《整式的乘除》全章复习与巩固(提高)巩固练习
- 格式:doc
- 大小:323.01 KB
- 文档页数:6
整式的乘除全章复习与巩固(提高)巩固练习一.选择题1.(2019秋﹒长白县期末)设a ,b 是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0 ②a*b=b*a ③a*(b+c)=a*b+a*c ④a*b=(-a)*(-b) 正确的有( )个. A .1 B .2 C .3 D .42. (2019秋﹒白云区期末)化简(x+4)(x-1)+(x-4)(x+1)的结果是( ) A .2x 2-8 B .2x 2-x-4 C .2x 2+8 D .2x 2+6x3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )A.4B.3C.5D.24.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )A .101x +B .25C .22101x x ++ D .以上都不对 6.(2019•日照)观察下列各式及其展开式:()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++…请你猜想()10a b +的展开式第三项的系数是( ) A .36 B .45 C .55 D .667. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48.(2019秋﹒海淀区期末)已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中,下面说法正确的有( )①图中存在三部分的周长之和恰好等于长方形ABCD 的周长 ②长方形ABCD 的长宽之比可能为2③当长方形ABCD 为正方形时,九部分都为正方形④当长方形ABCD 的周长为60时,它的面积可能为100. A .①② B .①③ C .②③④ D .①③④二.填空题 9. 如果k mx x ++212是一个完全平方式,则k 等于_______. 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______. 11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________.13.(2019春•成都)已知A=(2x+1)(x ﹣1)﹣x (1﹣3y ),B=﹣x 2﹣xy ﹣1,且3A+6B 的值与x 无关,则y= . 14. 设实数x ,y 满足2214202x y xy y ++--=,则x =_________,y =__________. 15.16.如果()()22122163a b a b +++-=,那么a b +的值为____ __.三.解答题17.已知222450a b a b ++-+=,求2243a b +-的值. 18. ()2222a b c a b c ++=++,0abc ≠,求111a b c++=________. 19.计算:20002000200020001998357153)37(++⨯ 20. (2019•内江)(1)填空:()()a b a b -+=;()()22a b a ab b -++=;()()3223a b a a b ab b -+++=.(2)猜想:()()1221···+n n n n a b a a b ab b -----+++= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:98732222222-+-⋅⋅⋅+-+.21.(2020﹒于都县模拟)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a 2+2ab+b 2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.【答案与解析】 一.选择题1. 【答案】B ;2. 【答案】A ;3. 【答案】C ;【解析】()()()()223322945n n n n n n +--+-=--+=-. 4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B. 5. 【答案】B ;【解析】原式=()22225352525x x x x ++--+==.6. 【答案】B ;【解析】解:()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++()6654233245661520156a b a a b a b a b a b ab b +=++++++()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则()10a b +展开式第三项的系数为45.故选B . 7. 【答案】D ;【解析】②④⑤⑥正确. 8. 【答案】B ;二.填空题 9. 【答案】2116m ; 【解析】2221112244x mx k x mx m ⎛⎫++=+⨯+ ⎪⎝⎭.所以k =2116m .10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】2;【解析】解:∵A=(2x+1)(x ﹣1)﹣x (1﹣3y )=2x 2﹣2x+x ﹣1﹣x+3xy=2x 2﹣2x+3xy ﹣1B=﹣x 2﹣xy ﹣1,∴3A+6B=6x 2﹣6x+9xy ﹣3﹣6x 2﹣6xy ﹣6=﹣6x+3xy ﹣9=(﹣6+3y )x ﹣9, 由结果与x 无关,得到﹣6+3y=0,解得:y=2.故答案为:2.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】32; 【解析】原式2002233313222⎛⎫=⨯⨯÷= ⎪⎝⎭. 16.【答案】±4;【解析】由题意得()()2222163,464,4a b a b a b +-=+=+=±. 三.解答题 17.【解析】解:22245a b a b ++-+222144a a b b =+++-+()()22120a b =++-=∵()()2210,20a b +≥-≥∴1,2a b =-=()22243214237a b +-=⨯-+⨯-=.18.【解析】解:222222222a b c a b c ab ac bc ++=+++++所以2220,0ab ac bc ab ac bc ++=++=即 因为0abc ≠,等式两边同除以abc ,111a b c++=0. 19.【解析】 解:===()()20002000199819982000200031573715+⨯+ ==.20.【解析】解:(1)()()a b a b -+=22a b -;()()22a b a ab b -++=33a b -; ()()3223a b a a b ab b -+++=44a b -.(2)由(1)的规律可得: 原式=n na b -,(3)987328642222222(21)(22222)342-+-⋅⋅⋅+-+=-++++=21.【考点】完全平方公式.完全平方公式解:(1)如图, 则(a+b)5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5; (2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5. =(2-1)5,=1.【点评】本题考查了完全式的n 次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.。
整式的乘除 提高测试(二)选择题(每小题 2 分,共计 16 分)13.计算(-a )3·(a 2)3·(-a )2 的结果正确的是……………………………() (A )a 11 (B )a 11 (C )-a 10 (D )a 1314.下列计算正确的是………………………………………………………………()(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 15.4m ·4n 的结果是……………………………………………………………………( ) (A )22(m +n ) (B )16mn (C )4mn (D )16m +n 16.若 a 为正整数,且 x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………()5 (A )5(B )(C )25 (D )10217. 下列算式中, 正确的是 ……………………………………………………………… ( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )( 1 )-2=1= 13329(C )(0.00001)0=(9999)0(D )3.24×10-4=0.000032418.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4(四)计算(每小题 5 分,共 10 分) 23.9972-1001×999.1111122.(1-22 )(1-32 )(1-42 ) (1)92 )(1-102)的值.(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1 =2,求 x 2+ 1 x x 2,x 4+ 1x4 的值.a 2b 2 24.已知(a -1)(b -2)-a (b -3)=3,求代数式-ab 的值.225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.⎨26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值.13, 【答案】B .14【答案】C . 15【答案】A .16 【答案】A .17 【答案】C .18 【答案】D .(四)计算(每小题 5 分,共 10 分)23.9972-1001×999.【提示】原式=9972-(1000+1)(1000-1)=9972-10002+1=(1000-3)2-10002+1 =10002+6000+9-10002+.【答案】-5990.1 1 1 1 1 22.(1-22)(1-32)(1-42 ) (1)92)(1-102)的值.【提示】用平方差公式化简,1 1 11 1 1 11原式=(1- )(1+ )(1- )(1+ )…(1- )(1+ )(1-)(1+)=21 32 4 32339 10 11 1 9 910101111 · · · · …· ··= ·1·1·1·…·. 【答案】.2 23 3 48 9 102 1020(五)解答题(每小题 5 分,共 20 分)23.已知 x + 1=2,求 x 2+ 1x x 2,x 4+ 1x4 的值.【提示】x 2+ 1 x2 =(x + 1)2-2=2,x 4+ 1 xx 4=(x 2+ 1x2 )2-2=2.【答案】2,2.(a - b )2 124.【答案】由已知得 a -b =1,原式== ,或用 a =b +1 代入求值.2225.已知 x 2+x -1=0,求 x 3+2x 2+3 的值.【答案】4.【提示】将 x 2+x -1=0 变形为(1)x 2+x =1,(2)x 2=1-x ,将 x 3+2x 2+3 凑成含(1),(2)的形式,再整体代入,降次求值.26.若(x 2+px +q )(x 2-2x -3)展开后不含 x 2,x 3 项,求 p 、q 的值. 【答案】展开原式=x 4+(p -2)x 3+(q -2p -3)x 2-(3p +28)x -3q ,x 2、x 3 项系数应为零,得⎧ p - 2 = 0 ⎩q - 2 p - 3 = 0.∴ p =2,q =7.。
