烧结矿冶金性能的有关参数
- 格式:doc
- 大小:12.00 KB
- 文档页数:2
冶金性能与基础特性附1:铁烧结矿、球团矿的冶金性能序号冶金性能名称符号表示概念描述标准1还原度(900℃)RI 还原性指用还原气体从铁矿石中排除与铁相结合的氧的难易程度的一种量度。
2还原速率指数RVI 从还原曲线读出还原达到30%和60%时相对应的还原时间(min)。
我国以3h的还原度指数RI作为考核用指标,还原速率指数RVI作为参考指标。
测定标准为GB/T13241-91“铁矿石还原性的测定方法”。
RI≥72%3低温还原粉化率(500℃)RDI指高炉含铁原料(如烧结矿、块矿、球团矿)在高炉上部较低温度下被煤气还原时,主要由于赤铁矿向磁铁矿转变,体积膨胀,产生应力,从而导致粉化的程度。
低温还原粉化率是烧结矿重要的冶金性能指标之一。
还原粉化指数(RDI)表示还原后的铁矿石通过转鼓试验后的粉化程度,分别用RDI+6.3、RDI+3.15、RDI-0.5表示。
试验结果评定以RDI+3.15的结果为考核指标,RDI+6.3、RDI-0.5只作参考指标。
RDI+3.15≥72%RDI-3.15<28%4荷重还原软化性能T BST BEΔT B反映炉料加入高炉后,炉身下部和炉腰部位透气性的,这一部位悬料和炉腰结厚往往是由于炉料的荷重软化性能不良所造成的,故这一性能对高炉冶炼也显得比较重要。
T BS>1100℃ΔT B=T BE-T BS<150℃5熔融滴落性能ΔT=Td-TsΔPmaxS值铁矿石的熔融滴落性能简称熔滴性能,它是反映铁矿石进入高炉后,在高炉下部熔滴带的性状的,由于这一带的透气阻力占整个高炉阻力损失的60%以上,熔滴带的厚薄不仅影响高炉下部的透气性,它还直接影响脱硫和渗碳反应,从而影响高炉的产质量,因此它是铁矿石最重要的冶金性能。
Ts>1400℃ΔT=Td-Ts<100℃ΔPmax<180×9.8PaS值≤40Kpa·℃6还原膨胀性能RSI 还原膨胀性能是球团矿的重要冶金性能,由于氧化球团的主要矿物组成为Fe203,Fe203还原为Fe304过程中有个晶格转变,即由六方晶体转变为立方晶体,晶格常数由5.42埃增至8.38埃,会产生体积膨胀20%~25%,Fe304还原为Fe0过程中,体积膨胀可为4%~11%。
钢铁冶炼常用数据烧结1、烧结料层中固定碳含量低,按重量计算只占总量的3%~5%,而且分布的很分散。
2、一般烧结过程中可除去90%以上的S,加入少量的氯化物CaCl2,可生成易挥发性的A S Cl3、Pb Cl2、Zn Cl2,易除去60%的As,90%的Pb和60%的Zn。
K2O,Na2O、和P2 O5在烧结过程中较难去掉。
3、烧结点火温度取决于烧结物的融化温度,常控制在1250±50℃,球团在1200~1300℃培烧成。
4、我国优质烧结矿要求:转鼓指数T≥70.00%、抗磨指数A≤5%,筛分指数C≤6.0%,球团筛分指数C≤5.0%,表明烧结矿的粉末含量多少,C越小越好。
转鼓指数T = m1/m o×100%抗磨指数A = m o-(m1- m2)/ m o×100%筛分指数C = 100-A/100×100% (在高炉槽下取矿) m o—入鼓试样质量kg, m1—转鼓后〉6.3mm粒级部分的质量kg, m2—转鼓后6.3—0.5mm粒级部分的质量kg, C —筛分指数,A〉5mm粒的量kg落下强度F是另一种评价烧结矿常温强度的方法,用来衡量烧结矿的抗冲击能力。
优质的烧结矿落下强度F=86%~87%,合格的烧结矿落下强度F=80%~83%落下强度F = m1/ m o×100%m o—试样总质量kg,m1—落下四次后〉10mm粒级部分的质量kg,烧结矿石灰配比误差1%,影响烧结矿的碱度0.04,燃料波动1%,,影响烧结矿FeO 变化2%~3%,使烧结矿的还原性及强度受到影响。
炼铁1、通常入炉矿石料度5~35mm之间,小于5mm粉末是不能直接入炉的。
2、高炉冶炼成份波动TFe<±0.5%~1.0%,w(SiO2)≤±0.2%~0.3%,烧结矿碱度+0.03%~0.1% 。
3、冶炼1吨生铁含尘量30~80kg之间,是矿粉和焦粉的混合物,含Fe40%左右,C 10%左右,还有一定量的SiO2,作烧结原料,取代部分熔剂、燃料、矿粉降成本,配料中不应该超过10%。
