用的是在 EXCEL 里面计算出来的,截图如下所示:
从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~!!!!
1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,
根据设定的显著性值和自由度,可以算出卡方临界值,公式为:
=CHIINV(显著性值,自由度) ,放入excel就可以得到结果
2:在“模型汇总“中可以看出:Cox&SnellR方和 Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和 0.446,
最大似然平方的对数值都比较大,明显是显著的
似然数对数计算公式为:
计算过程太费时间了,我就不举例说明计算过程了
Cox&SnellR方的计算值是根据:
1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值
INL0 (指只包含“常数项”的检验)
2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值
InLB (包含自变量的检验)
再根据公式:即可算出:Cox&SnellR 方的值!
提示:将Hosmer 和 Lemeshow 检验和“随机性表” 结合一起来分析
1:从Hosmer 和 Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507
卡方统计量< 临界值,从SIG 角度来看: 0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
2:从Hosmer 和 Lemeshow 检验随即表中可以看出:”观测值“和”期望值“几乎是接近的,不存在很大差异,说明模型拟合效果比较理想,印证了“Hosmer 和 Lemeshow 检验”中的结果
而“Hosmer 和 Lemeshow 检验”表中的“卡方”统计量,是通过“Hosmer 和Lemeshow 检验随即表”中的数据得到的(即通过“观测值和”预测值“)得到的,计算公式如下所示:
x²(卡方统计量) = ∑(观测值频率- 预测值频率)^2 / 预测值的频率
举例说明一下计算过程:以计算 "步骤1的卡方统计量为例 "
1:将“Hosmer 和 Lemeshow 检验随即表”中“步骤1 ”的数据,复制到excel 中,得到如下所示结果:
从“Hosmer 和 Lemeshow 检验”表中可以看出,步骤1 的卡方统计量为:7.567,在上图中,通过excel计算得到,结果为 7.566569 ~~7.567 (四舍五入),结果是一致的,答案得到验证!!
1:从“分类表”—“步骤1” 中可以看出:选定的案例中,“是否曾今违约”总计:489个,其中没有违约的 360个,并且对360个“没有违约”的客户进行了预测,有 340个预测成功,20个预测失败,预测成功率为:340 / 360 =94.4%
其中“违约”的有189个,也对189个“违约”的客户进行了预测,有95
个预测失败, 34个预测成功,预测成功率:34 / 129 = 26.4%
总计预测成功率:(340 + 34)/ 489 = 76.5%
步骤1 的总体预测成功率为:76.5%,在步骤4终止后,总体预测成功率为:83.4,预测准确率逐渐提升 76.5%—79.8%—81.4%—83.4。
83.4的预测准确率,不能够算太高,只能够说还行。
从“如果移去项则建模”表中可以看出:“在-2对数似然中的更改” 中的数值是不是很眼熟???,跟在“模型系数总和检验”表中“卡方统计量"量的值是一样的!!!
将“如果移去项则建模”和“方程中的变量”两个表结合一起来看
1:在“方程中的变量”表中可以看出:在步骤1中输入的变量为“负债率”,在”如果移去项则建模“表中可以看出,当移去“负债率”这个变量时,引起了74.052的数值更改,此时模型中只剩下“常数项”-282.152为常数项的对数似然值
在步骤2中,当移去“工龄”这个自变量时,引起了44.543的数值变化(简称:似然比统计量),在步骤2中,移去“工龄”这个自变量后,还剩下“负债率”和“常量”,此时对数似然值变成了:-245.126,此时我们可以通过公式算出“负债率”的似然比统计量:计算过程如下:
似然比统计量 = 2(-245.126+282.152)=74.052 答案得到验证!!!
2:在“如果移去项则建模”表中可以看出:不管移去那一个自变量,“更改的显著性”都非常小,几乎都小于0.05,所以这些自变量系数跟模型显著相关,不能够剔去!!
3:根据" 方程中的变量“这个表,我们可以得出 logistic 回归模型表达式:
= 1 / 1+ e^-(a+∑βI*Xi)我们假设 Z = 那么可以得到简洁表达式:
P(Y) = 1 / 1+e^ (-z)
将”方程中的变量“ —步骤4中的参数代入模型表达式中,可以得
到 logistic回归模型如下所示:
P(Y) = 1 / 1 + e ^ -(-0.766+0.594*信用卡负债率+0.081*负债率-0.069*地址-0.249*功龄)
从”不在方程中的变量“表中可以看出:年龄,教育,收入,其它负债,都没有纳入模型中,其中:sig 值都大于 0.05,所以说明这些自变量跟模型显著不相关。
在”观察到的组和预测概率图”中可以看出:
1:the Cut Value is 0.5, 此处以 0.5 为切割值,预测概率大于0.5,表示客户“违约”的概率比较大,小于0.5表示客户“违约”概率比较小。
2:从上图中可以看出:预测分布的数值基本分布在“左右两端”在大于0.5的切割值中,大部分都是“1” 表示大部分都是“违约”客户,(大约230个违约客户)预测概率比较准,而在小于0.5的切割值中,大部分都是“0” 大部分都是“未违约”的客户,(大约500多个客户,未违约)预测也很准
在运行结束后,会自动生成多个自变量,如下所示:
1:从上图中可以看出,已经对客户“是否违约”做出了预测,上面用颜色标记的部分-PRE_1 表示预测概率,
上面的预测概率,可以通过前面的 Logistic 回归模型计算出来,计算过程不演示了
2:COOK_1 和 SRE_1 的值可以跟预测概率(PRE_1) 进行画图,来看 COOK_1 和 SRE_1 对预测概率的影响程度,因为COOK值跟模型拟合度有一定的关联,发生奇异值,会影响分析结果。
如果有太多奇异值,应该单独进行深入研究!。