《整式的乘除》全章复习与巩固(提高)【学习目标】1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算 1、(2015春•南长)已知228x y +=,993y x -=,求x+2y 的值.【思路点拨】根据原题所给的条件,列方程组求出x 、y 的值,然后代入求解.【答案与解析】解:根据3(2)22x y +=,2933y x -=,列方程得:, 解得:, 则x+2y=11.【总结升华】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.2、(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
【巩固练习】一.选择题1.下列各式从左到右的变化中属于因式分解的是( ).A .()()22422m n m n m n -=+-B .()()2111m m m +-=-C .()23434m m m m --=--D .()224529m m m --=-- 2.下列计算正确的是( ).A.325a a a +=B.()23624a a -=C.()222a b a b +=+D. 623a a a ÷= 3.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—104. 将2m ()2a -+()2m a -分解因式,正确的是( )A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列计算正确的是( )A. 23323bx y xy x -÷=-B. ()()2223xyx y y -÷-=- C.()()33223322x y xy x y -÷-=- D. ()()32224a b a b a --÷-=6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.27. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是() A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a -8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+; ⑥22122m n -+. A .1个 B .2个 C .3个 D .4个二.填空题9.化简()2m n a a ⋅=______. 10.如果229x mx -+是一个完全平方式,那么m =______.11.若221x y -=,化简()()20122012x y x y +-=________. 12. 若2330x x +-=,32266x x x +-=__________.13.把()()2011201222-+-分解因式后是___________.14.()()()()241111x x x x -++-+的值是________. 15. 当10x =,9y =时,代数式22x y -的值是________.16.下列运算中,结果正确的是___________①422a a a =+,②523)(a a =, ③2a a a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-,⑧ ()()33x x -=--,⑨ ()()22x y y x -=-三.解答题17.分解因式:(1)234()12()x x y x y ---;(2)2292416a ab b -+;(3)21840ma ma m --.18. 解不等式()()()22232336x x x x +-+->+,并求出符合条件的最小整数解. 19.已知:x y a +=,xy b =,试用a b ,表示下列各式:(1)22x y +;(2)()2x y -;(3)22x y xy +. 20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么?【答案与解析】一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式.2. 【答案】B ;3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】C ;【解析】2m ()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】B ;【解析】233122bx y xy bx -÷=-;()()33223328x y xy x y -÷-=; ()()3222a b a b a --÷-=-.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-.7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解.二.填空题9. 【答案】()22m n m n a a a +⋅=.10.【答案】±3;【解析】()2222293233x mx x x x -+=±=±⨯+. 11.【答案】1;【解析】()()()()()201220122012201222201211x y x y x y x y x y +-=+-=-==⎡⎤⎣⎦. 12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=.13.【答案】20112;【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】-2;【解析】()()()()()()()242241111111x x x x x x x -++-+=-+-+ 44112x x =---=-.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=. 16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--;(2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:()()()22232336x x x x +-+->+ 2224129636139913x x x x x x x ++-++>+>->- 符合条件的最小整数解为0,所以0x =.19.【解析】解:(1)()222222x y x y xy a b +=+-=-;(2)()()22244x y x y xy a b -=+-=-; (3)()22x y xy xy x y ab +=+=.20.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a +-=⨯=. 所以前两种调价方案一样.。
- 1 -第三章整式的乘除复习巩固练习一.选择题1. 化简 2a 3 + a 2·a 的结果等于( A 、 3 a 3B 、 2 a 3C 、 3 a 6D 、 2 a 62. 下列计算中, (1a m ·a n =a mn (2(a m +n 2=a 2m +n (3(2a n b 3·(-61ab n -1 =-31a n +1b n +2,(4a 6÷a 3= a 3正确的有 (A.0个B.1个C.2个D.3个 3. 已知 a <0,若 -3a n ·a 3的值大于零,则 n 的值只能是 (A. n 为奇数B. n 为偶数C. n 为正整数D. n 为整数 4. 若 (x -1(x +3=x 2+mx +n ,那么 m , n 的值分别是 (A. m =1, n =3B. m =4, n =5C. m =2, n =-3D. m =-2 , n =3 5. 化简 (x +y +z 2-(x +y -z 2的结果是 (A.4yzB.8xyC.4yz +4xzD.8xz 6. 如果 a , b , c 满足 a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则 abc 等于 ( A.9 B.27 C.54 D.81 7. 设 ((A b a b a +-=+223535,则 A =(A. 30abB. 60abC. 15abD. 12ab 8. 已知 , 5, 3==bax x 则 =-ba x 23(A.2527 B. 109C. 53D. 529.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是(A . (2222a b a ab b -=-+ B . (2222b ab a b a ++=+C . (ab a b a a 2222+=+D . ((22a b a b a b +-=-- 2 -nm aba10.如果 (x +p (x +1的乘积中不含 x 的项,那么 p 等于( A 、 1 B 、-1 C 、 0 D 、-2 二、填空题11. 计算:32( x x -=·322(3 a a -÷=12.. 已知 (3x -2 0有意义 , 则 x 应满足的条件是 _________________ . 13. 方程((((41812523=-+--+x x x x 的解是 _______ 14. 当 2y – x =5时, ((6023252-+---y x y x15.若 4x 2+kx +25=(2x -5 2,那么 k 的值是 16.若 1007=+y x , 2x y -=,则代数式 22x y -的值是17. 