宣钢烧结矿、球团矿冶金性能简析1烧结矿宣钢烧结矿是一种无机矿物,在熔化过程中由烧结剂参与控制转变,是混合物、合金和金属合金中常用的物料。
高纯度无定形铁矿一般由活性焦矿与熟石灰和助剂经烧结成,储存稳定性好。
宣钢无机烧结矿经过系统的加工,粒度大、形状与均匀度好,比表面积大,多曝气用价格合理,可作为冶金材料来使用。
2冶金性能1、抗热性:宣钢烧结矿由熔渣和可熔材料混合而成,抗热性优异,无明显软化变形,熔点高。
2、耐腐蚀性:经多次烧结处理后,其耐腐蚀性比较强,在1200-1300℃的复杂环境中可抵抗熔蚀,使用寿命长。
3、结晶性:由于宣钢烧结矿中有多种还原剂,对渗碳和凝固度都有很大影响,可以使材料获得良好的结晶性。
4、可焊性:是一种中等焊接矿,可用节热焊接、重熔焊接等方式进行焊接;可焊性也不错,用gcr13材料进行焊接,抗拉断焊接位及船弧焊接位的强度都比较高。
3球团矿宣钢球团矿又称球墨铸铁,是以铁、碳、硅等元素为基本成分的灰色球团矿。
球团矿由无定型铁矿、活性焦粉和一定量的助焦剂(烧结剂和助剂)烧结而成,抗热性、耐磨性、热膨胀性均非常优异,具有良好的商业价值。
4冶金性能1、抗拉强度:宣钢球团矿具有极高的抗拉强度,比一般铸铁的强度高出20%,抗拉强度在4千毫米拉伸时可达每平方毫米120兆帕。
2、抗老化性:宣钢球团矿具有良好的抗老化性,可在负荷较大的情况下耐久使用,在高温的环境中,能起到抗氧化保护作用,不受腐蚀影响。
3、耐热性:宣钢球团矿具有良好的耐热性,它能在1000℃以上工作温度,特别是用它制造的模具具有良好的耐热性,能有效提高加工质量,降低模具使用成本。
4、耐腐蚀性:宣钢球团矿具有良好的耐腐蚀性,能在1000℃以上的环境中发挥出良好的耐腐蚀性,特别是在碱性环境中拥有很好的耐腐蚀性,使材料能够长期服役。
以上就是宣钢烧结矿、球团矿冶金性能的简析,可以看出宣钢的烧结矿和球团矿都具有抗热性、耐腐蚀性以及耐热性等优秀的冶金性能,可大大提高金属加工的质量,为企业带来更大的效益。
炼铁烧结常用数据【自己总结】钢铁冶炼常用数据烧结1、烧结料层中固定碳含量低,按重量计算只占总量的3%~5%,而且分布的很分散。
2、一般烧结过程中可除去90%以上的S,加入少量的氯化物CaCl2,可生成易挥发性的A S Cl3、Pb Cl2、Zn Cl2,易除去60%的As,90%的Pb和60%的Zn。
K2O,Na2O、和P2 O5在烧结过程中较难去掉。
3、烧结点火温度取决于烧结物的融化温度,常控制在1250±50℃,球团在1200~1300℃培烧成。
4、我国优质烧结矿要求:转鼓指数T≥70.00%、抗磨指数A≤5%,筛分指数C≤6.0%,球团筛分指数C≤5.0%,表明烧结矿的粉末含量多少,C 越小越好。
转鼓指数T = m1/m o×100%抗磨指数A = m o-(m1- m2)/ m o×100%筛分指数C = 100-A/100×100% (在高炉槽下取矿) m o—入鼓试样质量kg, m1—转鼓后〉6.3mm粒级部分的质量kg, m2—转鼓后6.3—0.5mm粒级部分的质量kg, C —筛分指数,A〉5mm粒的量kg落下强度F是另一种评价烧结矿常温强度的方法,用来衡量烧结矿的抗冲击能力。
优质的烧结矿落下强度F=86%~87%,合格的烧结矿落下强度F=80%~83%落下强度F = m1/ m o×100%m o—试样总质量kg,m1—落下四次后〉10mm粒级部分的质量kg,烧结矿石灰配比误差1%,影响烧结矿的碱度0.04,燃料波动1%,,影响烧结矿FeO 变化2%~3%,使烧结矿的还原性及强度受到影响。
炼铁1、通常入炉矿石料度5~35mm之间,小于5mm粉末是不能直接入炉的。
2、高炉冶炼成份波动TFe<±0.5%~1.0%,w(SiO2)≤±0.2%~0.3%,烧结矿碱度+0.03%~0.1% 。
3、冶炼1吨生铁含尘量30~80kg之间,是矿粉和焦粉的混合物,含Fe40%左右,C 10%左右,还有一定量的SiO2,作烧结原料,取代部分熔剂、燃料、矿粉降成本,配料中不应该超过10%。
【技术文摘】烧结矿质量及其对高炉冶炼主要操作指标的影响许满兴(北京科技大学)摘要:本文阐述了烧结矿在高炉炼铁中的地位和作用,阐明了烧结矿质量的内涵,分析了烧结矿的化学成分、物理性能和冶金性能对高炉冶炼主要操作指标的影响,提出了烧结生产改善烧结矿质量的几点结论性意见。
关键词:烧结矿质量、主要化学成分、强度和粒度、冶金性能、高炉冶炼主要操作指标1 烧结矿在高炉炼铁中的地位和作用自上世纪八十年代以来,高碱度烧结矿一直是我国高炉炼铁的主要原料,近几十年来,含铁原料占高炉炼铁成本接近70%,烧结矿占高炉炼铁炉料的70%以上,占吨钢能耗指标的10%以上,是钢铁生产能耗的第二大户,也是废气物排放的大户,因此不论从炉料组成比例、生铁成本、还是废弃物排放及环境保护,烧结矿生产对高炉炼铁有着举足轻重的影响。
烧结矿的质量对高炉炼铁的产量、能耗、生铁质量和高炉寿命均起着决定性的作用。
例如,烧结矿的品位变动1%,将会影响高炉燃料比1.0%~1.5%,影响产量2.0~2.5%;烧结矿的SiO2含量变动1%,影响吨铁渣比30~35kg;烧结矿的碱金属和锌超标,其化合物在高炉下部高温区还原后形成K、Na、Zn蒸汽,随煤气上升在炉身中、下部循环富集、冷凝破坏炉料的强度,影响料柱的透气性,还会造成高炉结瘤、腐蚀耐火材料和金属结构。
烧结矿的低温还原粉化和熔滴性能是高炉上部和下部透气性的限制性环境,凡此种种,烧结矿的质量对高炉炼铁的作用和影响是不能忽视的,故讨论和探索烧结矿质量对改善高炉炼铁技术经济指标,实现低成本、低燃料比高效炼铁有着重大的经济价值和实际意义。
2 烧结矿质量的内涵和价值烧结矿的质量由化学成分、物理性能和冶金性能三部分组成,它们三者间的关系是:化学成分是基础,物理性能是保证,冶金性能是关键。
2.1 烧结矿的主要化学成分及其价值烧结矿的主要化学成分包括品位和SiO2、碱度、MgO和Al2O3、FeO,S、P、Ka2O、Zn和Cl等有害元素。
.评价烧结矿的质量指标主要有:化学成分及其稳定性、粒度组成与筛分指数、转鼓强度、落下强度、低温还原粉化性、还原性、软熔性等。
化学成分主要检测:TFe,FeO,CaO,SiO2,MgO,Al2O3,MnO,TiO2,S,P等,要求有效成份高,脉石成份低,有害杂质(P、S等)少。
根据《我国优质贴烧结矿的技术指标》(YB/T-006-91),TFe≥54%,允许波动±0.4%;FeO<10%,允许波动±0.5%;碱度R(CaO/SiO2)≥1.6,允许波动±0.05;S<0.04%。
粒度组成与筛分指数:取100Kg试样,等分为5份,用筛孔为5X5的摇筛,往复摇动10次,以<5mm出量计算筛分指数:C=(100-A)/100*100%,其中C为筛分指数,A为大于5mm粒级的量。
落下强度:评价烧结矿冷强度,测量其抗冲击能力,试样量为20±0.2Kg,落下高度为2m,自由落到大于20mm钢板上,往复4次,用10mm筛分级,以大于10mm的粒级出量表示落下强度指标。
F=m1/m2X100%,其中F为落下强度,m1为落下4次后,大于10mm的粒级出量,m2为试样总量。
F=80~83%为合格烧结矿,F=86~87%为优质烧结矿。
转鼓强度(重要指标):GB3209标准,转鼓为Ø1000X500mm,装料15Kg,转速25r/min,转200转,鼓后采用机械摇动筛,筛孔为6.3X6.3mm,往复30次,以<6.3mm的粒级表示转鼓强度。
转鼓强度T=m1/m0X100%,抗磨强度A=(m0-m1-m2)/m0X100%,其中m0为试样总质量,m1为+6.3粒级部分质量,m2为-6.3+0.5mm粒级部分质量,T,A均取两位小数。
要求:T≥70.00%,A≤5.00%。
还原性:是模拟炉料自高炉上部进入高温区的条件,用还原气体从烧结矿中排除与铁结合的样的难易程度的一种度量。
通过提高烧结矿的强度及冶金性能,加之炼铁厂加大对烧结矿筛的改造力度,减少入炉烧结矿的粉末,高炉技术经济指标逐年提升。
关键字:烧结矿质量高炉指标1概述近年来,随着武钢高炉的大型化和设备的更新换代,精料工作更加显得突出和重要。
高炉指标能否上一个台阶,首先看精料搞得好不好。
烧结矿是高炉炼铁的主要原料,其质量直接关系到高炉的技术经济指标。
高炉要求烧结矿的含铁品位高,化学成分稳定,有害杂质少,常温强度好,粒度均匀,粉末少,并具有还原度高,还原粉化率低,软化温度区间窄等良好的冶金性能。
2 提高烧结矿品位,有利于高炉增铁降焦入炉矿石品位每提高1%,产量提高3%,焦比降低2%。
因此提高入炉烧结矿品位对高炉增铁降焦的效果是十分明显的。
入炉烧结矿品位提高后,高炉渣量大幅下降,为进一步增大喷煤量创造了条件。
当高炉渣量降到300kg/t左右时,高炉喷煤量可达180kg/t,甚至更高。