一个正方形的边长增加了 cm 2,面积相应增加了 232cm ,则这个正方形的边长为 ____ ((((221112++++-+--a b a b a b a =_____________ 19. 如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:① (2a +b (m +n ; ② 2a (m +n +b (m +n ; ③ m (2a +b +n (2a +b ; ④ 2am +2an +bm +bn ,你认为其中正确的有___________________(填序号 20. 若 622=-n m ,且 3=-n m , 则 =+n m . 三、解答题21. 计算下列各题: (1 ((((233232222x y x xy y x ÷-+-⋅ (2 ((222223366m m nm n m -÷--18. 计算:- 3 -22. 先化简,再求值: (1 2b 2+(a +b (a -b - (a -b 2,其中 a =-3, b =21.(2 (x +3 (x ﹣ 3﹣ x (x ﹣ 2 ,其中 x =4.(3 22(2 2, 3a b b a b --=-=, 其中 .23. 请计算:[]222 ( ( (21c a c b b a -+-+- 若 a =2012, b =2013, c =2014,你能很快求出 ac bc ab c b a ---++2 22的值吗?- 4 -24. 按下列程序计算,把答案写在表格内:(1填写表格:(2请将题中计算程序用代数式表达出来,并给予化简.25. 小明家的住房结构如图所示,小明的爸爸打算把卧室以外的部分都铺上地砖,至少需要多少 m 2的地砖?如果每 1m 2地砖的价格是 a 元钱, 则购买地砖至少需要多少钱?26. 若 (x 2+mx -8 (x 2-3x +n 的展开式中不含 x 2和 x 3项 , 求 m 和 n 的值- 5 -27. 某城市为了鼓励居民节约用水, 对自来水用户按如下标准收费:若每月每户用水不超过 a 吨,每吨 m 元;若超过 a 吨,则超过的部分以每吨 2m 元计算. • 现有一居民本月用水 x 吨,则应交水费多少元?28. 化简求 22(2 (2 2(2(2 a b a b a b a b ++---+的值,其中 26279ba ==.29. (1计算并观察下列各式:(1(1 x x -+=2(1(1 x x x -++=; 32(1(1 x x x x -+++=(2从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格. (1 x -( =61x -; (3利用你发现的规律计算:65432(1(1 x x x x x x x -++++++; (4利用该规律计算:23201314444. +++++ 参考答案一、选择题题号答案 1 A 2 C 3 B 4 C 5 C 6 B 7 B 8A 9 C 10B 二、填空题 11. x 5 9a 4 12. x 2 3 2 13. x=3 14. 50 15. -20 16. 201417. 7 18. 4a 4ab 2b 2 19. ①②③④ 20. 2 三、解答题 21.计算下列各题:(1)2 x y3 2 xy 2 x y 2 x 2 3 3 2 解 : 原式 2 x 7 y 3 8 x 9 y 3 2 x 2 2 x 7 y 34 x 7 y 3 6 x 7 y 3 (2) 6m n 6m n 3m 2 2 2 2 3m 2 解 : 原式2n 2n 2 1 22.(1)解:原式=2b2+a2-b2-a2+2ab-b2=2ab. 当 a=-3,b= 1 1 时,原式=2× (-3× =-3. 2 2 (2)解:原式=x2﹣9﹣x2+2x=2x﹣9,当 x=4 时,原式=2× 4﹣9=﹣1.(3)解:原式 4a 4ab b b 2 2 2 4a 2 4ab 2 将 a=-2,b=3 代入上式得上式 4( 2 4 ( 2 3 16 24 40 -6- 23.请计算: 1 (a b 2 (b c 2 (a c 2 2 2 2 2 若 a =2012,解原式 =2013, c =2014,你能很快求出 a b c ab bc ac 的值吗? 1 (a b( a b (b c(b c (a c( a c 2 1 2 a ab ab b 2 b 2 bc bc c 2 a 2 2 1 2a 2 2b 2 2c 2 2ab 2ac 2bc 2 a 2 b 2 c 2 ab ac bc 由上面计算我们可以发现, a b c ab ac bc 2 2 2 1 a b 2 b c 2 a c 2 2 当a 2012 , b 2013, c 2014时 a 2 b 2 c 2 ab ac bc 1 1 2 1 2 2 2 3 2 1 a b 2 bc 2 a c 2 2 24.按下列程序计算,把答案写在表格内: n 平方 +n n -n 答案 (1填写表格:输入n 输出答案 3 1 1 2 1 —2 1 —3 1 … … (2请将题中计算程序用代数式表达出来,并给予化简.解 : ( n 2 n n n n 1 n 1 25.小明家的住房结构如图所示,小明的爸爸打算把卧室以外的部分都铺上地砖,至少需要多少 m2 的地砖?如果每 1m2 地砖的价格是 a 元钱,则购买地砖至少需要多少钱?解 : 面积为4 x 4 y xy 4 xy 11xy 需钱为 : 11xya元 -7- 26.若(x2+mx-8 (x2-3x+n的展开式中不含 x2 和 x3 项,求 m 和 n 的值解 x 2 mx 8 x 2 3 x n 4 3 2 3 2 x 3 x nx mx 3mx mnx 8 x 2 24 x 8n x 4 (m 3 x 3 (n 3m 8 x 2 (mn 24 x 8n 不含x 3和x 2项m 3 0 m 3, n 17 n 3m 8 0 28.某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过 a 吨,每吨 m 元;若超过 a 吨,则超过的部分以每吨 2m 元计算.现有一居民本月用水 x 吨,则应交水费多少元?解 : 如果x a, 应交水费mx 如果x a 应交水费 : am 2m( x a 2mx am 28.解:原式= (a 3b ,求得 a 3, b 3 2 当 a 3 时, (a 3b =144 2 当 a 3 时, (a3b =36 2 29.(1) x 1, x 1, x 1 2 3 4 (2) x x x x x 1 (3) x 1 5 4 3 2 7 2013 (4) (1 4 4 4 4 2 3 (4 1 42014 1 1 4 42 43 42013 = 4 2014 1 3 -8-。
《整式的乘除》全章复习与巩固(提高)
【学习目标】
1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;
2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;
3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:
(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).
同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a
-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.。
《整式的乘除》全章复习与巩固—知识讲解(提高)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、(2016春•东台市期中)已知:5a =4,5b =6,5c =9,(1)52a +b 的值;(2)5b -2c 的值;(3)试说明:2b =a +c .【思路点拨】根据同底数幂的乘法、幂的乘方、同底数幂的除法等即可得答案.【答案与解析】解:(1)52a +b =52a ×5b =(5a )2×5b =42×6=96(2)5b ﹣2c =5b ÷(5c )2=6÷92=6÷81=227(3)5a +c =5a ×5c =4×9=3652b =62=36,因此5a +c =52b 所以a +c =2b .【总结升华】本题考查了幂的相关运算,熟记法则的同时要注意逆用公式才是解题关键. 举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
《整式的乘除》全章复习与巩固—知识讲解(提高):【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差. 22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、(2016春•东台市期中)已知:5a =4,5b =6,5c =9,(1)52a +b 的值;(2)5b -2c 的值;(3)试说明:2b =a +c .【思路点拨】根据同底数幂的乘法、幂的乘方、同底数幂的除法等即可得答案.【答案与解析】解:(1)52a +b =52a ×5b =(5a )2×5b =42×6=96(2)5b ﹣2c =5b ÷(5c )2=6÷92=6÷81=227(3)5a +c =5a ×5c =4×9=3652b =62=36,因此5a +c =52b 所以a +c =2b .【总结升华】本题考查了幂的相关运算,熟记法则的同时要注意逆用公式才是解题关键. 举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