高炉喷煤量增大后,风口前理论燃烧温度会下降,促使高炉进一步提高风温水平和富氧率,高炉指标的优化从此走上良性循环的轨道。
武钢烧结矿的品位呈逐年上升的趋势。
由1995年的54.28%上升到2005年的59%,烧结矿化学成分见表1。
提高烧结矿品位,主要靠大量采用高铁低硅矿粉。
烧结矿品位提高后,由于总粘结相减少,烧结矿的转鼓强度有所下降。
烧结厂采用整粒铺底料、厚料层烧结等技术来改善烧结矿的转鼓强度。
表1 2002~2005年武钢烧结矿化学成分3 提高烧结矿碱度,提高炉渣脱硫能力由于矿石品位提高后,高炉渣量减少,从而影响了炉渣脱硫能力。
提高烧结矿的碱度来提高炉渣碱度,未增强炉渣的脱硫能力。
2004年以前,武钢烧结矿碱度基本维持在1.70~1.80之间。
2004年以后,烧结矿碱度提高到1.80~1.90之间,甚至经常性地出现1.90~2.00的超高碱度。
碱度提高后,烧结矿中以铁酸钙为主的粘结相增加。
另外,由于高碱度烧结矿的使用,高炉使用球团矿的比例增加,导致入炉品位提高,而且熟料率也相应提高到90%以上。
烧结矿指标考核标准烧结矿是铁矿石的一种形态,烧结矿指标考核标准主要包括质量指标和技术经济指标两个方面。
一、质量指标:1. 铁含量:烧结矿的主要目的是用于铁炉冶炼,因此铁含量是衡量烧结矿质量的重要指标。
一般来说,标准烧结矿应具有较高的铁含量,提高冶炼效率和产品质量。
2. 粒度:烧结矿的粒度对铁矿石的还原、烧结和冶炼过程有着重要影响。
粒度过大会导致还原气体难以透过矿层,降低冶炼效率;粒度过小会造成矿层温度过高,增加冶炼能耗。
因此,烧结矿的粒度应符合一定的要求。
3. 品位控制:除了铁含量外,烧结矿的其他元素含量也会影响冶炼工艺和产品质量。
例如,硅、铝含量过高会导致矿渣过多,降低冶炼效率;硫含量过高会对环境造成污染;磷含量过高会降低钢的塑性和韧性。
因此,烧结矿的元素含量应控制在一定的范围内。
二、技术经济指标:1. 烧结性能:烧结矿在烧结过程中的性能直接影响烧结矿的冶炼效果。
烧结性能指标包括烧结指数、烧结膨胀率等,烧结指数越高,烧结膨胀率越低,烧结矿的冶炼性能越好。
2. 耐磨性:烧结矿在传送、破碎、堆储等过程中会受到摩擦和碰撞的影响,矿粒表面易受磨损,从而影响其冶炼效果和流动性。
烧结矿的耐磨性指标应符合一定的要求。
3. 价格和供应稳定性:烧结矿是铁炉冶炼的主要原料之一,价格和供应稳定性直接影响冶炼成本和生产安排。
烧结矿的价格应合理,供应稳定,并且需要有良好的产地和供应链管理。
总结起来,烧结矿指标考核标准主要包括质量指标和技术经济指标两个方面,其中质量指标包括铁含量、粒度、品位控制等,技术经济指标包括烧结性能、耐磨性、价格和供应稳定性等。
这些指标可以帮助生产企业评估烧结矿的品质和冶炼效果,从而指导优化生产工艺和提高产品质量。
烧结矿和球团矿转鼓强度的测定方法标准1. 测定原理转鼓强度是评价烧结矿和球团矿冶金性能的重要指标之一,通过测定转鼓强度可以了解矿物的机械性质、耐磨性、抗压强度等。
转鼓强度测试的原理是将一定量的试样置于转鼓内,在规定的转速下旋转一定时间,然后测定试样的破损率或失重率,以此评价试样的强度。
2. 测定步骤2.1 样品准备将待测的烧结矿或球团矿破碎至一定粒度,然后按照规定的取样方法,从不同部位取一定量的试样,混合均匀。
将试样分成两份,一份用于测定转鼓强度,另一份用于制备标准样品。
2.2 转鼓试验将试样放入转鼓内,调整好转速和旋转时间。
旋转过程中,试样会受到冲击和摩擦力,导致颗粒破裂或磨损。
旋转结束后,将试样取出,并测量其破损率或失重率。
2.3 结果计算根据测得的破损率或失重率,计算出试样的转鼓强度。
具体计算方法可以根据相关标准或规定进行。
3. 试验报告试验报告应包括以下内容:3.1 试验目的;3.2 试验原理;3.3 试验步骤;3.4 试验结果;3.5 结果分析。
4. 注意事项4.1 在进行转鼓试验时,应注意安全,避免试样飞溅造成伤害;4.2 试样的粒度和取样方法应符合相关规定,以保证测试结果的准确性;4.3 在测试过程中,应保持转鼓的清洁,避免杂质的干扰;4.4 对于不同种类的烧结矿和球团矿,应采用不同的测试条件和参数。
5. 方法精密度该测定方法的精密度取决于多个因素,如试样的粒度、取样方法、转鼓的转速和旋转时间等。
一般来说,该方法的相对标准偏差为1%~3%。