【巩固练习】 一.选择题1.若二项式42164m m +加上一个单项式...后构成的三项式是一个完全平方式,则这样的单项式的个数有( ).A .1个B .2个C .3个D .4个2. 已知:△ABC 的三边长分别为a b c 、、,那么代数式2222b c ac a -+-的值( )A.大于零B.等于零C.小于零 D 不能确定 3. 下列因式分解正确的是( ).A.()()2292323a b a b a b -+=+-B.()()5422228199a ab a a b ab -=+-C.()()2112121222a a a -=+- D.()()22436223x y x y x y x y ---=-+- 4.(2015•邵阳)已知a+b=3,ab=2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65. 若4821-能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭应等于( ) A .512 B .12 C .1120 D .237. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48. (2016•沧州校级模拟)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a 、b 的式子表示)( )A .(a +b )2B .(a ﹣b )2C .2abD .ab二.填空题9.(2015•游仙区模拟)已知关于x 的二次三项式x 2+2mx ﹣m 2+4是一个完全平方式,则m 的值为 . 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______.11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________. 13.若32213x x x k --+有一个因式为21x +,则k 的值应当是_________. 14. 设实数x ,y 满足2214202x y xy y +-+=,则x =_________,y =__________. 15.已知5,3a b ab +==,则32232a b a b ab -+= .16.(2016•广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a +b )n (n=1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出(x ﹣)2016展开式中含x 2014项的系数是 .三.解答题17.(2015春•禅城区校级期末)请你说明:当n 为自然数时,(n+7)2﹣(n ﹣5)2能被24整除.18.(2015春•碑林区期中)图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ; (3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n )(m+3n ); (5)若x+y=﹣6,xy=2.75,求x ﹣y 的值. 19.计算).1011()911()411()311()211(22222-⨯-⨯⨯-⨯-⨯-20.下面是某同学对多项式()()642422+-+-x x x x +4进行因式分解的过程:解:设y x x =-42原式=()()264y y +++ (第一步) =2816y y ++ (第二步)=()24+y (第三步)=()2244+-x x (第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式 B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底)若不彻底,请直接写出因式分解的最后结果_______________. (3)请你模仿以上方法尝试对多项式()()122222++--x x x x 进行因式分解. 【答案与解析】 一.选择题1. 【答案】D ;【解析】可以是316m ±,14,616m . 2. 【答案】C ;【解析】()()()222222a ac c b a c b a c b a c b -+-=--=-+--,因为a b c 、、为三角形三边长,所以0,0a b c a b c +->--<,所以原式小于零.3. 【答案】C ;【解析】()()22933a b b a b a -+=+-;()()()()()542222228199933a ab a a b ab a a b a b a b -=+-=++-;()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--. 4. 【答案】C ;【解析】解:∵a+b=3,ab=2, ∴a 2+b 2=(a+b )2﹣2ab =32﹣2×2 =5, 故选C.5. 【答案】C ;【解析】()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯6. 【答案】C ; 【解析】22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=7. 【答案】D ;【解析】②④⑤⑥正确. 8. 【答案】D ; 【解析】解:()2﹣4×()2=﹣==ab ,故选D .二.填空题 9. 【答案】±;【解析】解:∵关于x 的二次三项式x 2+2mx ﹣m 2+4是一个完全平方式,即x 2+2mx ﹣m 2+4,∴﹣m 2+4=m 2, 解得:m=±. 故答案为:±. 10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】-6;【解析】由题意,当12x =-时,322130x x x k --+=,解得k =-6.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】39;【解析】原式=()()()2224353439ab a b ab a b ab ⎡⎤-=+-=⨯-⨯=⎣⎦.16.【答案】﹣4032;【解析】(x ﹣)2016展开式中含x 2014项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032. 三.解答题 17.【解析】解:原式=(n+7+n ﹣5)(n+7﹣n+5)=24(n+1),则当n 为自然数时,(n+7)2﹣(n ﹣5)2能被24整除. 18.【解析】解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2;故答案为:(m ﹣n )2;(2)(m+n )2﹣(m ﹣n )2=4mn ;故答案为:(m+n )2﹣(m ﹣n )2=4mn ;(3)(m+n )(2m+n )=2m 2+3mn+n 2; (4)答案不唯一:(5)∵(x ﹣y )2=(x+y )2﹣4xy=(﹣6)2﹣2.75×4=25,∴x﹣y=±5.19.【解析】 解:原式=11111111111111112233441010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+- ⎪⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭...... 314253119 (2233441010)=⨯⨯⨯⨯⨯⨯⨯⨯1120=. 20.【解析】 解:(1)C ;(2)不彻底;()42x -;(3)设22x x y -=,原式=()22121y y y y ++=++()()()22421211y x x x =+=-+=-.。
【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=- C .()23434m m m m --=-- D .()224529m m m --=-- 2.下列计算正确的是( ). A.325a a a +=B.()23624aa -=C.()222a b a b +=+D. 623a a a ÷=3.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—10 4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m -- 5.(2016·桂林)下列计算正确的是( )A .()33xy xy = B .55x x x ÷=C .2353515x x x ⋅= D .2323495210x y x y x y +=6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题 9.化简()2m n aa ⋅=______.10.如果229x mx -+是一个完全平方式,那么m =______.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.()()()()241111x x x x -++-+的值是________.15.(2016·雅安)已知8a b +=,224a b =,则222a b ab +-= .16.下列运算中,结果正确的是___________①422aa a =+,②523)(aa =, ③2aa a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-, ⑧ ()()33xx -=--,⑨ ()()22x y y x -=-三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 解不等式()()()22232336x x x x +-+->+,并求出符合条件的最小整数解.19.(2015春•盐都区期中)问题:阅读例题的解答过程,并解答(1)(2): 例:用简便方法计算195×205 解:195×205 =(200﹣5)(200+5)①=2002﹣52② =39975(1)例题求解过程中,第②步变形依据是 (填乘法公式的名称). (2)用此方法计算:99×101×10001.20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么? 【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】B ;3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】C ;【解析】解:A 、原式=33x y ,故A 错误;B 、原式=1,故B 错误;C 、原式=515x ,故C 正确; D 、原式=237x y ,故D 错误.故选:C .6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题 9. 【答案】()22m n m n aa a +⋅=.10.【答案】±3;【解析】()2222293233x mx x x x -+=±=±⨯+.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y +-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】-2;【解析】()()()()()()()242241111111x x x x x x x -++-+=-+-+44112x x =---=-.15.