6. 方法应用范围该测定方法适用于各种类型的烧结矿和球团矿的转鼓强度测定,可以用于评估矿物的机械性质、耐磨性、抗压强度等性能指标。
此外,该方法还可以用于研究矿物的结构和性质之间的关系,以及优化矿物的加工工艺。
低碱度烧结矿的冶金性能分析摘要:低碱度烧结矿的冶金性能分析有助于更好的合理利用低品质铁矿石和矿粉资源,优化烧结质量指标,降低生产成本,为钢铁企业生产带来积极影响。
本次分析了低碱度烧结矿原料成分与特点分析以及冶金性能,证实其能够满足生产需求,有助于降低成本提升效益。
关键词:低碱度烧结矿冶金性能成分成本一直以来我国高炉炉料的选择都倾向于高碱度烧结矿,其冶金性能优良性价比较高,一直以来大受欢迎,但是由于近两年来生产成本上升,为顺应钢铁市场剧烈竞争,低碱度烧结矿开始在市场上占据重要比例,不少钢铁企业都积极寻求各种技术手段利用劣质低价矿粉生产低碱度烧结矿。
由于低碱度烧结矿使用时会对机型产生有害影响,导致生产成本增加等问题,所以加强对其冶金性能的分析有助于更好的合理利用低品质铁矿石和矿粉资源,优化烧结质量指标,降低生产成本,为钢铁企业生产带来积极影响。
下面我们结合国内某钢铁厂实际情况对低碱度烧结矿的冶金性能进行分析。
一、低碱度烧结矿原料成分与特点分析高炉炉料的成分较为复杂,一般主要包括FeO、MgO、TFe、Al2O3、K2O、Na2O、CaO、SiO2、TiO2等化学成分,这些成分的构成比决定了原料的化学成分和质量。
炉料的品味关系到其质量,直接影响到冶炼的焦比和产量。
烧结矿中MgO含量十分重要,在生产中有些企业将MgO生产配比提升至≥4%,结果烧结矿MgO达4%,同等白云石含量30%配入5%,烧结矿的品味降低3%,关于这个问题在生产实践中是必须予以重视的。
烧结矿中会有一定的MgO有利于抑制烧结矿的自然粉化和还原粉化,不利于烧结矿的强度和中温还原,但有利于高温还原和改善烧结矿的软熔性能。
SiO2的含量是烧结矿的主要成分,也是Al2O3/SiO2是形成复合铁酸钙的一个重要条件,其过高会导致冶炼问题,所以针对当前我国6%-8%的含量比要尽可能的降低比重,以提升冶炼质量和经济效益,这样才能够更好的控制烧结矿的碱度。
结矿的质量指标烧结矿的质量指标之比值合适,还原性好,有害杂质少,成分稳定,烧对烧结矿质量指标的要求包括以下内容:含Fe高,CaO/SiO2结矿强度高,粉末少,粒度均匀合适。
此外烧结矿的热还原粉末比要低。
(1)烧结矿的化学性质烧结矿的化学性质包括如下内容:1)烧结矿品位:系指其含铁量的高低,提高烧结矿含铁量是高炉精料的基本要求。
在评论烧结矿品位时,应考虑烧结矿所含碱性氧化物的数量,因为这关系到高炉冶炼时熔剂的用量。
所以为了便于比较,往往用扣除烧结矿中碱性氧化物的含量来计算烧结矿的含铁量。
2)烧结矿碱度:一般用烧结矿中CaO/SiO2之值表示。
这一比值常按高炉冶炼时不加或少加熔剂的情况来决定。
根据烧结矿熔剂性质,有熔剂性、自熔性和非自熔性(即普通)烧结矿之分,通常以高炉渣的碱度为标准进行区分:凡碱度等于高炉渣碱度的叫自熔性烧结矿,高于或低于高炉渣碱度的叫熔剂性或非自熔性烧结矿。
3)烧结矿含硫及其他有害杂质愈低愈好4)还原性:目前还原性的测定方法较多,尚未统一标准。
而还原计算几乎都是依据还原过程中失去的氧量与试样在试验前的总氧量的比值来表示。
生产中多以还原过程中试验失重的方法来计算还原度。
还原过程中失去的氧越多,说明该烧结矿还原性越好。
由于试验的条件不同,所得还原度大小也不一样。
因此比较烧结矿的还原度时,只能在同样条件下才能进行。
也可用氧化度大小表明烧结矿的还原性。
生产中一般按烧结矿中FeO含量来表示还原性。
一般认为FeO增多,难还原的硅酸铁或钙铁橄榄石数量增加,烧结矿熔融程度较高,还原性降低。
显然这样简单表示还原性的方法是有缺陷的,它只是估计了矿物组成对还原性的影响,而忽视了烧结矿显微结构,比如气孔率、结晶状况等对还原性的影响。
因此用FeO含量不能准确地表示烧结矿还原性质,但可以作为还原性的一个参考指标。
烧结矿的物理性质我国现用的鉴定烧结矿强度的指标有转鼓指标和筛分指标。
转鼓指标以其测定时的工作状态不同分为热转鼓指数和冷转鼓指数两种。
附1:铁烧结矿、球团矿的冶金性能序号冶金性能名称符号表示概念描述标 准1还原度(900℃)RI还原性指用还原气体从铁矿石中排除与铁相结合的氧的难易程度的一种量度。
2还原速率指数RVI 从还原曲线读出还原达到30%和60%时相对应的还原时间(min)。
我国以3h的还原度指数RI作为考核用指标,还原速率指数RVI作为参考指标。
测定标准为GB/T13241-91“铁矿石还原性的测定方法”。
RI≥72%3低温还原粉化率(500℃)RDI指高炉含铁原料(如烧结矿、块矿、球团矿)在高炉上部较低温度下被煤气还原时,主要由于赤铁矿向磁铁矿转变,体积膨胀,产生应力,从而导致粉化的程度。
低温还原粉化率是烧结矿重要的冶金性能指标之一。
还原粉化指数(RDI)表示还原后的铁矿石通过转鼓试验后的粉化程度,分别用RDI+6.3、RDI+3.15、RDI-0.5表示。
试验结果评定以RDI+3.15的结果为考核指标,RDI+6.3、RDI-0.5只作参考指标。
RDI+3.15≥72%RDI-3.15<28%4荷重还原软化性能T BST BEΔT B反映炉料加入高炉后,炉身下部和炉腰部位透气性的,这一部位悬料和炉腰结厚往往是由于炉料的荷重软化性能不良所造成的,故这一性能对高炉冶炼也显得比较重要。
T BS>1100℃ΔT B=T BE-T BS<150℃5熔融滴落性能ΔT=Td-TsΔPmaxS值铁矿石的熔融滴落性能简称熔滴性能,它是反映铁矿石进入高炉后,在高炉下部熔滴带的性状的,由于这一带的透气阻力占整个高炉阻力损失的60%以上,熔滴带的厚薄不仅影响高炉下部的透气性,它还直接影响脱硫和渗碳反应,从而影响高炉的产质量,因此它是铁矿石最重要的冶金性能。
Ts>1400℃ΔT=Td-Ts<100℃ΔPmax<180×9.8PaS值≤40Kpa·℃6还原膨胀性能RSI 还原膨胀性能是球团矿的重要冶金性能,由于氧化球团的主要矿物组成为Fe203,Fe203还原为Fe304过程中有个晶格转变,即由六方晶体转变为立方晶体,晶格常数由5.42埃增至8.38埃,会产生体积膨胀20%~25%,Fe304还原为Fe0过程中,体积膨胀可为4%~11%。
烧结矿质量指标标准
烧结矿是一种铁矿石粉末,通常用于冶金工业中的烧结生产过程。
其质量指标标准通常由国家或行业标准确定,具体标准可能会因国家和地区的不同而有所差异。
下面是一些可能包括在烧结矿质量指标标准中的常见参数:
1. 化学成分:包括烧结矿的主要成分和杂质含量,比如铁(Fe)含量、硅(SiO2)含量、铝(Al2O3)含量、钙(CaO)含量、镁(MgO)含量等。
这些成分的比例对于烧结矿的质量和适用性至关重要。
2. 粒度分布:烧结矿的粒度分布对于烧结反应的进行和产出烧结块的质量具有重要影响。
通常包括最大粒径、平均粒径、细度以及特定粒度分数的要求。
3. 烧结特性指标:这包括耐磨指数、烧结指数、烧损指数等,这些指标反映了烧结矿在高温下的烧结性能。
4. 矿石热性能:主要涉及烧结矿的热膨胀性能和结块性能,也是评价烧结矿的重要指标。
5. 其他特殊要求:如含硫量、磷含量、水分含量、胶结指数、耐热强度等适用于特殊工艺和使用条件的指标。
以上仅是一些可能包括在烧结矿质量指标标准中的常见指标,具体的标准以及要求应当根据实际的国家标准、行业标准或企业标准进行制定和遵守。
烧结矿冶金性能的有关参数一、低温还原粉化性能(1)RDT-3.15 30%时RDT+6.3一般在41%左右这个范围的低温还原粉化性能有一定恶化,但仍处在可维护中、小高炉冶炼所允许的范围之内。
(2)RDT-3.15 20—25%时RDT+6.3一般在60—50%这个范围基本能满足较高冶强的顺行要求。
(3)RDT-3.15 17—19%时RDT+6.3一般在67—63%这个范围的低温还原粉化性能应该说非常好,非常有利于改善高炉块状带的透气性,但要注意对还原性能的检验,还原度不能低于75%。
(4)RDT-0.5一般在6—7%范围一般烧结矿中磁铁矿和硅酸铁含量的增加,有利于改善低温粉化性能,同时随着FeO%含量的相应提高(从6%逐步提高到12%以下)也有利于低温还原粉化性能的改善。
二、烧结矿的还原性能还原度RI(900℃时)在75—80%左右时,应该是比较好的还原性能指标。
凡还原度的降低都不利于降低高炉冶炼燃料比,一般情况下,当采取减少低温粉化率措施的同时,还原度相应降低,它往往也与难还原的磁铁矿和硅酸铁含量的增加有关,FeO%>10%RG,还原度也会出现明显的降低趋势。