【答案】28或36;【解析】解:()()222222222a b ab a b a b ab ab ab +-++-=-=-,∵224a b =, ∴2ab =±,①当8a b +=,2ab =,()2226422228222a b a b ab ab ++-=-=-⨯=;②当8a b +=,2ab =-,()()2226422236222a b a b ab ab ++-=-=-⨯-=; 故答案为:28或36.16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:()()()22232336x x x x +-+->+2224129636139913x x x x x x x ++-++>+>->-符合条件的最小整数解为0,所以0x =. 19.【解析】 解:(1)平方差公式;(2)99×101×10001=(100﹣1)(100+1)×10001=(10000﹣1)(10000+1) =100000000﹣1 =999999920.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a +-=⨯=. 所以前两种调价方案一样.附录资料:【巩固练习】 一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( ) A. AB =DE B. ∠A =∠D C. BC =CD D. ∠ACD =∠BCE2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP. A.0个 B.1个 C.2个 D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为( )A.20°B.40°C.70°D.90° 5. 已知△ABC≌△DEF,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( ) A.6cm B.7cm C.8cm D.9cm 6. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 分别为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ . 三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
《整式的乘除》全章复习与巩固(提高)【学习目标】1. 掌握幕的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、 多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义, 能利用公式进行 乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法 公式简化运算;【知识网络】要点一、幕的运算1. 同底数幕的乘法:一厂•二 "7 (m, n 为正整数);同底数幕相乘,底数不变,指数相加.4.同底数幕的除法:厂 / L ._ ■' ( a 丰0, m, n 为正整数,并且 m n ).2. 单项式乘以多项式3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积:八; ( m, n 为正整数);幕的乘方,底数不变,指数相乘2.幕的乘方: 同底数幕相除,底数不变,指数相减•5. 零指数幕:a 01 a 0 .即任何不等于零的数的零次方等于16. 负指数幕:a n - ( a 工0, n 是正整数).a要点诠释:公式中的字母可以表示数, 也可以表示单项式, 双向应用运算性质,使运算更加方便、简洁 .要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘, 把他们的系数,相同字母分别相乘, 的字母,则连同它的指数作为积的一个因式 . 1.还可以表示多项式;灵活地对于只在一个单项式里含有【要点梳理】单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加•即m(a b c) ma mb mc(m, a, b,c 都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即a b m n am an bm bn.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“ +”“―”号是性质符号,单项式乘以多项式各项的结果,要用“ + ”连结,最后写成省略加号的代数和的形式. 根据多项式的乘法,能得出一个应用比较广泛的公式:xaxb x2a b x ab.4. 单项式相除把系数、相同字母的幕分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5. 多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加即: (am bm cm) m am m bm m cm m a b c要点三、乘法公式1. 平方差公式:(a b)(a b) a2 b2两个数的和与这两个数的差的积,等于这两个数的平方差要点诠释:在这里,a, b既可以是具体数字,也可以是单项式或多项式平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2 勺o 2 2 22. 完全平方公式: a b a 2ab b ;(a b) a 2ab b两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幕的运算1、(2015 春?南长)已知2x 8y 2, 9y 3x 9,求gx+2y 的值.■J®【思路点拨】根据原题所给的条件,列方程组求出x、y的值,然后代入求解.【答案与解析】解:根据2x23(y 2), 32y 3x 9,列万程得:J ,[2y=x~ 9解得,则-Lx+2y=11 .3【总结升华】本题考查了幕的乘方和积的乘方, 解答本题的关键是掌握幕的乘方和积的乘方的运算法则.2、( 1)已知 a 224, b 96, c 512,比较 a, b, c 的大小.(2)比较 330,920,2710大小。
《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。
《整式的乘除》全章复习与巩固—知识讲解(提高)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. ()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、(2016春•东台市期中)已知:5a =4,5b =6,5c =9,(1)52a +b 的值;(2)5b -2c 的值;(3)试说明:2b =a +c .【思路点拨】根据同底数幂的乘法、幂的乘方、同底数幂的除法等即可得答案.【答案与解析】解:(1)52a +b =52a ×5b =(5a )2×5b =42×6=96(2)5b ﹣2c =5b ÷(5c )2=6÷92=6÷81=227(3)5a +c =5a ×5c =4×9=3652b =62=36,因此5a +c =52b 所以a +c =2b .【总结升华】本题考查了幂的相关运算,熟记法则的同时要注意逆用公式才是解题关键. 举一反三:【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。
2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
【巩固练习】一.选择题1. 下列运算不正确的是( )A.()2510a a =B.734b b b ÷=C.2352(3)6a a a ⋅-=-D.5525b b b ⋅=2.(2015•包头)下列计算结果正确的是( )A .33623a a a +=B .236()a a a -=-C .2142-⎛⎫-= ⎪⎝⎭ D .()021-=- 3.若252++kx x 是完全平方式,则k 的值是( )A . —10 B. 10 C. 5 D.10或—10 4. =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-19971997532135( )A.1-B.1C.0D.19975. 下列计算正确的是( )A. 23323bx y xy x -÷=-B. ()()2223xyx y y -÷-=- C.()()33223322x y xy x y -÷-=- D. ()()32224a b a b a --÷-= 6. 计算34(510)(710)⨯⨯的正确结果是 ( )A. 73510⨯B. 83.510⨯C. 90.3510⨯D. 73.510⨯7. 一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( )A.6cmB.5cmC.8cmD.7cm8. 22(23)(23)x y x y A A -=++=若则( )A.12xyB.24xyC.-24xyD.-12xy二.填空题9.化简()2m n a a ⋅=______. 10.如果229x mx -+是一个完全平方式,那么m =______.11.计算:()22a b +=________ ()231x -=________.12. 若2330x x +-=,32266x x x +-=__________.13. 47263211)()93a b a b ab -÷2计算:(3= _______. 14.(2015春•陕西)()()()()241111x x x x +-++= . 15.已知51=+x x ,那么221x x+=_______. 16.下列运算中,结果正确的是___________ ①422a a a =+,②523)(a a =, ③2a a a =⋅,④()()33x y y x -=-,⑤()x a b x a b --=-+,⑥()x a b x b a +-=--,⑦()22x x -=-,⑧ ()()33xx -=--,⑨ ()()22x y y x -=- 三.解答题 17. 先化简,再求值:4321(32)()()32x x x x x x x -÷---=-其中 18.(2015•北京)已知22360a a +-=.求代数式3a (2a+1)﹣(2a+1)(2a ﹣1)的值.19.已知:x y a +=,xy b =,试用a b ,表示下列各式:(1)22x y +;(2)()2x y -;(3)22x y xy +.20.某种液晶电视由于原料价格波动而先后两次调价,有三种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问三种方案调价的最终结果是否一样?为什么?【答案与解析】一.选择题1. 【答案】D ;2. 【答案】C ;【解析】解:A 、33323a a a +=,故错误;B 、235()a a a -=,故错误;C 、正确;D 、()021-=(﹣2)0=1,故错误;故选:C . 3. 【答案】D ;【解析】()2221055x x x ±+=± 4. 【答案】B ;【解析】199719971997199753513211135135⎡⎤⎛⎫⎛⎫⎛⎫-⨯-=-⨯-== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.5. 【答案】B ; 【解析】233122bx y xy bx -÷=-;()()33223328x y xy x y -÷-=;()()3222a b a b a --÷-=-.6. 【答案】B ;7. 【答案】D ;【解析】设正方形边长为x ,则面积为2x ,由题意得()22232x x +=+,解得7x =. 8. 【答案】C ;二.填空题9. 【答案】()22m n m n a a a +⋅=.10.【答案】±3;【解析】()2222293233x mx x x x -+=±=±⨯+. 11.【答案】2244a ab b ++;2961x x -+; 12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=.13.【答案】261a b -;【解析】47263247262621111)())619399a b a b ab a b a b a b a b -÷=-÷=-22((33. 14.【答案】81x -;【解析】解:()()()()241111x x x x +-++=()()()224111x x x -++ =()()4411x x -+=81x -,故答案为:81x -. 15.【答案】23;【解析】22222111225=23x x x x x x ⎛⎫+=++=+ ⎪⎝⎭,∴. 16.【答案】③⑤⑥⑨;【解析】在整式的运算过程中,符号问题和去括号的问题是最常犯的错误,要保证不出现符号问题关键在于每一步的运算都要做到有根据,能够用定理法则指导运算.三.解答题17.【解析】解:原式32233233x x x x =-+-+ 2x =-当x =12-时,原式=14-.18.【解析】解:∵22360a a +-=,即2236a a +=,∴原式=2226341231617.a a a a a +-+=++=+=19.【解析】解:(1)()222222x y x y xy a b +=+-=-;(2)()()22244x y x y xy a b -=+-=-; (3)()22x y xy xy x y ab +=+=.20.【解析】解:设a 为原来的价格(1) 由题意得:()()110%110%0.99a a +-=(2)由题意得:()()110%110%0.99a a -+=(3)由题意得:()()120%120% 1.20.80.96a a a +-=⨯=.所以前两种调价方案一样.。
⼈教版数学⼋年级上册整式的乘除与因式分解复习与巩固提⾼整式的乘除与因式分解全章复习与巩固(基础)【学习⽬标】1. 掌握正整数幂的运算性质,并能运⽤它们熟练地进⾏运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运⽤它们进⾏运算;2. 会推导乘法公式(平⽅差公式和完全平⽅公式),了解公式的⼏何意义,能利⽤公式进⾏乘法运算;3. 掌握整式的加、减、乘、除、乘⽅的较简单的混合运算,并能灵活地运⽤运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反⽅向的运算,掌握提公因式法和公式法(直接运⽤公式不超过两次)这两种分解因式的基本⽅法,了解因式分解的⼀般步骤;能够熟练地运⽤这些⽅法进⾏多项式的因式分解. 【知识⽹络】【要点梳理】【⾼清课堂整式的乘除与因式分解单元复习知识要点】要点⼀、幂的运算 1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘⽅: (为正整数);幂的乘⽅,底数不变,指数相乘.3.积的乘⽅: (为正整数);积的乘⽅,等于各因数乘⽅的积.4.同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次⽅等于1.m n ,m n ,n a m n ,m n >()010.a a =≠要点诠释:公式中的字母可以表⽰数,也可以表⽰单项式,还可以表⽰多项式;灵活地双向应⽤运算性质,使运算更加⽅便、简洁. 要点⼆、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在⼀个单项式⾥含有的字母,则连同它的指数作为积的⼀个因式. 2.单项式乘以多项式单项式与多项式相乘,就是⽤单项式去乘多项式的每⼀项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先⽤⼀个多项式的每⼀项乘另⼀个多项式的每⼀项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每⼀项前⾯的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要⽤“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出⼀个应⽤⽐较⼴泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式⾥出现的字母,则连同它的指数⼀起作为商的⼀个因式. 5.多项式除以单项式先把这个多项式的每⼀项分别除以单项式,再把所得的商相加. 即:要点三、乘法公式1.平⽅差公式:两个数的和与这两个数的差的积,等于这两个数的平⽅差.要点诠释:在这⾥,既可以是具体数字,也可以是单项式或多项式.平⽅差公式的典型特征:既有相同项,⼜有“相反项”,⽽结果是“相同项”的平⽅减去“相反项”的平⽅.2. 完全平⽅公式:;两数和 (差)的平⽅等于这两数的平⽅和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平⽅,右边是⼆次三项式,是这两数的平⽅和加(或减)这两数之积的2倍.要点四、因式分解把⼀个多项式化成⼏个整式的积的形式,像这样的式⼦变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的⽅法主要有: 提公因式法, 公式法, 分组分解法, ⼗字相乘法, 添、拆项法等.要点诠释:落实好⽅法的综合运⽤:⾸先提取公因式,然后考虑⽤公式;mc mb ma c b a m ++=++)(c b a m ,,,()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,()2222a b a ab b +=++2222)(b ab a b a +-=-两项平⽅或⽴⽅,三项完全或⼗字;四项以上想分组,分组分得要合适;⼏种⽅法反复试,最后须是连乘式;因式分解要彻底,⼀次⼀次⼜⼀次.【典型例题】类型⼀、幂的运算1、计算下列各题:(1)(2)(3)(4)【思路点拨】按顺序进⾏计算,先算积的乘⽅,再算幂的乘⽅,最后算同底数的幂相乘. 【答案与解析】解:(1).(2).(3).(4).【总结升华】在进⾏幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号⾥的“-”号及其与括号外的“-”号的区别.举⼀反三:【变式】当,=4时,求代数式的值.【答案】解:.类型⼆、整式的乘除法运算2、(2015秋?闵⾏区期中)解不等式:(x ﹣6)(x ﹣9)﹣(x ﹣7)(x ﹣1)<7(2x ﹣5)【答案与解析】解:原不等可化为:x ﹣15x+54﹣x +8x ﹣7<14x ﹣35,2334(310)(10)??-2332[3()][2()]m n m n +-+26243(2)(3)xy x y -+-63223(2)(3)[(2)]a a a ---+-2334(310)(10)??-323343(10)(10)=??18192710 2.710=?=?2332[3()][2()]m n m n +-+36263()(2)()m n m n =?+?-?+661227()4()108()m n m n m n =+?+=+26243(2)(3)xy x y -+-6661233612(1)2(1)3x y x y =-??+-?612612612642737x y x y x y =-=63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-?--??+-?6666649649a a a a =--=-41=a b 32233)21()(ab b a -+-333223363636611771()()45628884a b ab a b a b a b ??-+-=-==??= 22整理得:﹣21x <﹣82,解得:x >.则原不等式的解集是x >.【总结升华】此题考查了多项式乘多项式,以及解⼀元⼀次不等式,熟练掌握运算法则是解本题的关键.3、已知,求的值.【思路点拨】利⽤除法与乘法的互逆关系,通过计算⽐较系数和相同字母的指数得到的值即可代⼊求值.【答案与解析】解:由已知,得,即,,,解得,,.所以.【总结升华】也可以直接做除法,然后⽐较系数和相同字母的指数得到的值. 举⼀反三:【变式】(1)已知,求的值.(2)已知,,求的值.(3)已知,,求的值.【答案】解:(1)由题意,知.∴.∴,解得.(2)由已知,得,即.由已知,得.∴,即.∴∴.(3)由已知,得.由已知,得.∴.类型三、乘法公式4、对任意整数,整式是否是10的倍数?为什么?82218221312326834mn axy x y x y ÷=(2)n m n a +-m n a 、、312326834mn axy x y x y ÷=31268329284312m n n ax y x y x y x y +=?=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=?+-=-=m n a 、、1227327m m -÷=m 1020a=1105b =293a b÷23m=24n=322m n-312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =1020a =22(10)20a =210400a=1105b =211025b =221101040025a b ÷=÷2241010a b-=224a b -=22222493333381a b a b a b-÷=÷===23m =3227m =24n=2216n=32322722216m nm n -=÷=n (31)(31)(3)(3)n n n n +---+【答案与解析】解:∵,是10的倍数,∴原式是10的倍数.