三、烧结矿荷重软化性能一般烧结矿碱度在 1.85±0.1条件下,软化的开始温度在1200—1220℃,软化终了温度在1320—1330℃,软化温度区间在110—120℃,凡软化温度区间(T2—T1)变小,对降低高炉软熔带的透气性是有利的。
反之,如果软化开始温度↓软化温度区间自然变大,不利于软熔带透气性的改善,一般影响烧结矿荷重软化性能,主要有两个因素:一是烧结矿的还原性能:烧结矿还原性能的改善有利于烧结矿在升温过程中形成液相的温度升高,导致烧结矿的软化开始温度升高。
二是烧结矿中脉石的熔点,在烧结矿碱度基本不变的条件下,烧结矿中脉石的熔点不变,R2低熔点低,R2高熔点高。
不同碱度对烧结矿冶金性能的影响摘要:在龙钢公司3#配比基础上,保持FeO在9.5±0.5范围内,通过碱度的变化,对烧结矿低温粉化指数、高温还原指数等方面进行研究。
低温粉化率在2.1±0.05左右最佳,高温还原率在2.0±0.05最佳。
综合评定当FeO稳定在9.5±0.5,碱度在2.0±0.05时烧结矿冶金性能最好。
关键词:碱度低温粉化高温还原冶金性能1前言近年来随着内外的试验研究及现有的烧结规律研究表明,当碱度升高达到一定值时,其冶金性能达到最好状态,当碱度再次升高时,其冶金性能状态有所下滑。
近年来,随着烧结技术的提升,对生产质量的要求也越来越高,合适的碱度变化成为烧结研究的主要问题。
本文主要研究碱度含量对烧结矿冶金性能的影响,通过合理的控制碱度来降低成本,稳定烧结矿质量,进而保证高炉的顺利运行,从而为公司降本增产提供有利的指导性参考。
2实验原料主要原料包括超特、巴混、纽曼及生灰、返矿、固体燃料等。
实验原料均取自烧结原料现场,所有原料均科学随机取样并且一次性取够八次实验所需的样。
实验原料化学成分见表1。
3实验方法与方案3.1实验方法实验参数混合料水分为7.0±0.2%,烧结杯为Ø300X1000mm,混合料质量为110kg,混合时间为300s,烧结料层厚度为800mm,烧结点火温度为1200℃,点火时间为30s,烧结点火负压为12KPa,铺地料5kg。
实验将烧结废气开始下降定为烧结终点,采用人工布料,烧结过程用计算机控制。
3.2试验方案设计五组烧结杯试验,其中FeO均控制为9.5±0.5,碱度含量分别为2.1±0.05,2.0±0.05,1.9±0.05,1.8±0.05,1.7±0.05,分别对应方案1-5,对烧结矿冶金性能进行研究;表1 含铁原料化学成分/%名称烧损率TFeFeOSiO2CaOMgOAl2O3矿1956.45.88.08.083.2矿23.9662.6.724.62.02.061.58矿35.6154.4.489.25.09.13.6矿44.5462.454.19.09.162.32矿5505002A.499.6.11.03.09.87矿B 2.559.85.5.34.22.59矿C -1.0963.226.623.44.434.11.08矿D 1.661.68.65.61.14.761.1矿E 7.0559.7.434.49.02.052.4矿F-1.862.7255.26.873.87.75矿G-1.8463.124.311.07.55.341.64表2 烧结矿主要成分/% 表3低温还原粉化、还原度指数/%实验方TFe%FeO%SiO2%CaO%MgO%Al2O3%案方案155.019.045.3411.122.002.18方案255.699.485.2910.471.822.04方案355.139.285.4510.561.852.18方案455.809.725.369.501.772.08方案556.329.095.209.111.712.186.3mm% 3.15mm%5mm%I%方案144.172.037.6961.332.08方案237.9770.836.4675.901.98方案337.5668.338.4673.061.94方案429.1165.78.7174.061.77方案536.7166.875.4571.861.754 试验结果分析4.1 碱度与低温粉化指数的关系图1碱度与低温粉化指数的关系图2碱度与高温还原指数关系图由表3和图1可看知,以1.75为基准,碱度提高到1.77时RDI+3.15从66.87%降到 65.7%,降低了1.17%主要原因是由于碱度的增加,SiO2的含量相对较低,作为粘结相的硅酸盐的含量相对较低,妨碍了铁矿石内部间的连晶作用,致使烧结矿抗膨胀粉化能力减弱,进而使烧结矿低温粉化指数降低;当碱度增加到2.08时,低温粉化指数RDI+3.15增加到72.03%,主要是因为碱度的增加,使铁酸钙和硅酸盐都增加,铁酸钙和硅酸盐相结合抑制了低温还原过程中体积的膨胀,进而使粉化指数显著提高;当碱度在2.1左右出现最大值,烧结矿碱度与低温还原粉化指数在部分区域内呈明显的增长关系。