【总结升华】要判断整式是否是10的倍数,应⽤平⽅差公式化简后,看是否有因数10.举⼀反三:【变式】解下列⽅程(组):【答案】解:原⽅程组化简得,解得.5、已知,,求: (1);(2)【思路点拨】在公式中能找到的关系.【答案与解析】解:(1)∵,,∴(2)∵,,∴.(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-210(1)n -(31)(31)(3)(3)n n n n +---+22(2)(4)() ()32x y x y x y x y ?+-+=+-?-=-?2332x y x y -=??-=-?135x y =??=?3a b +=4ab =-22a b +33a b +()2222a b a ab b +=++22,,a b ab a b ++222222a b a ab b ab +=++-()22a b ab =+-3a b +=4ab =-()22232417a b +=-?-=333223a b a a b a b b +=+-+()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-3a b +=4ab =-()332333463a b ??+=-?-=??【总结升华】在⽆法直接利⽤公式的情况下,我们采取“配凑法”进⾏,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的⽕花,找到最佳思路.类型四、因式分解6、分解因式:(1);(2).【答案与解析】解:(1). (2).【总结升华】在提取公因式时要注意提取后各项字母,指数的变化,另外分解要彻底,特别是因式中含有多项式的⼀定要检验是否能再分,分解因式后可逆过来⽤整式乘法验证其正确与否.举⼀反三:【变式】(2016春·⽯景⼭区期末)分解因式:(1)316x x - (2)()()2221236x x x x ---+.【答案】解:(1)316x x -=()216x x -=()()44x x x +-;(2)()()2221236x xx x ---+=()226x x --=()()2223x x +-.整式的乘除与因式分解全章复习与巩固(提⾼)【学习⽬标】1. 掌握正整数幂的运算性质,并能运⽤它们熟练地进⾏运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运⽤它们进⾏运算;2. 会推导乘法公式(平⽅差公式和完全平⽅公式),了解公式的⼏何意义,能利⽤公式进⾏乘法运算;3. 掌握整式的加、减、乘、除、乘⽅的较简单的混合运算,并能灵活地运⽤运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反⽅向的运算,掌握提公因式法和公式法(直接运⽤公式不超过两次)这两种分解因式的基本⽅法,了解因式分解的⼀222284a bc ac abc +-32()()()()m m n m m n m m n m n +++-+-2222842(42)a bc ac acb ac abc c b +-=+-32()()()()m m n m m n m m n m n +++-+-2()[()()()]m m n m n m n m n =++++--22()(22)m m n m mn n n =++++般步骤;能够熟练地运⽤这些⽅法进⾏多项式的因式分解. 【知识⽹络】【要点梳理】【⾼清课堂整式的乘除与因式分解单元复习知识要点】要点⼀、幂的运算 1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘⽅: (为正整数);幂的乘⽅,底数不变,指数相乘.3.积的乘⽅: (为正整数);积的乘⽅,等于各因数乘⽅的积.4.同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次⽅等于1.要点诠释:公式中的字母可以表⽰数,也可以表⽰单项式,还可以表⽰多项式;灵活地双向应⽤运算性质,使运算更加⽅便、简洁. 要点⼆、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在⼀个单项式⾥含有的字母,则连同它的指数作为积的⼀个因式. 2.单项式乘以多项式单项式与多项式相乘,就是⽤单项式去乘多项式的每⼀项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式m n ,m n ,n a m n ,m n >()010.a a =≠mc mb ma c b a m ++=++)(c b a m ,,,多项式与多项式相乘,先⽤⼀个多项式的每⼀项乘另⼀个多项式的每⼀项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每⼀项前⾯的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要⽤“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出⼀个应⽤⽐较⼴泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式⾥出现的字母,则连同它的指数⼀起作为商的⼀个因式. 5.多项式除以单项式先把这个多项式的每⼀项分别除以单项式,再把所得的商相加. 即:要点三、乘法公式1.平⽅差公式:两个数的和与这两个数的差的积,等于这两个数的平⽅差.要点诠释:在这⾥,既可以是具体数字,也可以是单项式或多项式.平⽅差公式的典型特征:既有相同项,⼜有“相反项”,⽽结果是“相同项”的平⽅减去“相反项”的平⽅.2. 完全平⽅公式:;两数和 (差)的平⽅等于这两数的平⽅和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平⽅,右边是⼆次三项式,是这两数的平⽅和加(或减)这两数之积的2倍.要点四、因式分解把⼀个多项式化成⼏个整式的积的形式,像这样的式⼦变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的⽅法主要有: 提公因式法, 公式法, 分组分解法, ⼗字相乘法, 添、拆项法等.要点诠释:落实好⽅法的综合运⽤:⾸先提取公因式,然后考虑⽤公式;两项平⽅或⽴⽅,三项完全或⼗字;四项以上想分组,分组分得要合适;⼏种⽅法反复试,最后须是连乘式;因式分解要彻底,⼀次⼀次⼜⼀次.【典型例题】类型⼀、幂的运算1、已知,求的值.【思路点拨】由于已知的值,所以逆⽤幂的乘⽅把变为,再代⼊计算.()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,()2222a b a ab b +=++2222)(b ab a b a +-=-25mx=6155m x -2mx6mx23()m x【答案与解析】解:∵,∴.【总结升华】本题培养了学⽣的整体思想和逆向思维能⼒.举⼀反三:【⾼清课堂整式的乘除与因式分解单元复习例1】【变式】(1)已知,⽐较的⼤⼩.(2)⽐较⼤⼩。
【巩固练习】 一.选择题1.若二项式42164m m +加上一个单项式...后构成的三项式是一个完全平方式,则这样的单项式的个数有( ).A .1个B .2个C .3个D .4个 2. 下列运算正确的是( )A.954a a a =+ B.33333a a a a ⋅⋅= C.954632a a a =⨯ D.()743a a =-3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )A.4B.3C.5D.24.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).A.a b ,都是正数B. a b ,异号,且正数的绝对值较大C.a b ,都是负数D. a b ,异号,且负数的绝对值较大5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )A .101x +B .25C .22101x x ++ D .以上都不对 6.(2015•日照)观察下列各式及其展开式:()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++…请你猜想()10a b +的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 7. 下列各式中正确的有( )个:①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=-- A. 1 B. 2 C. 3 D. 48.如图:矩形花园ABCD 中,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM =RS =c ,则花园中可绿化部分的面积为( ) A .2bc ab ac b -++ B .2a ab bc ac ++- C .2ab ac bc c --+ D .22b bc a ab -+-二.填空题 9. 如果k mx x ++212是一个完全平方式,则k 等于_______. 10.若21=+mx ,34=+my ,则用含x 的代数式表示y 为______. 11.已知2226100m m n n ++-+=,则mn = . 12.若230x y <,化简|)(21|276y x xy --⋅-=_________. 13.(2015春•成都)已知A=(2x+1)(x ﹣1)﹣x (1﹣3y ),B=﹣x 2﹣xy ﹣1,且3A+6B 的值与x 无关,则y= . 14. 设实数x ,y 满足2214202x y xy y ++--=,则x =_________,y =__________. 15.16.如果()()22122163a b a b +++-=,那么a b +的值为____ __. 三.解答题17.已知222450a b a b ++-+=,求2243a b +-的值. 18. ()2222a b c a b c ++=++,0abc ≠,求111a b c++=________. 19.计算:20002000200020001998357153)37(++⨯ 20. (2015•内江)(1)填空:()()a b a b -+=;()()22a b a ab b -++=;()()3223a b a a b ab b -+++=.(2)猜想:()()1221···+n n n n a b a a b ab b -----+++= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:98732222222-+-⋅⋅⋅+-+.【答案与解析】一.选择题1. 【答案】D ;【解析】可以是316m ±,14,616m . 2. 【答案】C ; 3. 【答案】C ;【解析】()()()()223322945n n n n n n +--+-=--+=-.4. 【答案】B ;【解析】由题意00a b ab +><,,所以选B. 5. 【答案】B ;【解析】原式=()22225352525x x x x ++--+==.6. 【答案】B ;【解析】解:()2222a b a ab b +=++()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++()6654233245661520156a b a a b a b a b a b ab b +=++++++()77652433425677213535217a b a a b a b a b a b a b ab b +=+++++++第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则()10a b +展开式第三项的系数为45.故选B . 7. 【答案】D ;【解析】②④⑤⑥正确.8. 【答案】C ;【解析】可绿化面积为()()2a c b c ab ac bc c --=--+. 二.填空题 9. 【答案】2116m ; 【解析】2221112244x mx k x mx m ⎛⎫++=+⨯+ ⎪⎝⎭.所以k =2116m .10.【答案】224y x x =-+【解析】∵21=-mx ,∴222234323(2)3(1)24=+=+=+=+-=-+mmm y x x x .11.【答案】-3;【解析】()()22222610130,1,3m m n n m n m n ++-+=++-==-=.12.【答案】78x y【解析】因为230x y <,所以0y <,原式=676778112||222xy x y xy x y x y ⎛⎫-=-⨯-= ⎪⎝⎭. 13.【答案】2;【解析】解:∵A=(2x+1)(x ﹣1)﹣x (1﹣3y )=2x 2﹣2x+x ﹣1﹣x+3xy=2x 2﹣2x+3xy ﹣1B=﹣x 2﹣xy ﹣1,∴3A+6B=6x 2﹣6x+9xy ﹣3﹣6x 2﹣6xy ﹣6=﹣6x+3xy ﹣9=(﹣6+3y )x ﹣9, 由结果与x 无关,得到﹣6+3y=0,解得:y=2.故答案为:2.14.【答案】2;4;【解析】等式两边同乘以4,得:224216480x y xy y ++--=222448160x xy y y y -++-+=()()22240x y y -+-=∴2,4,x y y ==∴ 2x =.15.【答案】32; 【解析】原式2002233313222⎛⎫=⨯⨯÷= ⎪⎝⎭. 16.【答案】±4;【解析】由题意得()()2222163,464,4a b a b a b +-=+=+=±. 三.解答题 17.【解析】解:22245a b a b ++-+222144a a b b =+++-+()()22120a b =++-=∵()()2210,20a b +≥-≥∴1,2a b =-=()22243214237a b +-=⨯-+⨯-=.18.【解析】解:222222222a b c a b c ab ac bc ++=+++++所以2220,0ab ac bc ab ac bc ++=++=即 因为0abc ≠,等式两边同除以abc ,111a b c++=0. 19.【解析】 解:===()()20002000199819982000200031573715+⨯+ ==.20.【解析】解:(1)()()a b a b -+=22a b -;()()22a b a ab b -++=33a b -;()()3223a b a a b ab b -+++=44a b -.(2)由(1)的规律可得: 原式=n na b -,(3)987328642222222(21)(22222)342-+-⋅⋅⋅+-+=-++++=。
《整式的乘除》全章复习与巩固一知识讲解(提高)【学习目标】1. 理解正整数幕的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单 项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义, 能利用公式进行 乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法 公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法 和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一 要点一、幕的运算1. 同底数幕的乘法:.;: " 4 5 6 7 (m, n 为正整数);同底数幕相乘,底数不变,指数相加.1. 单项式乘以单项式单项式与单项式相乘, 把他们的系数,相同字母分别相乘, 对于只在一个单项式里含有 的字母,则连同它的4 同底数幕的除法:L ; :( a 丰0, m, n 为正整数,并且 m n ).同底数幕相除,底数不变,指数相减5 零指数幕:a 0 1 a 0 .即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数, 也可以表示单项式, 还可以表示多项式; 灵活地双向应用运算性质,使运算更加方便、简洁 .要点二、整式的乘法和除法3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积J( m, n 为正整数);幕的乘方,底数不变,指数相乘2.幕的乘方: 般步骤;能够熟练地运用这些方法进行多项式的因式分解 【知识网络】【要点梳理】指数作为积的一个因式•2. 单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加•即m(a b c) ma mb mc(m, a, b,c 都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即a b m n am an bm bn.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“ + ”“―”号是性质符号,单项式乘以多项式各项的结果,要用“ + ”连结,最后写成省略加号的代数和的形式. 根据多项式的乘法,能得出一个应用比较广泛的公式:xaxb x2a b x ab.4. 单项式相除把系数、相同字母的幕分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5. 多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加即: (am bm cm) m am m bm m cm m a b c要点三、乘法公式1. 平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差(a b)(a b) a2 b2要点诠释:在这里,a, b既可以是具体数字,也可以是单项式或多项式平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.2 2 2 2 2 2a b a 2ab b ;(a b) a 2ab b要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幕的运算1、已知x2m 5,求-x6m 5的值.5【思路点拨】由于已知x2m的值,所以逆用幕的乘方把x6m变为(x2m)3,再代入计算.【答案与解析】解:••• x2m 5 ,•••-x6m5 -(x2m)35 - 5 20•5 5 5【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【变式】(1)已知a 224, b 96, c 512,比较a, b, c的大小.(2)比较330,920,2710大小。
数学是科学的大门和钥匙--培根
数学是最宝贵的研究精神之一--华罗庚 【巩固练习】
一.选择题
1.若二项式42164m m +加上一个单项式...
后构成的三项式是一个完全平方式,则这样的单项式的个数有( ).
A .1个
B .2个
C .3个
D .4个
2. 下列运算正确的是( )
A.954a a a =+
B.33333a a a a ⋅⋅=
C.954632a a a =⨯
D.()743a a =-
3. 对于任意的整数n ,能整除代数式()()()()3322n n n n +--+-的整数是( )
A.4
B.3
C.5
D.2 4.若()()2x a x b x px q ++=++,且0p >,0q <,那么a b ,必须满足条件( ).
A.a b ,都是正数
B. a b ,异号,且正数的绝对值较大
C.a b ,都是负数
D. a b ,异号,且负数的绝对值较大 5.化简222222(53)2(53)(52)(52)x x x x x x x x ++-+++-++-的结果是( )
A .101x +
B .25
C .2
2101x x ++ D .以上都不对
6.(2015•日照)观察下列各式及其展开式: ()
2222a b a ab b +=++ ()
3322333a b a a b ab b +=+++ ()
4432234464a b a a b a b ab b +=++++ ()
5
54322345510105a b a a b a b a b ab b +=+++++ … 请你猜想()10a b +的展开式第三项的系数是( )
A .36
B .45
C .55
D .66
7. 下列各式中正确的有( )个:
①a b b a -=-;② ()()22a b b a -=-; ③()()22a b b a -=--;
④()()33a b b a -=--;⑤()()()()a b a b a b a b +-=---+;⑥ ()()22a b a b +=--
A. 1
B. 2
C. 3
D. 4
8.如图:矩形花园ABCD 中,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行。