烧结矿的形容词-概述说明以及解释1.引言1.1 概述烧结矿是指将原本散乱的细小粉料通过热处理和压制成块状,具有一定的强度和耐久性。
在现代工业生产中,烧结矿广泛应用于制造建筑材料、冶金、化工等领域,是不可或缺的原材料之一。
本文将从烧结矿的物理特性、化学成分和生产工艺等方面进行详细介绍,以期为读者提供全面了解烧结矿的相关知识。
1.2文章结构1.2 文章结构本文将围绕烧结矿的形容词展开讨论,首先将介绍烧结矿的物理特性,包括外观、颗粒大小等方面的描述。
接下来将详细分析烧结矿的化学成分,揭示其主要成分及对产物性质的影响。
最后将揭示烧结矿的生产工艺,展现其制备过程及相关工艺参数。
通过对烧结矿的物理特性、化学成分和生产工艺的分析,我们将全面了解烧结矿在金属冶炼和其他工业领域的重要作用,为未来研究和应用提供有力支持。
1.3 目的本文旨在探讨烧结矿的形容词,通过对烧结矿的物理特性、化学成分和生产工艺进行分析,找出适合描述烧结矿的形容词。
烧结矿作为重要的冶金原料,在钢铁生产中扮演着重要的角色,因此对其进行准确、全面的描述是非常必要的。
通过本文的研究,可以更好地了解烧结矿的特性,促进相关行业的发展和进步。
2.正文2.1 烧结矿的物理特性烧结矿作为一种重要的铁矿石原料,在工业生产中具有许多独特的物理特性。
首先,烧结矿的颗粒呈现出不规则的形状,通常呈块状或颗粒状,这种形状有利于在烧结过程中形成强大的结合力。
其次,烧结矿的颗粒大小一般较为均匀,这有利于在高温下形成均匀的烧结结构,从而提高烧结后的矿石质量。
此外,烧结矿的密度较高,通常大于3.0g/cm³,这表明其含铁量较高,适合用于炼铁生产。
此外,烧结矿的熔融性较好,可以在高温下快速熔化形成液相,有利于铁矿石颗粒在熔炼过程中快速融合。
最后,烧结矿具有较高的机械强度,可以在高温下承受一定的压力,不易破碎,有助于保持烧结矿的韧性和稳定性,确保烧结过程的顺利进行。
总的来说,烧结矿的物理特性直接影响着其在铁矿石冶炼中的应用效果,了解和掌握烧结矿的物理特性对于提高烧结矿的利用率和铁矿石冶炼效率具有重要意义。
烧结矿冶金性能的有关参数
一、低温还原粉化性能
(1)RDT-3.15 30%时RDT+6.3一般在41%左右
这个范围的低温还原粉化性能有一定恶化,但仍处在可维护中、小高炉冶炼所允许的范围之内。
(2)RDT-3.15 20—25%时RDT+6.3一般在60—50%
这个范围基本能满足较高冶强的顺行要求。
(3)RDT-3.15 17—19%时RDT+6.3一般在67—63%
这个范围的低温还原粉化性能应该说非常好,非常有利于改善高炉块状带的透气性,但要注意对还原性能的检验,还原度不能低于75%。
(4)RDT-0.5一般在6—7%范围
一般烧结矿中磁铁矿和硅酸铁含量的增加,有利于改善低温粉化性能,同时随着FeO%含量的相应提高(从6%逐步提高到12%以下)也有利于低温还原粉化性能的改善。
二、烧结矿的还原性能
还原度RI(900℃时)在75—80%左右时,应该是比较好的还原性能指标。
凡还原度的降低都不利于降低高炉冶炼燃料比,一般情况下,当采取减少低温粉化率措施的同时,还原度相应降低,它往往也与难还原的磁铁矿和硅酸铁含量的增加有关,FeO%>10%RG,还原度也会出现明显的降低趋势。
三、烧结矿荷重软化性能
一般烧结矿碱度在 1.85±0.1条件下,软化的开始温度在1200—
1220℃,软化终了温度在1320—1330℃,软化温度区间在110—120℃,凡软化温度区间(T2—T1)变小,对降低高炉软熔带的透气性是有利的。
反之,如果软化开始温度↓软化温度区间自然变大,不利于软熔带透气性的改善,一般影响烧结矿荷重软化性能,主要有两个因素:
一是烧结矿的还原性能:烧结矿还原性能的改善有利于烧结矿在升温过程中形成液相的温度升高,导致烧结矿的软化开始温度升高。
二是烧结矿中脉石的熔点,在烧结矿碱度基本不变的条件下,烧结矿中脉石的熔点不变,R2低熔点低,R2高熔点高。